| 1 | mmeineke | 63 | % temporary preamble | 
| 2 |  |  |  | 
| 3 |  |  | %\documentclass[ps,frames,final,nototal,slideColor,colorBG]{prosper} | 
| 4 |  |  |  | 
| 5 |  |  | \documentclass{seminar} | 
| 6 |  |  | \usepackage{color} | 
| 7 |  |  |  | 
| 8 |  |  | \usepackage{amsmath} | 
| 9 |  |  | \usepackage{amssymb} | 
| 10 |  |  | \usepackage{wrapfig} | 
| 11 |  |  | \usepackage{epsf} | 
| 12 |  |  | \usepackage{jurabib} | 
| 13 |  |  |  | 
| 14 |  |  | % ---------------------- | 
| 15 |  |  | % |      Title         | | 
| 16 |  |  | % ---------------------- | 
| 17 |  |  |  | 
| 18 |  |  | \title{A Mezzoscale Model for Phospholipid MD Simulations} | 
| 19 |  |  |  | 
| 20 |  |  | \author{Matthew A. Meineke\\ | 
| 21 |  |  | Department of Chemistry and Biochemistry\\ | 
| 22 |  |  | University of Notre Dame\\ | 
| 23 |  |  | Notre Dame, Indiana 46556} | 
| 24 |  |  |  | 
| 25 |  |  | \date{\today} | 
| 26 |  |  |  | 
| 27 |  |  | %------------------------------------------------------------------- | 
| 28 |  |  | %                       Begin Document | 
| 29 |  |  |  | 
| 30 |  |  | \begin{document} | 
| 31 |  |  |  | 
| 32 |  |  | \maketitle | 
| 33 |  |  |  | 
| 34 |  |  | \bibliography{canidacy_slides} | 
| 35 |  |  | \bibliographystyle{jurabib} | 
| 36 |  |  |  | 
| 37 |  |  |  | 
| 38 |  |  |  | 
| 39 |  |  |  | 
| 40 |  |  |  | 
| 41 |  |  | % Slide 1 | 
| 42 |  |  | \begin{slide} {Talk Outline} | 
| 43 |  |  | \begin{itemize} | 
| 44 |  |  |  | 
| 45 |  |  | \item Discussion of the research motivation and goals | 
| 46 |  |  |  | 
| 47 |  |  | \item Methodology | 
| 48 |  |  |  | 
| 49 |  |  | \item Discussion of current research and preliminary results | 
| 50 |  |  |  | 
| 51 |  |  | \item Future research | 
| 52 |  |  |  | 
| 53 |  |  | \end{itemize} | 
| 54 |  |  | \end{slide} | 
| 55 |  |  |  | 
| 56 |  |  |  | 
| 57 |  |  | % Slide 2 | 
| 58 |  |  |  | 
| 59 |  |  | \begin{slide}{Motivation A: Long Length Scales} | 
| 60 |  |  |  | 
| 61 |  |  |  | 
| 62 |  |  |  | 
| 63 |  |  | \begin{wrapfigure}{r}{45mm} | 
| 64 |  |  |  | 
| 65 |  |  | \epsfxsize=45mm | 
| 66 |  |  | \epsfbox{ripple.epsi} | 
| 67 |  |  |  | 
| 68 |  |  | \end{wrapfigure} | 
| 69 |  |  |  | 
| 70 |  |  | Ripple phase: | 
| 71 |  |  |  | 
| 72 |  |  | \begin{itemize} | 
| 73 |  |  |  | 
| 74 |  |  | \item | 
| 75 |  |  | The ripple (~$P_{\beta'}$~) phase lies in the transition from the gel | 
| 76 |  |  | to fluid phase. | 
| 77 |  |  |  | 
| 78 |  |  | \item | 
| 79 |  |  | periodicity of 100 - 200 $\mbox{\AA}$\footcite{Berne90} | 
| 80 |  |  |  | 
| 81 |  |  | \end{itemize} | 
| 82 |  |  | \end{slide} | 
| 83 |  |  |  | 
| 84 |  |  |  | 
| 85 |  |  |  | 
| 86 |  |  |  | 
| 87 |  |  |  | 
| 88 |  |  |  | 
| 89 |  |  | \begin{slide}{Motivation} | 
| 90 |  |  |  | 
| 91 |  |  | There is a strong need in phospholipid bilayer simulations for the | 
