1 |
\documentclass[11pt]{article} |
2 |
|
3 |
\usepackage{graphicx} |
4 |
\usepackage{floatflt} |
5 |
\usepackage{amsmath} |
6 |
\usepackage{amssymb} |
7 |
\usepackage[ref]{overcite} |
8 |
|
9 |
|
10 |
|
11 |
\pagestyle{plain} |
12 |
\pagenumbering{arabic} |
13 |
\oddsidemargin 0.0cm \evensidemargin 0.0cm |
14 |
\topmargin -21pt \headsep 10pt |
15 |
\textheight 9.0in \textwidth 6.5in |
16 |
\brokenpenalty=10000 |
17 |
\renewcommand{\baselinestretch}{1.2} |
18 |
\renewcommand\citemid{\ } % no comma in optional reference note |
19 |
|
20 |
|
21 |
\begin{document} |
22 |
|
23 |
|
24 |
\title{A Mesoscale Model for Phospholipid Simulations} |
25 |
|
26 |
\author{Matthew A. Meineke\\ |
27 |
Department of Chemistry and Biochemistry\\ |
28 |
University of Notre Dame\\ |
29 |
Notre Dame, Indiana 46556} |
30 |
|
31 |
\date{\today} |
32 |
\maketitle |
33 |
|
34 |
\section{Background and Research Goals} |
35 |
|
36 |
\section{Methodology} |
37 |
|
38 |
\subsection{Length and Time Scale Simplifications} |
39 |
|
40 |
The length scale simplifications are aimed at increaseing the number |
41 |
of molecules simulated without drastically increasing the |
42 |
computational cost of the system. This is done by a combination of |
43 |
substituting less expensive interactions for expensive ones and |
44 |
decreasing the number of interaction sites per molecule. Namely, |
45 |
charge distributions are replaced with dipoles, and unified atoms are |
46 |
used in place of water and phospholipid head groups. |
47 |
|
48 |
The replacement of charge distributions with dipoles allows us to |
49 |
replace an interaction that has a relatively long range, $\frac{1}{r}$ |
50 |
for the charge charge potential, with that of a relitively short |
51 |
range, $\frac{1}{r^{3}}$ for dipole - dipole potentials |
52 |
(Equations~\ref{eq:dipolePot} and \ref{eq:chargePot}). This allows us |
53 |
to use computaional simplifications algorithms such as Verlet neighbor |
54 |
lists,\cite{allen87:csl} which gives computaional scaling by $N$. This |
55 |
is in comparison to the Ewald sum\cite{leach01:mm} needed to compute |
56 |
the charge - charge interactions which scales at best by $N |
57 |
\ln N$. |
58 |
|
59 |
\begin{equation} |
60 |
V^{\text{dp}}_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i}, |
61 |
\boldsymbol{\Omega}_{j}) = \frac{1}{4\pi\epsilon_{0}} \biggl[ |
62 |
\frac{\boldsymbol{\mu}_{i} \cdot \boldsymbol{\mu}_{j}}{r^{3}_{ij}} |
63 |
- |
64 |
\frac{3(\boldsymbol{\mu} \cdot \mathbf{r}_{ij}) % |
65 |
(\boldsymbol{\mu} \cdot \mathbf{r}_{ij}) }{r^{5}_{ij}} \biggr] |
66 |
\label{eq:dipolePot} |
67 |
\end{equation} |
68 |
|
69 |
\begin{equation} |
70 |
V^{\text{ch}}_{ij}(\mathbf{r}_{ij}) = \frac{q_{i}q_{j}}% |
71 |
{4\pi\epsilon_{0} r_{ij}} |
72 |
\label{eq:chargePot} |
73 |
\end{equation} |
74 |
|
75 |
The second step taken to simplify the number of calculationsis to |
76 |
incorporate unified models for groups of atoms. In the case of water, |
77 |
we use the soft sticky dipole (SSD) model developed by |
78 |
Ichiye\cite{Liu96} (Section~\ref{sec:ssdModel}). For the phospholipids, a |
79 |
unified head atom with a dipole will replace the atoms in the head |
80 |
group, while unified $\text{CH}_2$ and $\text{CH}_3$ atoms will |
81 |
replace the alkanes in the tails (Section~\ref{sec:lipidModel}). |
82 |
|
83 |
The time scale simplifications are taken so that the simulation can |
84 |
take long time steps. By incresing the time steps taken by the |
85 |
simulation, we are able to integrate the simulation trajectory with |
86 |
fewer calculations. However, care must be taken to conserve the energy |
87 |
of the simulation. This is a constraint placed upon the system by |
88 |
simulating in the microcanonical ensemble. In practice, this means |
89 |
taking steps small enough to resolve all motion in the system without |
90 |
accidently moving an object too far along a repulsive energy surface |
91 |
before it feels the affect of the surface. |
92 |
|
93 |
In our simulation we have chosen to constrain all bonds to be of fixed |
94 |
length. This means the bonds are no longer allowed to vibrate about |
95 |
their equilibrium positions, typically the fastest periodical motion |
96 |
in a dynamics simulation. By taking this action, we are able to take |
97 |
time steps of 3 fs while still maintaining constant energy. This is in |
98 |
