| 1 |
mmeineke |
95 |
\documentclass[11pt]{article} |
| 2 |
|
|
|
| 3 |
|
|
\usepackage{graphicx} |
| 4 |
mmeineke |
98 |
\usepackage{floatflt} |
| 5 |
mmeineke |
95 |
\usepackage{amsmath} |
| 6 |
|
|
\usepackage{amssymb} |
| 7 |
|
|
\usepackage[ref]{overcite} |
| 8 |
|
|
|
| 9 |
|
|
|
| 10 |
|
|
|
| 11 |
|
|
\pagestyle{plain} |
| 12 |
|
|
\pagenumbering{arabic} |
| 13 |
|
|
\oddsidemargin 0.0cm \evensidemargin 0.0cm |
| 14 |
|
|
\topmargin -21pt \headsep 10pt |
| 15 |
|
|
\textheight 9.0in \textwidth 6.5in |
| 16 |
|
|
\brokenpenalty=10000 |
| 17 |
|
|
\renewcommand{\baselinestretch}{1.2} |
| 18 |
|
|
\renewcommand\citemid{\ } % no comma in optional reference note |
| 19 |
|
|
|
| 20 |
|
|
|
| 21 |
|
|
\begin{document} |
| 22 |
|
|
|
| 23 |
mmeineke |
98 |
|
| 24 |
mmeineke |
95 |
\title{A Mesoscale Model for Phospholipid Simulations} |
| 25 |
|
|
|
| 26 |
|
|
\author{Matthew A. Meineke\\ |
| 27 |
|
|
Department of Chemistry and Biochemistry\\ |
| 28 |
|
|
University of Notre Dame\\ |
| 29 |
|
|
Notre Dame, Indiana 46556} |
| 30 |
|
|
|
| 31 |
|
|
\date{\today} |
| 32 |
|
|
\maketitle |
| 33 |
|
|
|
| 34 |
|
|
\section{Background and Research Goals} |
| 35 |
|
|
|
| 36 |
|
|
\section{Methodology} |
| 37 |
|
|
|
| 38 |
mmeineke |
96 |
\subsection{Length and Time Scale Simplifications} |
| 39 |
mmeineke |
95 |
|
| 40 |
|
|
The length scale simplifications are aimed at increaseing the number |
| 41 |
|
|
of molecules simulated without drastically increasing the |
| 42 |
|
|
computational cost of the system. This is done by a combination of |
| 43 |
|
|
substituting less expensive interactions for expensive ones and |
| 44 |
|
|
decreasing the number of interaction sites per molecule. Namely, |
| 45 |
|
|
charge distributions are replaced with dipoles, and unified atoms are |
| 46 |
|
|
used in place of water and phospholipid head groups. |
| 47 |
|
|
|
| 48 |
|
|
The replacement of charge distributions with dipoles allows us to |
| 49 |
|
|
replace an interaction that has a relatively long range, $\frac{1}{r}$ |
| 50 |
|
|
for the charge charge potential, with that of a relitively short |
| 51 |
|
|
range, $\frac{1}{r^{3}}$ for dipole - dipole potentials |
| 52 |
|
|
(Equations~\ref{eq:dipolePot} and \ref{eq:chargePot}). This allows us |
| 53 |
|
|
to use computaional simplifications algorithms such as Verlet neighbor |
| 54 |
|
|
lists,\cite{allen87:csl} which gives computaional scaling by $N$. This |
| 55 |
|
|
is in comparison to the Ewald sum\cite{leach01:mm} needed to compute |
| 56 |
|
|
the charge - charge interactions which scales at best by $N |
| 57 |
|
|
\ln N$. |
| 58 |
|
|
|
| 59 |
|
|
\begin{equation} |
| 60 |
|
|
V^{\text{dp}}_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i}, |
| 61 |
|
|
\boldsymbol{\Omega}_{j}) = \frac{1}{4\pi\epsilon_{0}} \biggl[ |
| 62 |
|
|
\frac{\boldsymbol{\mu}_{i} \cdot \boldsymbol{\mu}_{j}}{r^{3}_{ij}} |
| 63 |
|
|
- |
| 64 |
|
|
\frac{3(\boldsymbol{\mu} \cdot \mathbf{r}_{ij}) % |
| 65 |
|
|
(\boldsymbol{\mu} \cdot \mathbf{r}_{ij}) }{r^{5}_{ij}} \biggr] |
| 66 |
|
|
\label{eq:dipolePot} |
| 67 |
|
|
\end{equation} |
| 68 |
|
|
|
| 69 |
|
|
\begin{equation} |
| 70 |
|
|
V^{\text{ch}}_{ij}(\mathbf{r}_{ij}) = \frac{q_{i}q_{j}}% |
| 71 |
|
|
{4\pi\epsilon_{0} r_{ij}} |
| 72 |
|
|
\label{eq:chargePot} |
| 73 |
|
|
\end{equation} |
| 74 |
|
|
|
| 75 |
|
|
The second step taken to simplify the number of calculationsis to |
| 76 |
|
|
