| 1 |
mmeineke |
49 |
% temporary preamble |
| 2 |
|
|
|
| 3 |
|
|
\documentclass{seminar} |
| 4 |
|
|
|
| 5 |
|
|
\usepackage{amsmath} |
| 6 |
|
|
\usepackage{epsf} |
| 7 |
|
|
|
| 8 |
|
|
% ---------------------- |
| 9 |
|
|
% | Title | |
| 10 |
|
|
% ---------------------- |
| 11 |
|
|
|
| 12 |
|
|
\title{A Coarse Grain Model for Phospholipid MD Simulations} |
| 13 |
|
|
|
| 14 |
|
|
\author{Matthew A. Meineke\\ |
| 15 |
|
|
Department of Chemistry and Biochemistry\\ |
| 16 |
|
|
University of Notre Dame\\ |
| 17 |
|
|
Notre Dame, Indiana 46556} |
| 18 |
|
|
|
| 19 |
|
|
\date{\today} |
| 20 |
|
|
|
| 21 |
|
|
%------------------------------------------------------------------- |
| 22 |
|
|
% Begin Document |
| 23 |
|
|
|
| 24 |
|
|
\begin{document} |
| 25 |
|
|
\maketitle |
| 26 |
|
|
|
| 27 |
|
|
|
| 28 |
|
|
|
| 29 |
|
|
% Slide 1 |
| 30 |
|
|
\begin{slide} {Talk Outline} |
| 31 |
|
|
\begin{itemize} |
| 32 |
|
|
|
| 33 |
|
|
\item Discussion of the research motivation and goals |
| 34 |
|
|
|
| 35 |
|
|
\item Methodology |
| 36 |
|
|
|
| 37 |
|
|
\item Discussion of current research and preliminary results |
| 38 |
|
|
|
| 39 |
|
|
\item Future research |
| 40 |
|
|
|
| 41 |
|
|
\end{itemize} |
| 42 |
|
|
\end{slide} |
| 43 |
|
|
|
| 44 |
|
|
|
| 45 |
|
|
% Slide 2 |
| 46 |
|
|
|
| 47 |
|
|
\begin{slide}{Motivation} |
| 48 |
|
|
\begin{itemize} |
| 49 |
|
|
|
| 50 |
|
|
% make sure to come back and talk about the need for long time and length |
| 51 |
|
|
% scales |
| 52 |
|
|
|
| 53 |
|
|
\item Drug diffusion |
| 54 |
|
|
|
| 55 |
|
|
\item ripple phase |
| 56 |
|
|
|
| 57 |
|
|
\item bilayer formation dynamics |
| 58 |
|
|
|
| 59 |
|
|
\end{itemize} |
| 60 |
|
|
\end{slide} |
| 61 |
|
|
|
| 62 |
|
|
|
| 63 |
|
|
% Slide 3 |
| 64 |
|
|
|
| 65 |
|
|
\begin{slide}{Research Goals} |
| 66 |
|
|
\begin{itemize} |
| 67 |
|
|
|
| 68 |
|
|
\item |
| 69 |
|
|
To develop a coarse-grain simulation model with which to simulate |
| 70 |
|
|
phospholipid bilayers. |
| 71 |
|
|
|
| 72 |
|
|
\item To use the model to observe: |
| 73 |
|
|
|
| 74 |
|
|
\begin{itemize} |
| 75 |
|
|
|
| 76 |
|
|
\item Phospholipid properties with long length scales |
| 77 |
|
|
|
| 78 |
|
|
\begin{itemize} |
| 79 |
|
|
\item The ripple phase. |
| 80 |
|
|
\end{itemize} |
| 81 |
|
|
|
| 82 |
|
|
\item Long time scale dynamics of biological relevance |
| 83 |
|
|
|
| 84 |
|
|
\begin{itemize} |
| 85 |
|
|
\item Trans-membrane diffusion of drug molecules |
| 86 |
|
|
\end{itemize} |
| 87 |
|
|
\end{itemize} |
| 88 |
|
|
\end{itemize} |
| 89 |
|
|
\end{slide} |
| 90 |
|
|
|
| 91 |
|
|
|
| 92 |
|
|
% Slide 4 |
| 93 |
|
|
|
| 94 |
|
|
\begin{slide}{Length Scale Simplification} |
| 95 |
|
|
\begin{itemize} |
| 96 |
|
|
|
| 97 |
|
|
\item |
| 98 |
|
|
Replace any charged interactions of the system with dipoles. |
| 99 |
|
|
|
| 100 |
|
|
\begin{itemize} |
| 101 |
|
|
\item Allows for computational scaling aproximately by $N$ for |
| 102 |
|
|
dipole-dipole interactions. |
| 103 |
|
|
\item In contrast, the Ewald sum scales aproximately by $N \log N$. |
| 104 |
|
|
\end{itemize} |
| 105 |
|
|
|
| 106 |
|
|
\item |
| 107 |
|
|
Use unified models for the water and the lipid chain. |
| 108 |
|
|
|
| 109 |
|
|
\begin{itemize} |
| 110 |
|
|
\item Drastically reduces the number of atoms to simulate. |
| 111 |
|
|
\item Number of water interactions alone reduced by $\frac{1}{3}$. |