| 92 |  |  | capability to simulate both long time and length scales. Consider the | 
| 93 |  |  | following: | 
| 94 |  |  |  | 
| 95 |  |  | \begin{itemize} | 
| 96 |  |  |  | 
| 97 |  |  | \item Drug diffusion | 
| 98 |  |  | \begin{itemize} | 
| 99 |  |  | \item Some drug molecules may spend an appreciable time in the | 
| 100 |  |  | membrane. Long time scale dynamics are needed to observe and | 
| 101 |  |  | characterize their actions. | 
| 102 |  |  | \end{itemize} | 
| 103 |  |  |  | 
| 104 |  |  | \item Ripple phase | 
| 105 |  |  | \begin{itemize} | 
| 106 |  |  | \item Between the bilayer gel and fluid phase there exists a ripple | 
| 107 |  |  | phase. This phase has a period of about 100 - 200 $\mbox{\AA}$. | 
| 108 |  |  | \end{itemize} | 
| 109 |  |  |  | 
| 110 |  |  | \item Bilayer formation dynamics | 
| 111 |  |  | \begin{itemize} | 
| 112 |  |  | \item Initial simulations show that bilayers can take upwards of | 
| 113 |  |  | 20 ns to form completely. | 
| 114 |  |  | \end{itemize} | 
| 115 |  |  |  | 
| 116 |  |  | \end{itemize} | 
| 117 |  |  | \end{slide} | 
| 118 |  |  |  | 
| 119 |  |  |  | 
| 120 |  |  | % Slide 4 | 
| 121 |  |  |  | 
| 122 |  |  | \begin{slide}{Length Scale Simplification} | 
| 123 |  |  | \begin{itemize} | 
| 124 |  |  |  | 
| 125 |  |  | \item | 
| 126 |  |  | Replace any charged interactions of the system with dipoles. | 
| 127 |  |  |  | 
| 128 |  |  | \begin{itemize} | 
| 129 |  |  | \item Allows for computational scaling approximately by $N$ for | 
| 130 |  |  | dipole-dipole interactions. | 
| 131 |  |  | \item In contrast, the Ewald sum scales approximately by $N \log N$. | 
| 132 |  |  | \end{itemize} | 
| 133 |  |  |  | 
| 134 |  |  | \item | 
| 135 |  |  | Use unified models for the water and the lipid chain. | 
| 136 |  |  |  | 
| 137 |  |  | \begin{itemize} | 
| 138 |  |  | \item Drastically reduces the number of atoms to simulate. | 
| 139 |  |  | \item Number of water interactions alone reduced by $\frac{1}{3}$. | 
| 140 |  |  | \end{itemize} | 
| 141 |  |  | \end{itemize} | 
| 142 |  |  | \end{slide} | 
| 143 |  |  |  | 
| 144 |  |  |  | 
| 145 |  |  | % Slide 5 | 
| 146 |  |  |  | 
| 147 |  |  | \begin{slide}{Time Scale Simplification} | 
| 148 |  |  | \begin{itemize} | 
| 149 |  |  |  | 
| 150 |  |  | \item | 
| 151 |  |  | No explicit hydrogens | 
| 152 |  |  |  | 
| 153 |  |  | \begin{itemize} | 
| 154 |  |  | \item Hydrogen bond vibration is normally one of the fastest time | 
| 155 |  |  | events in a simulation. | 
| 156 |  |  | \end{itemize} | 
| 157 |  |  |  | 
| 158 |  |  | \item | 
| 159 |  |  | Constrain all bonds to be of fixed length. | 
| 160 |  |  |  | 
| 161 |  |  | \begin{itemize} | 
| 162 |  |  | \item As with the hydrogens, bond vibrations are the fastest motion in | 
