1 |
\documentclass[11pt]{article} |
2 |
|
3 |
\usepackage{graphicx} |
4 |
\usepackage{amsmath} |
5 |
\usepackage{amssymb} |
6 |
\usepackage[ref]{overcite} |
7 |
|
8 |
|
9 |
|
10 |
\pagestyle{plain} |
11 |
\pagenumbering{arabic} |
12 |
\oddsidemargin 0.0cm \evensidemargin 0.0cm |
13 |
\topmargin -21pt \headsep 10pt |
14 |
\textheight 9.0in \textwidth 6.5in |
15 |
\brokenpenalty=10000 |
16 |
\renewcommand{\baselinestretch}{1.2} |
17 |
\renewcommand\citemid{\ } % no comma in optional reference note |
18 |
|
19 |
|
20 |
\begin{document} |
21 |
|
22 |
\title{A Mesoscale Model for Phospholipid Simulations} |
23 |
|
24 |
\author{Matthew A. Meineke\\ |
25 |
Department of Chemistry and Biochemistry\\ |
26 |
University of Notre Dame\\ |
27 |
Notre Dame, Indiana 46556} |
28 |
|
29 |
\date{\today} |
30 |
\maketitle |
31 |
|
32 |
\section{Background and Research Goals} |
33 |
|
34 |
\section{Methodology} |
35 |
|
36 |
\subsection{Length Scale Simplifications} |
37 |
|
38 |
The length scale simplifications are aimed at increaseing the number |
39 |
of molecules simulated without drastically increasing the |
40 |
computational cost of the system. This is done by a combination of |
41 |
substituting less expensive interactions for expensive ones and |
42 |
decreasing the number of interaction sites per molecule. Namely, |
43 |
charge distributions are replaced with dipoles, and unified atoms are |
44 |
used in place of water and phospholipid head groups. |
45 |
|
46 |
The replacement of charge distributions with dipoles allows us to |
47 |
replace an interaction that has a relatively long range, $\frac{1}{r}$ |
48 |
for the charge charge potential, with that of a relitively short |
49 |
range, $\frac{1}{r^{3}}$ for dipole - dipole potentials |
50 |
(Equations~\ref{eq:dipolePot} and \ref{eq:chargePot}). This allows us |
51 |
to use computaional simplifications algorithms such as Verlet neighbor |
52 |
lists,\cite{allen87:csl} which gives computaional scaling by $N$. This |
53 |
is in comparison to the Ewald sum\cite{leach01:mm} needed to compute |
54 |
the charge - charge interactions which scales at best by $N |
55 |
\ln N$. |
56 |
|
57 |
\begin{equation} |
58 |
V^{\text{dp}}_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i}, |
59 |
\boldsymbol{\Omega}_{j}) = \frac{1}{4\pi\epsilon_{0}} \biggl[ |
60 |
\frac{\boldsymbol{\mu}_{i} \cdot \boldsymbol{\mu}_{j}}{r^{3}_{ij}} |
61 |
- |
62 |
\frac{3(\boldsymbol{\mu} \cdot \mathbf{r}_{ij}) % |
63 |
(\boldsymbol{\mu} \cdot \mathbf{r}_{ij}) }{r^{5}_{ij}} \biggr] |
64 |
\label{eq:dipolePot} |
65 |
\end{equation} |
66 |
|
67 |
\begin{equation} |
68 |
V^{\text{ch}}_{ij}(\mathbf{r}_{ij}) = \frac{q_{i}q_{j}}% |
69 |
{4\pi\epsilon_{0} r_{ij}} |
70 |
\label{eq:chargePot} |
71 |
\end{equation} |
72 |
|
73 |
The second step taken to simplify the number of calculationsis to |
74 |
incorporate unified models for groups of atoms. In the case of water, |
75 |
we use the soft sticky dipole (SSD) model developed by |
76 |
Ichiye\cite{Liu96} (Section~\ref{sec:ssdModel}). For the phospholipids, a |
77 |
unified head atom with a dipole will replace the atoms in the head |
78 |
group, while unified $\text{CH}_2$ and $\text{CH}_3$ atoms will |
79 |
replace the alkanes in the tails (Section~\ref{sec:lipidModel}). |
80 |
|
81 |
|
82 |
\subsection{Time Scale Simplifications} |
83 |
|
84 |
\subsection{The Soft Sticky Water Model} |
85 |
\label{sec:ssdModel} |
86 |
|
87 |
\subsection{The Phospholipid Model} |
88 |
\label{sec:lipidModel} |
89 |
|
90 |
|
91 |
\bibliographystyle{achemso} |
92 |
\bibliography{canidacy_paper} |
93 |
\end{document} |