| 1 |
mmeineke |
63 |
% temporary preamble |
| 2 |
|
|
|
| 3 |
|
|
%\documentclass[ps,frames,final,nototal,slideColor,colorBG]{prosper} |
| 4 |
|
|
|
| 5 |
|
|
\documentclass{seminar} |
| 6 |
|
|
\usepackage{color} |
| 7 |
|
|
|
| 8 |
|
|
\usepackage{amsmath} |
| 9 |
|
|
\usepackage{amssymb} |
| 10 |
|
|
\usepackage{wrapfig} |
| 11 |
|
|
\usepackage{epsf} |
| 12 |
|
|
\usepackage{jurabib} |
| 13 |
|
|
|
| 14 |
|
|
% ---------------------- |
| 15 |
|
|
% | Title | |
| 16 |
|
|
% ---------------------- |
| 17 |
|
|
|
| 18 |
|
|
\title{A Mezzoscale Model for Phospholipid MD Simulations} |
| 19 |
|
|
|
| 20 |
|
|
\author{Matthew A. Meineke\\ |
| 21 |
|
|
Department of Chemistry and Biochemistry\\ |
| 22 |
|
|
University of Notre Dame\\ |
| 23 |
|
|
Notre Dame, Indiana 46556} |
| 24 |
|
|
|
| 25 |
|
|
\date{\today} |
| 26 |
|
|
|
| 27 |
|
|
%------------------------------------------------------------------- |
| 28 |
|
|
% Begin Document |
| 29 |
|
|
|
| 30 |
|
|
\begin{document} |
| 31 |
|
|
|
| 32 |
|
|
\maketitle |
| 33 |
|
|
|
| 34 |
|
|
\bibliography{canidacy_slides} |
| 35 |
|
|
\bibliographystyle{jurabib} |
| 36 |
|
|
|
| 37 |
|
|
|
| 38 |
|
|
|
| 39 |
|
|
|
| 40 |
|
|
|
| 41 |
|
|
% Slide 1 |
| 42 |
|
|
\begin{slide} {Talk Outline} |
| 43 |
|
|
\begin{itemize} |
| 44 |
|
|
|
| 45 |
|
|
\item Discussion of the research motivation and goals |
| 46 |
|
|
|
| 47 |
|
|
\item Methodology |
| 48 |
|
|
|
| 49 |
|
|
\item Discussion of current research and preliminary results |
| 50 |
|
|
|
| 51 |
|
|
\item Future research |
| 52 |
|
|
|
| 53 |
|
|
\end{itemize} |
| 54 |
|
|
\end{slide} |
| 55 |
|
|
|
| 56 |
|
|
|
| 57 |
|
|
% Slide 2 |
| 58 |
|
|
|
| 59 |
|
|
\begin{slide}{Motivation A: Long Length Scales} |
| 60 |
|
|
|
| 61 |
|
|
|
| 62 |
|
|
|
| 63 |
|
|
\begin{wrapfigure}{r}{45mm} |
| 64 |
|
|
|
| 65 |
|
|
\epsfxsize=45mm |
| 66 |
|
|
\epsfbox{ripple.epsi} |
| 67 |
|
|
|
| 68 |
|
|
\end{wrapfigure} |
| 69 |
|
|
|
| 70 |
|
|
Ripple phase: |
| 71 |
|
|
|
| 72 |
|
|
\begin{itemize} |
| 73 |
|
|
|
| 74 |
|
|
\item |
| 75 |
|
|
The ripple (~$P_{\beta'}$~) phase lies in the transition from the gel |
| 76 |
|
|
to fluid phase. |
| 77 |
|
|
|
| 78 |
|
|
\item |
| 79 |
|
|
periodicity of 100 - 200 $\mbox{\AA}$\footcite{Berne90} |
| 80 |
|
|
|
| 81 |
|
|
\end{itemize} |
| 82 |
|
|
\end{slide} |
| 83 |
|
|
|
| 84 |
|
|
|
| 85 |
|
|
|
| 86 |
|
|
|
| 87 |
|
|
|
| 88 |
|
|
|
| 89 |
|
|
\begin{slide}{Motivation} |
| 90 |
|
|
|
| 91 |
|
|
There is a strong need in phospholipid bilayer simulations for the |
| 92 |
|
|