contrast to the 1 fs time step typically needed to conserve energy when |
99 |
bonds lengths are allowed to oscillate. |
100 |
|
101 |
\subsection{The Soft Sticky Water Model} |
102 |
\label{sec:ssdModel} |
103 |
|
104 |
\begin{floatingfigure}{55mm} |
105 |
\includegraphics[width=45mm]{ssd.epsi} |
106 |
\caption{The SSD model with the oxygen and hydrogen atoms drawn in for reference. \vspace{5mm}} |
107 |
% The dipole magnitude is 2.35 D and the Lennard-Jones parameters are $\sigma = 3.051 \mbox{\AA}$ and $\epsilon = 0.152$ kcal/mol.} |
108 |
\label{fig:ssdModel} |
109 |
\end{floatingfigure} |
110 |
|
111 |
The water model used in our simulations is a modified soft Stockmayer |
112 |
sphere model. Like the soft Stockmayer sphere, the SSD |
113 |
model\cite{Liu96} consists of a Lennard-Jones interaction site and a |
114 |
dipole both located at the water's center of mass (Figure |
115 |
\ref{fig:ssdModel}). However, the SSD model extends this by adding a |
116 |
tetrahedral potential to correct for hydrogen bonding. |
117 |
|
118 |
This SSD water's motion is then governed by the following potential: |
119 |
\begin{equation} |
120 |
V_{\text{ssd}} = V_{\text{LJ}}(r_{i\!j}) + V_{\text{dp}}(\mathbf{r}_{i\!j}, |
121 |
\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j}) |
122 |
+ V_{\text{sp}}(\mathbf{r}_{i\!j},\boldsymbol{\Omega}_{i}, |
123 |
\boldsymbol{\Omega}_{j}) |
124 |
\label{eq:ssdTotPot} |
125 |
\end{equation} |
126 |
$V_{\text{LJ}}$ is the Lennard-Jones potential with $\sigma_{\text{w}} |
127 |
= 3.051 \mbox{ \AA}$ and $\epsilon_{\text{w}} = 0.152\text{ |
128 |
kcal/mol}$. $V_{\text{dp}}$ is the dipole potential with |
129 |
$|\mu_{\text{w}}| = 2.35\text{ D}$. |
130 |
|
131 |
The hydrogen bonding of the model is governed by the $V_{\text{sp}}$ term of the potentail. Its form is as follows: |
132 |
\begin{equation} |
133 |
V_{\text{sp}}(\mathbf{r}_{i\!j},\boldsymbol{\Omega}_{i}, |
134 |
\boldsymbol{\Omega}_{j}) = |
135 |
v^{\circ}[s(r_{ij})w_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i}, |
136 |
\boldsymbol{\Omega}_{j}) |
137 |
+ |
138 |
s'(r_{ij})w^{x}_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i}, |
139 |
\boldsymbol{\Omega}_{j})] |
140 |
\label{eq:spPot} |
141 |
\end{equation} |
142 |
Where $v^\circ$ is responsible for scaling the strength of the |
143 |
interaction. |
144 |
$w_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})$ |
145 |
and |
146 |
$w^{x}_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})$ |
147 |
are responsible for the tetrahedral potential and a correction to the |
148 |
tetrahedral potential respectively. They are, |
149 |
\begin{equation} |
150 |
w_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j}) = |
151 |
\sin\theta_{ij} \sin 2\theta_{ij} \cos 2\phi_{ij} |
152 |
+ \sin \theta_{ji} \sin 2\theta_{ji} \cos 2\phi_{ji} |
153 |
\label{eq:apPot2} |
154 |
\end{equation} |
155 |
and |
156 |
\begin{equation} |
157 |
\begin{split} |
158 |
w^{x}_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j}) = |
159 |
&(\cos\theta_{ij}-0.6)^2(\cos\theta_{ij} + 0.8)^2 \\ |
160 |
&+ (\cos\theta_{ji}-0.6)^2(\cos\theta_{ji} + 0.8)^2 - 2w^{\circ} |
161 |
\end{split} |
162 |
\label{eq:spCorrection} |
163 |
\end{equation} |
164 |
The correction |
165 |
$w^{x}_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})$ |
166 |
is needed because |
167 |
$w_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})$ |
168 |
vanishes when $\theta_{ij}$ is $0^\circ$ or $180^\circ$. The angles $\theta_{ij}$ and $\phi_{ij}$ are defined by the spherical polar coordinates of the position of sphere $j$ in the reference frame fixed on sphere $i$ with the z-axis alligned with the dipole moment. |
169 |
|
170 |
Finaly, the sticky potentail is scaled by a cutoff function, $s(r_{ij})$ that scales smoothly between 0 and 1. It is represented by: |
171 |
\begin{equation} |
172 |
s(r_{ij}) = |
173 |
\begin{cases} |
174 |
1& \text{if $r_{ij} < r_{L}$}, \\ |
175 |
\frac{(r_{U} - r_{ij})^2 (r_{U} + 2r_{ij} |
176 |
- 3r_{L})}{(r_{U}-r_{L})^3}& |
177 |
\text{if $r_{L} \leq r_{ij} \leq r_{U}$},\\ |
178 |
0& \text{if $r_{ij} \geq r_{U}$}. |
179 |
\end{cases} |
180 |
\label{eq:spCutoff} |
181 |
\end{equation} |
182 |
|
183 |
|
184 |
\subsection{The Phospholipid Model} |
185 |
\label{sec:lipidModel} |
186 |
|
187 |
|
188 |
\bibliographystyle{achemso} |
189 |
\bibliography{canidacy_paper} |
190 |
\end{document} |