| 163 |  |  | a simulation | 
| 164 |  |  | \end{itemize} | 
| 165 |  |  |  | 
| 166 |  |  | \item | 
| 167 |  |  | Allows time steps of up to 3 fs with the current integrator. | 
| 168 |  |  |  | 
| 169 |  |  | \end{itemize} | 
| 170 |  |  | \end{slide} | 
| 171 |  |  |  | 
| 172 |  |  |  | 
| 173 |  |  | % Slide 6 | 
| 174 |  |  | \begin{slide}{Molecular Dynamics} | 
| 175 |  |  |  | 
| 176 |  |  | All of our simulations will be carried out using molecular | 
| 177 |  |  | dynamics. This involves solving Newton's equations of motion using | 
| 178 |  |  | the classical \emph{Hamiltonian} as follows: | 
| 179 |  |  |  | 
| 180 |  |  | \begin{equation} | 
| 181 |  |  | H(\vec{q},\vec{p}) = T(\vec{p}) + V(\vec{q}) | 
| 182 |  |  | \end{equation} | 
| 183 |  |  |  | 
| 184 |  |  | Here $T(\vec{p})$ is the kinetic energy of the system which is a | 
| 185 |  |  | function of momentum. In Cartesian space, $T(\vec{p})$ can be | 
| 186 |  |  | written as: | 
| 187 |  |  |  | 
| 188 |  |  | \begin{equation} | 
| 189 |  |  | T(\vec{p}) = \sum_{i=1}^{N} \sum_{\alpha = x,y,z} \frac{p^{2}_{i\alpha}}{2m_{i}} | 
| 190 |  |  | \end{equation} | 
| 191 |  |  |  | 
| 192 |  |  | \end{slide} | 
| 193 |  |  |  | 
| 194 |  |  |  | 
| 195 |  |  | % Slide 7 | 
| 196 |  |  | \begin{slide}{The Potential} | 
| 197 |  |  |  | 
| 198 |  |  | The main part of the simulation is then the calculation of forces from | 
| 199 |  |  | the potential energy. | 
| 200 |  |  |  | 
| 201 |  |  | \begin{equation} | 
| 202 |  |  | \vec{F}(\vec{q}) = - \nabla V(\vec{q}) | 
| 203 |  |  | \end{equation} | 
| 204 |  |  |  | 
| 205 |  |  | The potential itself is made of several parts. | 
| 206 |  |  |  | 
| 207 |  |  | \begin{equation} | 
| 208 |  |  | V_{tot} = | 
| 209 |  |  | \overbrace{V_{l} + V_{\theta} + V_{\omega}}^{\mbox{bonded}} + | 
| 210 |  |  | \overbrace{V_{l\!j} + V_{d\!p} + V_{s\!s\!d}}^{\mbox{non-bonded}} | 
| 211 |  |  | \end{equation} | 
| 212 |  |  |  | 
| 213 |  |  | Where the bond interactions $V_{l}$, $V_{\theta}$, and $V_{\omega}$ are | 
| 214 |  |  | the bond, bend, and torsion potentials, and the non-bonded | 
| 215 |  |  | interactions $V_{l\!j}$, $V_{d\!p}$, and $V_{s\!p}$ are the | 
| 216 |  |  | lenard-jones, dipole-dipole, and sticky potential interactions. | 
| 217 |  |  |  | 
| 218 |  |  | \end{slide} | 
| 219 |  |  |  | 
| 220 |  |  |  | 
| 221 |  |  | % Slide 8 | 
| 222 |  |  |  | 
| 223 |  |  | \begin{slide}{Soft Sticky Dipole Model} | 
| 224 |  |  |  | 
| 225 |  |  | The Soft-Sticky model for water is a reduced model. | 
| 226 |  |  |  | 
| 227 |  |  | \begin{itemize} | 
| 228 |  |  |  | 
| 229 |  |  | \item | 
| 230 |  |  | The model is represented by a single point mass at the water's center | 
| 231 |  |  | of mass. | 
| 232 |  |  |  | 
| 233 |  |  | \item | 
| 234 |  |  | The point mass contains a fixed dipole of 2.35 D pointing from the | 
