ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/matt_papers/canidacy_paper/canidacy_paper.tex
Revision: 98
Committed: Sat Aug 24 17:21:16 2002 UTC (22 years, 8 months ago) by mmeineke
Content type: application/x-tex
File size: 7487 byte(s)
Log Message:
got the water SSD model section "done"

File Contents

# Content
1 \documentclass[11pt]{article}
2
3 \usepackage{graphicx}
4 \usepackage{floatflt}
5 \usepackage{amsmath}
6 \usepackage{amssymb}
7 \usepackage[ref]{overcite}
8
9
10
11 \pagestyle{plain}
12 \pagenumbering{arabic}
13 \oddsidemargin 0.0cm \evensidemargin 0.0cm
14 \topmargin -21pt \headsep 10pt
15 \textheight 9.0in \textwidth 6.5in
16 \brokenpenalty=10000
17 \renewcommand{\baselinestretch}{1.2}
18 \renewcommand\citemid{\ } % no comma in optional reference note
19
20
21 \begin{document}
22
23
24 \title{A Mesoscale Model for Phospholipid Simulations}
25
26 \author{Matthew A. Meineke\\
27 Department of Chemistry and Biochemistry\\
28 University of Notre Dame\\
29 Notre Dame, Indiana 46556}
30
31 \date{\today}
32 \maketitle
33
34 \section{Background and Research Goals}
35
36 \section{Methodology}
37
38 \subsection{Length and Time Scale Simplifications}
39
40 The length scale simplifications are aimed at increaseing the number
41 of molecules simulated without drastically increasing the
42 computational cost of the system. This is done by a combination of
43 substituting less expensive interactions for expensive ones and
44 decreasing the number of interaction sites per molecule. Namely,
45 charge distributions are replaced with dipoles, and unified atoms are
46 used in place of water and phospholipid head groups.
47
48 The replacement of charge distributions with dipoles allows us to
49 replace an interaction that has a relatively long range, $\frac{1}{r}$
50 for the charge charge potential, with that of a relitively short
51 range, $\frac{1}{r^{3}}$ for dipole - dipole potentials
52 (Equations~\ref{eq:dipolePot} and \ref{eq:chargePot}). This allows us
53 to use computaional simplifications algorithms such as Verlet neighbor
54 lists,\cite{allen87:csl} which gives computaional scaling by $N$. This
55 is in comparison to the Ewald sum\cite{leach01:mm} needed to compute
56 the charge - charge interactions which scales at best by $N
57 \ln N$.
58
59 \begin{equation}
60 V^{\text{dp}}_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},
61 \boldsymbol{\Omega}_{j}) = \frac{1}{4\pi\epsilon_{0}} \biggl[
62 \frac{\boldsymbol{\mu}_{i} \cdot \boldsymbol{\mu}_{j}}{r^{3}_{ij}}
63 -
64 \frac{3(\boldsymbol{\mu} \cdot \mathbf{r}_{ij}) %
65 (\boldsymbol{\mu} \cdot \mathbf{r}_{ij}) }{r^{5}_{ij}} \biggr]
66 \label{eq:dipolePot}
67 \end{equation}
68
69 \begin{equation}
70 V^{\text{ch}}_{ij}(\mathbf{r}_{ij}) = \frac{q_{i}q_{j}}%
71 {4\pi\epsilon_{0} r_{ij}}
72 \label{eq:chargePot}
73 \end{equation}
74
75 The second step taken to simplify the number of calculationsis to
76 incorporate unified models for groups of atoms. In the case of water,
77 we use the soft sticky dipole (SSD) model developed by
78 Ichiye\cite{Liu96} (Section~\ref{sec:ssdModel}). For the phospholipids, a
79 unified head atom with a dipole will replace the atoms in the head
80 group, while unified $\text{CH}_2$ and $\text{CH}_3$ atoms will
81 replace the alkanes in the tails (Section~\ref{sec:lipidModel}).
82
83 The time scale simplifications are taken so that the simulation can
84 take long time steps. By incresing the time steps taken by the
85 simulation, we are able to integrate the simulation trajectory with
86 fewer calculations. However, care must be taken to conserve the energy
87 of the simulation. This is a constraint placed upon the system by
88 simulating in the microcanonical ensemble. In practice, this means
89 taking steps small enough to resolve all motion in the system without
90 accidently moving an object too far along a repulsive energy surface
91 before it feels the affect of the surface.
92
93 In our simulation we have chosen to constrain all bonds to be of fixed
94 length. This means the bonds are no longer allowed to vibrate about
95 their equilibrium positions, typically the fastest periodical motion
96 in a dynamics simulation. By taking this action, we are able to take
97 time steps of 3 fs while still maintaining constant energy. This is in
98 contrast to the 1 fs time step typically needed to conserve energy when
99 bonds lengths are allowed to oscillate.