capability to simulate both long time and length scales. Consider the |
| 93 |
|
|
following: |
| 94 |
|
|
|
| 95 |
|
|
\begin{itemize} |
| 96 |
|
|
|
| 97 |
|
|
\item Drug diffusion |
| 98 |
|
|
\begin{itemize} |
| 99 |
|
|
\item Some drug molecules may spend an appreciable time in the |
| 100 |
|
|
membrane. Long time scale dynamics are needed to observe and |
| 101 |
|
|
characterize their actions. |
| 102 |
|
|
\end{itemize} |
| 103 |
|
|
|
| 104 |
|
|
\item Ripple phase |
| 105 |
|
|
\begin{itemize} |
| 106 |
|
|
\item Between the bilayer gel and fluid phase there exists a ripple |
| 107 |
|
|
phase. This phase has a period of about 100 - 200 $\mbox{\AA}$. |
| 108 |
|
|
\end{itemize} |
| 109 |
|
|
|
| 110 |
|
|
\item Bilayer formation dynamics |
| 111 |
|
|
\begin{itemize} |
| 112 |
|
|
\item Initial simulations show that bilayers can take upwards of |
| 113 |
|
|
20 ns to form completely. |
| 114 |
|
|
\end{itemize} |
| 115 |
|
|
|
| 116 |
|
|
\end{itemize} |
| 117 |
|
|
\end{slide} |
| 118 |
|
|
|
| 119 |
|
|
|
| 120 |
|
|
% Slide 4 |
| 121 |
|
|
|
| 122 |
|
|
\begin{slide}{Length Scale Simplification} |
| 123 |
|
|
\begin{itemize} |
| 124 |
|
|
|
| 125 |
|
|
\item |
| 126 |
|
|
Replace any charged interactions of the system with dipoles. |
| 127 |
|
|
|
| 128 |
|
|
\begin{itemize} |
| 129 |
|
|
\item Allows for computational scaling approximately by $N$ for |
| 130 |
|
|
dipole-dipole interactions. |
| 131 |
|
|
\item In contrast, the Ewald sum scales approximately by $N \log N$. |
| 132 |
|
|
\end{itemize} |
| 133 |
|
|
|
| 134 |
|
|
\item |
| 135 |
|
|
Use unified models for the water and the lipid chain. |
| 136 |
|
|
|
| 137 |
|
|
\begin{itemize} |
| 138 |
|
|
\item Drastically reduces the number of atoms to simulate. |
| 139 |
|
|
\item Number of water interactions alone reduced by $\frac{1}{3}$. |
| 140 |
|
|
\end{itemize} |
| 141 |
|
|
\end{itemize} |
| 142 |
|
|
\end{slide} |
| 143 |
|
|
|
| 144 |
|
|
|
| 145 |
|
|
% Slide 5 |
| 146 |
|
|
|
| 147 |
|
|
\begin{slide}{Time Scale Simplification} |
| 148 |
|
|
\begin{itemize} |
| 149 |
|
|
|
| 150 |
|
|
\item |
| 151 |
|
|
No explicit hydrogens |
| 152 |
|
|
|
| 153 |
|
|
\begin{itemize} |
| 154 |
|
|
\item Hydrogen bond vibration is normally one of the fastest time |
| 155 |
|
|
events in a simulation. |
| 156 |
|
|
\end{itemize} |
| 157 |
|
|
|
| 158 |
|
|
\item |
| 159 |
|
|
Constrain all bonds to be of fixed length. |
| 160 |
|
|
|
| 161 |
|
|
\begin{itemize} |
| 162 |
|
|
\item As with the hydrogens, bond vibrations are the fastest motion in |
| 163 |
|
|