| 235 |  |  | oxygens toward the hydrogens. | 
| 236 |  |  |  | 
| 237 |  |  | \end{itemize} | 
| 238 |  |  |  | 
| 239 |  |  | It's potential is as follows: | 
| 240 |  |  |  | 
| 241 |  |  | \begin{equation} | 
| 242 |  |  | V_{s\!s\!d} = V_{l\!j}(r_{i\!j}) + V_{d\!p}(r_{i\!j},\Omega_{i},\Omega_{j}) | 
| 243 |  |  | + V_{s\!p}(r_{i\!j},\Omega_{i},\Omega_{j}) | 
| 244 |  |  | \end{equation} | 
| 245 |  |  | \end{slide} | 
| 246 |  |  |  | 
| 247 |  |  | % Slide 8b | 
| 248 |  |  |  | 
| 249 |  |  | \begin{slide}{SSD Diagram} | 
| 250 |  |  |  | 
| 251 |  |  | \begin{center} | 
| 252 |  |  | \begin{figure} | 
| 253 |  |  | \epsfxsize=50mm | 
| 254 |  |  | \epsfbox{ssd.epsi} | 
| 255 |  |  | \end{figure} | 
| 256 |  |  | \end{center} | 
| 257 |  |  |  | 
| 258 |  |  | A Diagram of the SSD model. | 
| 259 |  |  | \end{slide} | 
| 260 |  |  |  | 
| 261 |  |  | % Slide 9 | 
| 262 |  |  | \begin{slide}{Hydrogen Bonding in SSD} | 
| 263 |  |  |  | 
| 264 |  |  | It is important to note that SSD has a potential specifically to | 
| 265 |  |  | recreate the hydrogen bonding network of water. | 
| 266 |  |  |  | 
| 267 |  |  |  | 
| 268 |  |  | ICE SSD | 
| 269 |  |  |  | 
| 270 |  |  | ICE point Dipole | 
| 271 |  |  |  | 
| 272 |  |  |  | 
| 273 |  |  | The importance of the hydrogen bond network is it's significant | 
| 274 |  |  | contribution to the hydrophobic driving force of bilayer formation. | 
| 275 |  |  | \end{slide} | 
| 276 |  |  |  | 
| 277 |  |  |  | 
| 278 |  |  | % Slide 10 | 
| 279 |  |  |  | 
| 280 |  |  | \begin{slide}{The Lipid Model} | 
| 281 |  |  |  | 
| 282 |  |  | To eliminate the need for charge-charge interactions, our lipid model | 
| 283 |  |  | replaces the phospholipid head group with a single large head group | 
| 284 |  |  | atom containing a freely oriented dipole. The tail is a simple alkane chain. | 
| 285 |  |  |  | 
| 286 |  |  | Lipid Properties: | 
| 287 |  |  | \begin{itemize} | 
| 288 |  |  | \item $|\vec{\mu}_{\text{HEAD}}| = 20.6\ \text{D}$ | 
| 289 |  |  | \item $m_{\text{HEAD}} = 196\ \text{amu}$ | 
| 290 |  |  | \item Tail atoms are unified CH, $\text{CH}_2$, and $\text{CH}_3$ atoms | 
| 291 |  |  | \begin{itemize} | 
| 292 |  |  | \item Alkane forcefield parameters taken from TraPPE | 
| 293 |  |  | \end{itemize} | 
| 294 |  |  | \end{itemize} | 
| 295 |  |  |  | 
| 296 |  |  | \end{slide} | 
| 297 |  |  |  | 
| 298 |  |  |  | 
| 299 |  |  | % Slide 11 | 
| 300 |  |  |  | 
| 301 |  |  | \begin{slide}{Lipid Model} | 
| 302 |  |  |  | 
| 303 |  |  |  | 
| 304 |  |  |  | 
| 305 |  |  | \end{slide} | 
| 306 |  |  |  | 
| 307 |  |  |  | 
| 308 |  |  | % Slide 12 | 
| 309 |  |  |  | 
| 310 |  |  | \begin{slide}{Initial Runs: 25 Lipids in water} | 
| 311 |  |  |  | 
| 312 |  |  | \textbf{Simulation Parameters:} | 
| 313 |  |  |  | 