100
101 \subsection{The Soft Sticky Water Model}
102 \label{sec:ssdModel}
103
104 \begin{floatingfigure}{55mm}
105 \includegraphics[width=45mm]{ssd.epsi}
106 \caption{The SSD model with the oxygen and hydrogen atoms drawn in for reference. \vspace{5mm}}
107 % The dipole magnitude is 2.35 D and the Lennard-Jones parameters are $\sigma = 3.051 \mbox{\AA}$ and $\epsilon = 0.152$ kcal/mol.}
108 \label{fig:ssdModel}
109 \end{floatingfigure}
110
111 The water model used in our simulations is a modified soft Stockmayer
112 sphere model. Like the soft Stockmayer sphere, the SSD
113 model\cite{Liu96} consists of a Lennard-Jones interaction site and a
114 dipole both located at the water's center of mass (Figure
115 \ref{fig:ssdModel}). However, the SSD model extends this by adding a
116 tetrahedral potential to correct for hydrogen bonding.
117
118 This SSD water's motion is then governed by the following potential:
119 \begin{equation}
120 V_{\text{ssd}} = V_{\text{LJ}}(r_{i\!j}) + V_{\text{dp}}(\mathbf{r}_{i\!j},
121 \boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})
122 + V_{\text{sp}}(\mathbf{r}_{i\!j},\boldsymbol{\Omega}_{i},
123 \boldsymbol{\Omega}_{j})
124 \label{eq:ssdTotPot}
125 \end{equation}
126 $V_{\text{LJ}}$ is the Lennard-Jones potential with $\sigma_{\text{w}}
127 = 3.051 \mbox{ \AA}$ and $\epsilon_{\text{w}} = 0.152\text{
128 kcal/mol}$. $V_{\text{dp}}$ is the dipole potential with
129 $|\mu_{\text{w}}| = 2.35\text{ D}$.
130
131 The hydrogen bonding of the model is governed by the $V_{\text{sp}}$ term of the potentail. Its form is as follows:
132 \begin{equation}
133 V_{\text{sp}}(\mathbf{r}_{i\!j},\boldsymbol{\Omega}_{i},
134 \boldsymbol{\Omega}_{j}) =
135 v^{\circ}[s(r_{ij})w_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},
136 \boldsymbol{\Omega}_{j})
137 +
138 s'(r_{ij})w^{x}_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},
139 \boldsymbol{\Omega}_{j})]
140 \label{eq:spPot}
141 \end{equation}
142 Where $v^\circ$ is responsible for scaling the strength of the
143 interaction.
144 $w_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})$
145 and
146 $w^{x}_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})$
147 are responsible for the tetrahedral potential and a correction to the
148 tetrahedral potential respectively. They are,
149 \begin{equation}
150 w_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j}) =
151 \sin\theta_{ij} \sin 2\theta_{ij} \cos 2\phi_{ij}
152 + \sin \theta_{ji} \sin 2\theta_{ji} \cos 2\phi_{ji}
153 \label{eq:apPot2}
154 \end{equation}
155 and
156 \begin{equation}
157 \begin{split}
158 w^{x}_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j}) =
159 &(\cos\theta_{ij}-0.6)^2(\cos\theta_{ij} + 0.8)^2 \\
160 &+ (\cos\theta_{ji}-0.6)^2(\cos\theta_{ji} + 0.8)^2 - 2w^{\circ}
161 \end{split}
162 \label{eq:spCorrection}
163 \end{equation}
164 The correction
165 $w^{x}_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})$
166 is needed because
167 $w_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})$
168 vanishes when $\theta_{ij}$ is $0^\circ$ or $180^\circ$. The angles $\theta_{ij}$ and $\phi_{ij}$ are defined by the spherical polar coordinates of the position of sphere $j$ in the reference frame fixed on sphere $i$ with the z-axis alligned with the dipole moment.
169
170 Finaly, the sticky potentail is scaled by a cutoff function, $s(r_{ij})$ that scales smoothly between 0 and 1. It is represented by:
171 \begin{equation}
172 s(r_{ij}) =
173 \begin{cases}
174 1& \text{if $r_{ij} < r_{L}$}, \\
175 \frac{(r_{U} - r_{ij})^2 (r_{U} + 2r_{ij}
176 - 3r_{L})}{(r_{U}-r_{L})^3}&
177 \text{if $r_{L} \leq r_{ij} \leq r_{U}$},\\
178 0& \text{if $r_{ij} \geq r_{U}$}.
179 \end{cases}
180 \label{eq:spCutoff}
181 \end{equation}
182
183
184 \subsection{The Phospholipid Model}
185 \label{sec:lipidModel}
186
187
188 \bibliographystyle{achemso}
189 \bibliography{canidacy_paper}
190 \end{document}