a simulation |
| 164 |
|
|
\end{itemize} |
| 165 |
|
|
|
| 166 |
|
|
\item |
| 167 |
|
|
Allows time steps of up to 3 fs with the current integrator. |
| 168 |
|
|
|
| 169 |
|
|
\end{itemize} |
| 170 |
|
|
\end{slide} |
| 171 |
|
|
|
| 172 |
|
|
|
| 173 |
|
|
% Slide 6 |
| 174 |
|
|
\begin{slide}{Molecular Dynamics} |
| 175 |
|
|
|
| 176 |
|
|
All of our simulations will be carried out using molecular |
| 177 |
|
|
dynamics. This involves solving Newton's equations of motion using |
| 178 |
|
|
the classical \emph{Hamiltonian} as follows: |
| 179 |
|
|
|
| 180 |
|
|
\begin{equation} |
| 181 |
|
|
H(\vec{q},\vec{p}) = T(\vec{p}) + V(\vec{q}) |
| 182 |
|
|
\end{equation} |
| 183 |
|
|
|
| 184 |
|
|
Here $T(\vec{p})$ is the kinetic energy of the system which is a |
| 185 |
|
|
function of momentum. In Cartesian space, $T(\vec{p})$ can be |
| 186 |
|
|
written as: |
| 187 |
|
|
|
| 188 |
|
|
\begin{equation} |
| 189 |
|
|
T(\vec{p}) = \sum_{i=1}^{N} \sum_{\alpha = x,y,z} \frac{p^{2}_{i\alpha}}{2m_{i}} |
| 190 |
|
|
\end{equation} |
| 191 |
|
|
|
| 192 |
|
|
\end{slide} |
| 193 |
|
|
|
| 194 |
|
|
|
| 195 |
|
|
% Slide 7 |
| 196 |
|
|
\begin{slide}{The Potential} |
| 197 |
|
|
|
| 198 |
|
|
The main part of the simulation is then the calculation of forces from |
| 199 |
|
|
the potential energy. |
| 200 |
|
|
|
| 201 |
|
|
\begin{equation} |
| 202 |
|
|
\vec{F}(\vec{q}) = - \nabla V(\vec{q}) |
| 203 |
|
|
\end{equation} |
| 204 |
|
|
|
| 205 |
|
|
The potential itself is made of several parts. |
| 206 |
|
|
|
| 207 |
|
|
\begin{equation} |
| 208 |
|
|
V_{tot} = |
| 209 |
|
|
\overbrace{V_{l} + V_{\theta} + V_{\omega}}^{\mbox{bonded}} + |
| 210 |
|
|
\overbrace{V_{l\!j} + V_{d\!p} + V_{s\!s\!d}}^{\mbox{non-bonded}} |
| 211 |
|
|
\end{equation} |
| 212 |
|
|
|
| 213 |
|
|
Where the bond interactions $V_{l}$, $V_{\theta}$, and $V_{\omega}$ are |
| 214 |
|
|
the bond, bend, and torsion potentials, and the non-bonded |
| 215 |
|
|
interactions $V_{l\!j}$, $V_{d\!p}$, and $V_{s\!p}$ are the |
| 216 |
|
|
lenard-jones, dipole-dipole, and sticky potential interactions. |
| 217 |
|
|
|
| 218 |
|
|
\end{slide} |
| 219 |
|
|
|
| 220 |
|
|
|
| 221 |
|
|
% Slide 8 |
| 222 |
|
|
|
| 223 |
|
|
\begin{slide}{Soft Sticky Dipole Model} |
| 224 |
|
|
|
| 225 |
|
|
The Soft-Sticky model for water is a reduced model. |
| 226 |
|
|
|
| 227 |
|
|
\begin{itemize} |
| 228 |
|
|
|
| 229 |
|
|
\item |
| 230 |
|
|
The model is represented by a single point mass at the water's center |
| 231 |
|
|
of mass. |
| 232 |
|
|
|
| 233 |
|
|
\item |
| 234 |