| 112 |
|
|
\end{itemize} |
| 113 |
|
|
\end{itemize} |
| 114 |
|
|
\end{slide} |
| 115 |
|
|
|
| 116 |
|
|
|
| 117 |
|
|
% Slide 5 |
| 118 |
|
|
|
| 119 |
|
|
\begin{slide}{Time Scale Simplification} |
| 120 |
|
|
\begin{itemize} |
| 121 |
|
|
|
| 122 |
|
|
\item |
| 123 |
|
|
No explicit hydrogens |
| 124 |
|
|
|
| 125 |
|
|
\begin{itemize} |
| 126 |
|
|
\item Hydrogen bond vibration is normally one of the fastest time |
| 127 |
|
|
events in a simulation. |
| 128 |
|
|
\end{itemize} |
| 129 |
|
|
|
| 130 |
|
|
\item |
| 131 |
|
|
Constrain all bonds to be of fixed length. |
| 132 |
|
|
|
| 133 |
|
|
\begin{itemize} |
| 134 |
|
|
\item As with the hydrgoens, bond vibrations are the fastest motion in |
| 135 |
|
|
asimulation |
| 136 |
|
|
\end{itemize} |
| 137 |
|
|
|
| 138 |
|
|
\item |
| 139 |
|
|
Allows time steps of up to 3 fs with the current integrator. |
| 140 |
|
|
|
| 141 |
|
|
\end{itemize} |
| 142 |
|
|
\end{slide} |
| 143 |
|
|
|
| 144 |
|
|
|
| 145 |
|
|
% Slide 6 |
| 146 |
|
|
\begin{slide}{Molecular Dynamics} |
| 147 |
|
|
|
| 148 |
|
|
All of our simulations will be carried out using molcular |
| 149 |
|
|
dymnamics. This involves solving Newton's equations of motion using |
| 150 |
|
|
the classical \emph{Hamiltonian} as follows: |
| 151 |
|
|
|
| 152 |
|
|
\begin{equation} |
| 153 |
|
|
H(\vec{q},\vec{p}) = T(\vec{p}) + V(\vec{q}) |
| 154 |
|
|
\end{equation} |
| 155 |
|
|
|
| 156 |
|
|
Here $T(\vec{p})$ is the kinetic energy of the system which is a |
| 157 |
|
|
function of momentum. In cartesian space, $T(\vec{p})$ can be |
| 158 |
|
|
written as: |
| 159 |
|
|
|
| 160 |
|
|
\begin{equation} |
| 161 |
|
|
T(\vec{p}) = \sum_{i=1}^{N} \sum_{\alpha = x,y,z} \frac{p^{2}_{i\alpha}}{2m_{i}} |
| 162 |
|
|
\end{equation} |
| 163 |
|
|
|
| 164 |
|
|
\end{slide} |
| 165 |
|
|
|
| 166 |
|
|
|
| 167 |
|
|
% Slide 7 |
| 168 |
|
|
\begin{slide}{The Potential} |
| 169 |
|
|
|
| 170 |
|
|
The main part of the simulation is then the calculation of forces from |
| 171 |
|
|
the potential energy. |
| 172 |
|
|
|
| 173 |
|
|
\begin{equation} |
| 174 |
|
|
\vec{F}(\vec{q}) = - \nabla V(\vec{q}) |
| 175 |
|
|
\end{equation} |
| 176 |
|
|
|
| 177 |
|
|
The potential itself is made of several parts. |
| 178 |
|
|
|
| 179 |
|
|
\begin{equation} |
| 180 |
|
|
V_{tot} = |
| 181 |
|
|
\overbrace{V_{l} + V_{\theta} + V_{\omega}}^{\mbox{bonded}} + |
| 182 |
|
|
\overbrace{V_{l\!j} + V_{d\!p} + V_{s\!s\!d}}^{\mbox{non-bonded}} |
| 183 |
|
|
\end{equation} |
| 184 |
|
|
|
| 185 |
|
|
Where the bond interactions $V_{l}$, $V_{\theta}$, and $V_{\omega}$ are |
| 186 |
|
|
the bond, bend, and torsion potentials, and the non-bonded |
| 187 |
mmeineke |
51 |
interactions $V_{l\!j}$, $V_{d\!p}$, and $V_{s\!p}$ are the |
| 188 |
|
|
lenard-jones, dipole-dipole, and sticky potential interactions. |
| 189 |
mmeineke |
49 |
|
| 190 |
|
|
\end{slide} |
| 191 |
|
|
|
| 192 |
|
|
|
| 193 |
mmeineke |
51 |
% Slide 8 |
| 194 |
mmeineke |
49 |
|
| 195 |
mmeineke |
51 |
\begin{slide}{Soft Sticky Dipole Model} |
| 196 |
mmeineke |
49 |
|
| 197 |
mmeineke |
51 |
The soft sticky model consists of a |
| 198 |
mmeineke |
49 |
|
| 199 |
|
|
|
| 200 |
|
|
|
| 201 |
mmeineke |
51 |
|
| 202 |
|
|
|
| 203 |
|
|
|
| 204 |
|
|
|
| 205 |
mmeineke |
49 |
%%%%%%%%%%%%%%%%%%%%%%%%%% END %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 206 |
|
|
|
| 207 |
|
|
\end{document} |