| 314 |  |  | \begin{itemize} | 
| 315 |  |  |  | 
| 316 |  |  | \item Starting Configuration: | 
| 317 |  |  | \begin{itemize} | 
| 318 |  |  | \item 25 lipid molecules arranged in a 5 x 5 square | 
| 319 |  |  | \item square was surrounded by a sea of 1386  waters | 
| 320 |  |  | \begin{itemize} | 
| 321 |  |  | \item final water to lipid ratio was 55.4:1 | 
| 322 |  |  | \end{itemize} | 
| 323 |  |  | \end{itemize} | 
| 324 |  |  |  | 
| 325 |  |  | \item Lipid had only a single saturated chain of 16 carbons | 
| 326 |  |  |  | 
| 327 |  |  | \item Box Size: 34.5 $\mbox{\AA}$ x 39.4 $\mbox{\AA}$ x 39.4 $\mbox{\AA}$ | 
| 328 |  |  |  | 
| 329 |  |  | \item dt = 2.0 - 3.0 fs | 
| 330 |  |  |  | 
| 331 |  |  | \item T = 300 K | 
| 332 |  |  |  | 
| 333 |  |  | \item NVE ensemble | 
| 334 |  |  |  | 
| 335 |  |  | \item Periodic boundary conditions | 
| 336 |  |  | \end{itemize} | 
| 337 |  |  |  | 
| 338 |  |  | \end{slide} | 
| 339 |  |  |  | 
| 340 |  |  |  | 
| 341 |  |  | % Slide 13 | 
| 342 |  |  |  | 
| 343 |  |  | \begin{slide}{5x5: Initial} | 
| 344 |  |  |  | 
| 345 |  |  | \begin{center} | 
| 346 |  |  | \begin{figure} | 
| 347 |  |  | \epsfxsize=50mm | 
| 348 |  |  | \epsfbox{5x5-initial.eps} | 
| 349 |  |  | \end{figure} | 
| 350 |  |  | \end{center} | 
| 351 |  |  |  | 
| 352 |  |  | The initial configuration | 
| 353 |  |  |  | 
| 354 |  |  | \end{slide} | 
| 355 |  |  |  | 
| 356 |  |  | \begin{slide}{5x5: Final} | 
| 357 |  |  |  | 
| 358 |  |  | \begin{center} | 
| 359 |  |  | \begin{figure} | 
| 360 |  |  | \epsfxsize=60mm | 
| 361 |  |  | \epsfbox{5x5-1.7ns.eps} | 
| 362 |  |  | \end{figure} | 
| 363 |  |  | \end{center} | 
| 364 |  |  |  | 
| 365 |  |  | The final configuration at 1.7 ns. | 
| 366 |  |  |  | 
| 367 |  |  | \end{slide} | 
| 368 |  |  |  | 
| 369 |  |  |  | 
| 370 |  |  | % Slide 14 | 
| 371 |  |  |  | 
| 372 |  |  | \begin{slide}{5x5: $g(r)$} | 
| 373 |  |  |  | 
| 374 |  |  | \begin{center} | 
| 375 |  |  | \begin{figure} | 
| 376 |  |  | \epsfxsize=60mm | 
| 377 |  |  | \epsfbox{all5x5-HEAD-HEAD-gr.eps} | 
| 378 |  |  | \end{figure} | 
| 379 |  |  | \end{center} | 
| 380 |  |  |  | 
| 381 |  |  |  | 
| 382 |  |  | \end{slide} | 
| 383 |  |  |  | 
| 384 |  |  | \begin{slide}{5x5: $g(r)$} | 
| 385 |  |  |  | 
| 386 |  |  | \begin{center} | 
| 387 |  |  | \begin{figure} | 
| 388 |  |  | \epsfxsize=60mm | 
| 389 |  |  | \epsfbox{all5x5-HEAD-X-gr.eps} | 
| 390 |  |  | \end{figure} | 
| 391 |  |  | \end{center} | 
| 392 |  |  |  | 
| 393 |  |  |  | 
| 394 |  |  | \end{slide} | 
| 395 |  |  |  | 
| 396 |  |  |  | 
| 397 |  |  | % Slide 15 | 
| 398 |  |  |  | 
| 399 |  |  | \begin{slide}{5x5: $\cos$ correlations} | 
| 400 |  |  |  | 
| 401 |  |  | \begin{center} | 
| 402 |  |  | \begin{figure} | 
| 403 |  |  | \epsfxsize=60mm | 
| 404 |  |  | \epsfbox{all5x5-HEAD-HEAD-cr.eps} | 