|
|
The point mass contains a fixed dipole of 2.35 D pointing from the |
| 235 |
|
|
oxygens toward the hydrogens. |
| 236 |
|
|
|
| 237 |
|
|
\end{itemize} |
| 238 |
|
|
|
| 239 |
|
|
It's potential is as follows: |
| 240 |
|
|
|
| 241 |
|
|
\begin{equation} |
| 242 |
|
|
V_{s\!s\!d} = V_{l\!j}(r_{i\!j}) + V_{d\!p}(r_{i\!j},\Omega_{i},\Omega_{j}) |
| 243 |
|
|
+ V_{s\!p}(r_{i\!j},\Omega_{i},\Omega_{j}) |
| 244 |
|
|
\end{equation} |
| 245 |
|
|
\end{slide} |
| 246 |
|
|
|
| 247 |
|
|
% Slide 8b |
| 248 |
|
|
|
| 249 |
|
|
\begin{slide}{SSD Diagram} |
| 250 |
|
|
|
| 251 |
|
|
\begin{center} |
| 252 |
|
|
\begin{figure} |
| 253 |
|
|
\epsfxsize=50mm |
| 254 |
|
|
\epsfbox{ssd.epsi} |
| 255 |
|
|
\end{figure} |
| 256 |
|
|
\end{center} |
| 257 |
|
|
|
| 258 |
|
|
A Diagram of the SSD model. |
| 259 |
|
|
\end{slide} |
| 260 |
|
|
|
| 261 |
|
|
% Slide 9 |
| 262 |
|
|
\begin{slide}{Hydrogen Bonding in SSD} |
| 263 |
|
|
|
| 264 |
|
|
It is important to note that SSD has a potential specifically to |
| 265 |
|
|
recreate the hydrogen bonding network of water. |
| 266 |
|
|
|
| 267 |
|
|
|
| 268 |
|
|
ICE SSD |
| 269 |
|
|
|
| 270 |
|
|
ICE point Dipole |
| 271 |
|
|
|
| 272 |
|
|
|
| 273 |
|
|
The importance of the hydrogen bond network is it's significant |
| 274 |
|
|
contribution to the hydrophobic driving force of bilayer formation. |
| 275 |
|
|
\end{slide} |
| 276 |
|
|
|
| 277 |
|
|
|
| 278 |
|
|
% Slide 10 |
| 279 |
|
|
|
| 280 |
|
|
\begin{slide}{The Lipid Model} |
| 281 |
|
|
|
| 282 |
|
|
To eliminate the need for charge-charge interactions, our lipid model |
| 283 |
|
|
replaces the phospholipid head group with a single large head group |
| 284 |
|
|
atom containing a freely oriented dipole. The tail is a simple alkane chain. |
| 285 |
|
|
|
| 286 |
|
|
Lipid Properties: |
| 287 |
|
|
\begin{itemize} |
| 288 |
|
|
\item $|\vec{\mu}_{\text{HEAD}}| = 20.6\ \text{D}$ |
| 289 |
|
|
\item $m_{\text{HEAD}} = 196\ \text{amu}$ |
| 290 |
|
|
\item Tail atoms are unified CH, $\text{CH}_2$, and $\text{CH}_3$ atoms |
| 291 |
|
|
\begin{itemize} |
| 292 |
|
|
\item Alkane forcefield parameters taken from TraPPE |
| 293 |
|
|
\end{itemize} |
| 294 |
|
|
\end{itemize} |
| 295 |
|
|
|
| 296 |
|
|
\end{slide} |
| 297 |
|
|
|
| 298 |
|
|
|
| 299 |
|
|
% Slide 11 |
| 300 |
|
|
|
| 301 |
|
|
\begin{slide}{Lipid Model} |
| 302 |
|
|
|
| 303 |
|
|
|
| 304 |
|
|
|
| 305 |
|
|
\end{slide} |
| 306 |
|
|
|
| 307 |
|
|
|
| 308 |
|
|
% Slide 12 |
| 309 |
|
|
|
| 310 |
|
|
\begin{slide}{Initial Runs: 25 Lipids in water} |
| 311 |
|
|
|
| 312 |
|
|
\textbf{Simulation Parameters:} |
| 313 |
|
|
|
| 314 |
|
|
\begin{itemize} |
| 315 |
|
|
|
| 316 |
|
|
\item Starting Configuration: |
| 317 |
|
|
\begin{itemize} |
| 318 |
|
|
\item 25 lipid molecules arranged in a 5 x 5 square |
| 319 |
|
|
\item square was surrounded by a sea of 1386 waters |
| 320 |
|
|
\begin{itemize} |
| 321 |
|
|
\item final water to lipid ratio was 55.4:1 |
| 322 |
|
|
\end{itemize} |
| 323 |
|
|
\end{itemize} |
| 324 |
|
|
|
| 325 |
|
|
\item Lipid had only a single saturated chain of 16 carbons |
| 326 |
|
|
|
| 327 |
|
|
\item Box Size: 34.5 $\mbox{\AA}$ x 39.4 $\mbox{\AA}$ x 39.4 $\mbox{\AA}$ |
| 328 |
|
|
|
| 329 |
|
|
\item dt = 2.0 - 3.0 fs |
| 330 |
|
|
|
| 331 |
|
|
\item T = 300 K |
| 332 |
|
|
|
| 333 |
|
|
\item NVE ensemble |
| 334 |
|
|
|
| 335 |
|
|
\item Periodic boundary conditions |
| 336 |
|
|
\end{itemize} |
| 337 |
|
|
|
| 338 |
|
|
\end{slide} |
| 339 |
|
|
|
| 340 |
|
|
|
| 341 |
|
|
% Slide 13 |
| 342 |
|
|
|
| 343 |
|
|
\begin{slide}{5x5: Initial} |
| 344 |
|
|
|
| 345 |
|
|
\begin{center} |
| 346 |
|
|
\begin{figure} |
| 347 |
|
|
\epsfxsize=50mm |
| 348 |
|
|
\epsfbox{5x5-initial.eps} |
| 349 |
|
|
\end{figure} |
| 350 |
|
|
\end{center} |
| 351 |
|
|
|
| 352 |
|
|
The initial configuration |
| 353 |
|
|
|
| 354 |
|
|
\end{slide} |
| 355 |
|
|
|
| 356 |
|
|
\begin{slide}{5x5: Final} |
| 357 |
|
|
|
| 358 |
|
|
\begin{center} |
| 359 |
|
|
\begin{figure} |
| 360 |
|
|
\epsfxsize=60mm |
| 361 |
|
|
\epsfbox{5x5-1.7ns.eps} |
| 362 |
|
|
\end{figure} |
| 363 |
|
|
\end{center} |
| 364 |
|
|
|
| 365 |
|
|
The final configuration at 1.7 ns. |
| 366 |
|
|
|
| 367 |
|
|
\end{slide} |
| 368 |
|
|
|
| 369 |
|
|
|
| 370 |
|
|
% Slide 14 |
| 371 |
|
|
|
| 372 |
|
|
\begin{slide}{5x5: $g(r)$} |
| 373 |
|
|
|
| 374 |
|
|
\begin{center} |
| 375 |
|
|
\begin{figure} |
| 376 |
|
|
\epsfxsize=60mm |
| 377 |
|
|
\epsfbox{all5x5-HEAD-HEAD-gr.eps} |
| 378 |
|
|
\end{figure} |
| 379 |
|
|
\end{center} |
| 380 |
|
|
|
| 381 |
|
|
|
| 382 |
|
|
\end{slide} |
| 383 |
|
|
|
| 384 |
|
|
\begin{slide}{5x5: $g(r)$} |
| 385 |
|
|
|
| 386 |
|
|
\begin{center} |
| 387 |
|
|
\begin{figure} |
| 388 |
|
|
\epsfxsize=60mm |
| 389 |
|
|
\epsfbox{all5x5-HEAD-X-gr.eps} |
| 390 |
|
|
\end{figure} |
| 391 |
|
|
\end{center} |
| 392 |
|
|
|
| 393 |
|
|
|
| 394 |
|
|
\end{slide} |
| 395 |
|
|
|
| 396 |
|
|
|
| 397 |
|
|
% Slide 15 |
| 398 |
|
|
|
| 399 |
|
|
\begin{slide}{5x5: $\cos$ correlations} |
| 400 |
|
|
|
| 401 |
|
|
\begin{center} |
| 402 |
|
|
\begin{figure} |
| 403 |
|
|