| 405 |  |  | \end{figure} | 
| 406 |  |  | \end{center} | 
| 407 |  |  |  | 
| 408 |  |  | \end{slide} | 
| 409 |  |  |  | 
| 410 |  |  | \begin{slide}{5x5: $\cos$ correlations} | 
| 411 |  |  |  | 
| 412 |  |  | \begin{center} | 
| 413 |  |  | \begin{figure} | 
| 414 |  |  | \epsfxsize=60mm | 
| 415 |  |  | \epsfbox{all5x5-HEAD-X-cr.eps} | 
| 416 |  |  | \end{figure} | 
| 417 |  |  | \end{center} | 
| 418 |  |  |  | 
| 419 |  |  | \end{slide} | 
| 420 |  |  |  | 
| 421 |  |  |  | 
| 422 |  |  | % Slide 16 | 
| 423 |  |  |  | 
| 424 |  |  | \begin{slide}{Initial Runs: 50 Lipids randomly arranged in water} | 
| 425 |  |  |  | 
| 426 |  |  | \textbf{Simulation Parameters:} | 
| 427 |  |  |  | 
| 428 |  |  | \begin{itemize} | 
| 429 |  |  |  | 
| 430 |  |  | \item Starting Configuration: | 
| 431 |  |  | \begin{itemize} | 
| 432 |  |  | \item 50 lipid molecules arranged randomly in a rectangular box | 
| 433 |  |  | \item The box was then filled with 1384 waters | 
| 434 |  |  | \begin{itemize} | 
| 435 |  |  | \item final water to lipid ratio was 27:1 | 
| 436 |  |  | \end{itemize} | 
| 437 |  |  | \end{itemize} | 
| 438 |  |  |  | 
| 439 |  |  | \item Lipid had only a single saturated chain of 16 carbons | 
| 440 |  |  |  | 
| 441 |  |  | \item Box Size: 26.6 $\mbox{\AA}$ x 26.6 $\mbox{\AA}$ x 108.4 $\mbox{\AA}$ | 
| 442 |  |  |  | 
| 443 |  |  | \item dt = 2.0 - 3.0 fs | 
| 444 |  |  |  | 
| 445 |  |  | \item T = 300 K | 
| 446 |  |  |  | 
| 447 |  |  | \item NVE ensemble | 
| 448 |  |  |  | 
| 449 |  |  | \item Periodic boundary conditions | 
| 450 |  |  |  | 
| 451 |  |  | \end{itemize} | 
| 452 |  |  |  | 
| 453 |  |  | \end{slide} | 
| 454 |  |  |  | 
| 455 |  |  |  | 
| 456 |  |  | % Slide 17 | 
| 457 |  |  |  | 
| 458 |  |  | \begin{slide}{R-50: Initial} | 
| 459 |  |  |  | 
| 460 |  |  | \begin{center} | 
| 461 |  |  | \begin{figure} | 
| 462 |  |  | \epsfxsize=100mm | 
| 463 |  |  | \epsfbox{r50-initial.eps} | 
| 464 |  |  | \end{figure} | 
| 465 |  |  | \end{center} | 
| 466 |  |  |  | 
| 467 |  |  | The initial configuration | 
| 468 |  |  |  | 
| 469 |  |  | \end{slide} | 
| 470 |  |  |  | 
| 471 |  |  | \begin{slide}{R-50: Final} | 
| 472 |  |  |  | 
| 473 |  |  | \begin{center} | 
| 474 |  |  | \begin{figure} | 
| 475 |  |  | \epsfxsize=100mm | 
| 476 |  |  | \epsfbox{r50-521ps.eps} | 
| 477 |  |  | \end{figure} | 
| 478 |  |  | \end{center} | 
| 479 |  |  |  | 
| 480 |  |  | The fianl configuration at 521 ps | 
| 481 |  |  |  | 
| 482 |  |  | \end{slide} | 
| 483 |  |  |  | 
| 484 |  |  |  | 
| 485 |  |  | % Slide 18 | 
| 486 |  |  |  | 
| 487 |  |  | \begin{slide}{R-50: $g(r)$} | 
| 488 |  |  |  | 
| 489 |  |  |  | 
| 490 |  |  | \begin{center} | 
| 491 |  |  | \begin{figure} | 
| 492 |  |  | \epsfxsize=60mm | 
| 493 |  |  | \epsfbox{r50-HEAD-HEAD-gr.eps} | 