\epsfxsize=60mm |
| 404 |
|
|
\epsfbox{all5x5-HEAD-HEAD-cr.eps} |
| 405 |
|
|
\end{figure} |
| 406 |
|
|
\end{center} |
| 407 |
|
|
|
| 408 |
|
|
\end{slide} |
| 409 |
|
|
|
| 410 |
|
|
\begin{slide}{5x5: $\cos$ correlations} |
| 411 |
|
|
|
| 412 |
|
|
\begin{center} |
| 413 |
|
|
\begin{figure} |
| 414 |
|
|
\epsfxsize=60mm |
| 415 |
|
|
\epsfbox{all5x5-HEAD-X-cr.eps} |
| 416 |
|
|
\end{figure} |
| 417 |
|
|
\end{center} |
| 418 |
|
|
|
| 419 |
|
|
\end{slide} |
| 420 |
|
|
|
| 421 |
|
|
|
| 422 |
|
|
% Slide 16 |
| 423 |
|
|
|
| 424 |
|
|
\begin{slide}{Initial Runs: 50 Lipids randomly arranged in water} |
| 425 |
|
|
|
| 426 |
|
|
\textbf{Simulation Parameters:} |
| 427 |
|
|
|
| 428 |
|
|
\begin{itemize} |
| 429 |
|
|
|
| 430 |
|
|
\item Starting Configuration: |
| 431 |
|
|
\begin{itemize} |
| 432 |
|
|
\item 50 lipid molecules arranged randomly in a rectangular box |
| 433 |
|
|
\item The box was then filled with 1384 waters |
| 434 |
|
|
\begin{itemize} |
| 435 |
|
|
\item final water to lipid ratio was 27:1 |
| 436 |
|
|
\end{itemize} |
| 437 |
|
|
\end{itemize} |
| 438 |
|
|
|
| 439 |
|
|
\item Lipid had only a single saturated chain of 16 carbons |
| 440 |
|
|
|
| 441 |
|
|
\item Box Size: 26.6 $\mbox{\AA}$ x 26.6 $\mbox{\AA}$ x 108.4 $\mbox{\AA}$ |
| 442 |
|
|
|
| 443 |
|
|
\item dt = 2.0 - 3.0 fs |
| 444 |
|
|
|
| 445 |
|
|
\item T = 300 K |
| 446 |
|
|
|
| 447 |
|
|
\item NVE ensemble |
| 448 |
|
|
|
| 449 |
|
|
\item Periodic boundary conditions |
| 450 |
|
|
|
| 451 |
|
|
\end{itemize} |
| 452 |
|
|
|
| 453 |
|
|
\end{slide} |
| 454 |
|
|
|
| 455 |
|
|
|
| 456 |
|
|
% Slide 17 |
| 457 |
|
|
|
| 458 |
|
|
\begin{slide}{R-50: Initial} |
| 459 |
|
|
|
| 460 |
|
|
\begin{center} |
| 461 |
|
|
\begin{figure} |
| 462 |
|
|
\epsfxsize=100mm |
| 463 |
|
|
\epsfbox{r50-initial.eps} |
| 464 |
|
|
\end{figure} |
| 465 |
|
|
\end{center} |
| 466 |
|
|
|
| 467 |
|
|
The initial configuration |
| 468 |
|
|
|
| 469 |
|
|
\end{slide} |
| 470 |
|
|
|
| 471 |
|
|
\begin{slide}{R-50: Final} |
| 472 |
|
|
|
| 473 |
|
|
\begin{center} |
| 474 |
|
|
\begin{figure} |
| 475 |
|
|
\epsfxsize=100mm |
| 476 |
|
|
\epsfbox{r50-521ps.eps} |
| 477 |
|
|
\end{figure} |
| 478 |
|
|
\end{center} |
| 479 |
|
|
|
| 480 |
|
|
The fianl configuration at 521 ps |
| 481 |
|
|
|
| 482 |
|
|
\end{slide} |
| 483 |
|
|
|
| 484 |
|
|
|
| 485 |
|
|
% Slide 18 |
| 486 |
|
|
|
| 487 |
|
|
\begin{slide}{R-50: $g(r)$} |
| 488 |
|
|
|
| 489 |
|
|
|
| 490 |
|
|
\begin{center} |
| 491 |
|
|
\begin{figure} |
| 492 |
|
|
\epsfxsize=60mm |
| 493 |
|
|
\epsfbox{r50-HEAD-HEAD-gr.eps} |
| 494 |
|
|
\end{figure} |
| 495 |
|
|
\end{center} |
| 496 |
|
|
|
| 497 |
|
|
\end{slide} |
| 498 |
|
|
|
| 499 |
|
|
|
| 500 |
|
|
\begin{slide}{R-50: $g(r)$} |
| 501 |
|
|
|
| 502 |
|
|
|
| 503 |
|
|
\begin{center} |
| 504 |
|
|
\begin{figure} |
| 505 |
|
|
\epsfxsize=60mm |
| 506 |
|
|
\epsfbox{r50-HEAD-X-gr.eps} |
| 507 |
|
|
\end{figure} |
| 508 |
|
|
\end{center} |
| 509 |
|
|
|
| 510 |
|
|
\end{slide} |
| 511 |
|
|
|
| 512 |
|
|
|
| 513 |
|
|
% Slide 19 |
| 514 |
|
|
|
| 515 |
|
|
\begin{slide}{R-50: $\cos$ correlations} |
| 516 |
|
|
|
| 517 |
|
|
|
| 518 |
|
|
\begin{center} |
| 519 |
|
|
\begin{figure} |
| 520 |
|
|
\epsfxsize=60mm |
| 521 |
|
|
\epsfbox{r50-HEAD-HEAD-cr.eps} |
| 522 |
|
|
\end{figure} |
| 523 |
|
|
\end{center} |
| 524 |
|
|
|
| 525 |
|
|
\end{slide} |
| 526 |
|
|
|
| 527 |
|
|
\begin{slide}{R-50: $\cos$ correlations} |
| 528 |
|
|
|
| 529 |
|
|
|
| 530 |
|
|
\begin{center} |
| 531 |
|
|
\begin{figure} |
| 532 |
|
|
\epsfxsize=60mm |
| 533 |
|
|
\epsfbox{r50-HEAD-X-cr.eps} |
| 534 |
|
|
\end{figure} |
| 535 |
|
|
\end{center} |
| 536 |
|
|
|
| 537 |
|
|
\end{slide} |
| 538 |
|
|
|
| 539 |
|
|
|
| 540 |
|
|
% Slide 20 |
| 541 |
|
|
|
| 542 |
|
|
\begin{slide}{Future Directions} |
| 543 |
|
|
|
| 544 |
|
|
\begin{itemize} |
| 545 |
|
|
|
| 546 |
|
|
\item |
| 547 |
|
|
Simulation of a lipid with 2 chains, or perhaps expand the current |
| 548 |
|
|
unified chain atoms to take up greater steric bulk. |
| 549 |
|
|
|
| 550 |
|
|
\item |
| 551 |
|
|
Incorporate constant pressure and constant temperature into the ensemble. |
| 552 |
|
|
|
| 553 |
|
|
\item |
| 554 |
|
|
Parrellize the code. |
| 555 |
|
|
|
| 556 |
|
|
\end{itemize} |
| 557 |
|
|
\end{slide} |
| 558 |
|
|
|
| 559 |
|
|
|
| 560 |
|
|
% Slide 21 |
| 561 |
|
|
|
| 562 |
|
|
\begin{slide}{Acknowledgements} |
| 563 |
|
|
|
| 564 |
|
|
\begin{itemize} |
| 565 |
|
|
|
| 566 |
|
|
\item Dr. J. Daniel Gezelter |
| 567 |
|
|
\item Christopher Fennel |
| 568 |
|
|
\item Charles Vardeman |
| 569 |
|
|
\item Teng Lin |
| 570 |
|
|
|
| 571 |
|
|
\end{itemize} |
| 572 |
|
|
|
| 573 |
|
|
Funding by: |
| 574 |
|
|
\begin{itemize} |
| 575 |
|
|
\item Dreyfus New Faculty Award |
| 576 |
|
|
\end{itemize} |
| 577 |
|
|
|
| 578 |
|
|
\end{slide} |
| 579 |
|
|
|
| 580 |
|
|
|
| 581 |
|
|
|
| 582 |
|
|
|
| 583 |
|
|
|
| 584 |
|
|
|
| 585 |
|
|
|
| 586 |
|
|
|
| 587 |
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%% END %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 588 |
|
|
|
| 589 |
|
|
\end{document} |