| 494 |  |  | \end{figure} | 
| 495 |  |  | \end{center} | 
| 496 |  |  |  | 
| 497 |  |  | \end{slide} | 
| 498 |  |  |  | 
| 499 |  |  |  | 
| 500 |  |  | \begin{slide}{R-50: $g(r)$} | 
| 501 |  |  |  | 
| 502 |  |  |  | 
| 503 |  |  | \begin{center} | 
| 504 |  |  | \begin{figure} | 
| 505 |  |  | \epsfxsize=60mm | 
| 506 |  |  | \epsfbox{r50-HEAD-X-gr.eps} | 
| 507 |  |  | \end{figure} | 
| 508 |  |  | \end{center} | 
| 509 |  |  |  | 
| 510 |  |  | \end{slide} | 
| 511 |  |  |  | 
| 512 |  |  |  | 
| 513 |  |  | % Slide 19 | 
| 514 |  |  |  | 
| 515 |  |  | \begin{slide}{R-50: $\cos$ correlations} | 
| 516 |  |  |  | 
| 517 |  |  |  | 
| 518 |  |  | \begin{center} | 
| 519 |  |  | \begin{figure} | 
| 520 |  |  | \epsfxsize=60mm | 
| 521 |  |  | \epsfbox{r50-HEAD-HEAD-cr.eps} | 
| 522 |  |  | \end{figure} | 
| 523 |  |  | \end{center} | 
| 524 |  |  |  | 
| 525 |  |  | \end{slide} | 
| 526 |  |  |  | 
| 527 |  |  | \begin{slide}{R-50: $\cos$ correlations} | 
| 528 |  |  |  | 
| 529 |  |  |  | 
| 530 |  |  | \begin{center} | 
| 531 |  |  | \begin{figure} | 
| 532 |  |  | \epsfxsize=60mm | 
| 533 |  |  | \epsfbox{r50-HEAD-X-cr.eps} | 
| 534 |  |  | \end{figure} | 
| 535 |  |  | \end{center} | 
| 536 |  |  |  | 
| 537 |  |  | \end{slide} | 
| 538 |  |  |  | 
| 539 |  |  |  | 
| 540 |  |  | % Slide 20 | 
| 541 |  |  |  | 
| 542 |  |  | \begin{slide}{Future Directions} | 
| 543 |  |  |  | 
| 544 |  |  | \begin{itemize} | 
| 545 |  |  |  | 
| 546 |  |  | \item | 
| 547 |  |  | Simulation of a lipid with 2 chains, or perhaps expand the current | 
| 548 |  |  | unified chain atoms to take up greater steric bulk. | 
| 549 |  |  |  | 
| 550 |  |  | \item | 
| 551 |  |  | Incorporate constant pressure and constant temperature into the ensemble. | 
| 552 |  |  |  | 
| 553 |  |  | \item | 
| 554 |  |  | Parrellize the code. | 
| 555 |  |  |  | 
| 556 |  |  | \end{itemize} | 
| 557 |  |  | \end{slide} | 
| 558 |  |  |  | 
| 559 |  |  |  | 
| 560 |  |  | % Slide 21 | 
| 561 |  |  |  | 
| 562 |  |  | \begin{slide}{Acknowledgements} | 
| 563 |  |  |  | 
| 564 |  |  | \begin{itemize} | 
| 565 |  |  |  | 
| 566 |  |  | \item Dr. J. Daniel Gezelter | 
| 567 |  |  | \item Christopher Fennel | 
| 568 |  |  | \item Charles Vardeman | 
| 569 |  |  | \item Teng Lin | 
| 570 |  |  |  | 
| 571 |  |  | \end{itemize} | 
| 572 |  |  |  | 
| 573 |  |  | Funding by: | 
| 574 |  |  | \begin{itemize} | 
| 575 |  |  | \item Dreyfus New Faculty Award | 
| 576 |  |  | \end{itemize} | 
| 577 |  |  |  | 
| 578 |  |  | \end{slide} | 
| 579 |  |  |  | 
| 580 |  |  |  | 
| 581 |  |  |  | 
| 582 |  |  |  | 
| 583 |  |  |  | 
| 584 |  |  |  | 
| 585 |  |  |  | 
| 586 |  |  |  | 
| 587 |  |  | %%%%%%%%%%%%%%%%%%%%%%%%%% END %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | 
| 588 |  |  |  | 
| 589 |  |  | \end{document} |