incorporate unified models for groups of atoms. In the case of water, |
| 77 |
|
|
we use the soft sticky dipole (SSD) model developed by |
| 78 |
|
|
Ichiye\cite{Liu96} (Section~\ref{sec:ssdModel}). For the phospholipids, a |
| 79 |
|
|
unified head atom with a dipole will replace the atoms in the head |
| 80 |
|
|
group, while unified $\text{CH}_2$ and $\text{CH}_3$ atoms will |
| 81 |
|
|
replace the alkanes in the tails (Section~\ref{sec:lipidModel}). |
| 82 |
|
|
|
| 83 |
mmeineke |
96 |
The time scale simplifications are taken so that the simulation can |
| 84 |
|
|
take long time steps. By incresing the time steps taken by the |
| 85 |
|
|
simulation, we are able to integrate the simulation trajectory with |
| 86 |
|
|
fewer calculations. However, care must be taken to conserve the energy |
| 87 |
|
|
of the simulation. This is a constraint placed upon the system by |
| 88 |
|
|
simulating in the microcanonical ensemble. In practice, this means |
| 89 |
|
|
taking steps small enough to resolve all motion in the system without |
| 90 |
|
|
accidently moving an object too far along a repulsive energy surface |
| 91 |
|
|
before it feels the affect of the surface. |
| 92 |
mmeineke |
95 |
|
| 93 |
mmeineke |
96 |
In our simulation we have chosen to constrain all bonds to be of fixed |
| 94 |
|
|
length. This means the bonds are no longer allowed to vibrate about |
| 95 |
|
|
their equilibrium positions, typically the fastest periodical motion |
| 96 |
|
|
in a dynamics simulation. By taking this action, we are able to take |
| 97 |
|
|
time steps of 3 fs while still maintaining constant energy. This is in |
| 98 |
|
|
contrast to the 1 fs time step typically needed to conserve energy when |
| 99 |
mmeineke |
97 |
bonds lengths are allowed to oscillate. |
| 100 |
mmeineke |
95 |
|
| 101 |
|
|
\subsection{The Soft Sticky Water Model} |
| 102 |
|
|
\label{sec:ssdModel} |
| 103 |
|
|
|
| 104 |
mmeineke |
98 |
\begin{floatingfigure}{55mm} |
| 105 |
|
|
\includegraphics[width=45mm]{ssd.epsi} |
| 106 |
|
|
\caption{The SSD model with the oxygen and hydrogen atoms drawn in for reference. \vspace{5mm}} |
| 107 |
|
|
% The dipole magnitude is 2.35 D and the Lennard-Jones parameters are $\sigma = 3.051 \mbox{\AA}$ and $\epsilon = 0.152$ kcal/mol.} |
| 108 |
|
|
\label{fig:ssdModel} |
| 109 |
|
|
\end{floatingfigure} |
| 110 |
mmeineke |
96 |
|
| 111 |
mmeineke |
98 |
The water model used in our simulations is a modified soft Stockmayer |
| 112 |
|
|
sphere model. Like the soft Stockmayer sphere, the SSD |
| 113 |
|
|
model\cite{Liu96} consists of a Lennard-Jones interaction site and a |
| 114 |
|
|
dipole both located at the water's center of mass (Figure |
| 115 |
|
|
\ref{fig:ssdModel}). However, the SSD model extends this by adding a |
| 116 |
|
|
tetrahedral potential to correct for hydrogen bonding. |
| 117 |
|
|
|
| 118 |
|
|
This SSD water's motion is then governed by the following potential: |
| 119 |
mmeineke |
96 |
\begin{equation} |
| 120 |
|
|
V_{\text{ssd}} = V_{\text{LJ}}(r_{i\!j}) + V_{\text{dp}}(\mathbf{r}_{i\!j}, |
| 121 |
|
|
\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j}) |
| 122 |
|
|
+ V_{\text{sp}}(\mathbf{r}_{i\!j},\boldsymbol{\Omega}_{i}, |
| 123 |
|
|
\boldsymbol{\Omega}_{j}) |
| 124 |
mmeineke |
98 |
\label{eq:ssdTotPot} |
| 125 |
mmeineke |
96 |
\end{equation} |
| 126 |
mmeineke |
98 |
$V_{\text{LJ}}$ is the Lennard-Jones potential with $\sigma_{\text{w}} |
| 127 |
|
|
= 3.051 \mbox{ \AA}$ and $\epsilon_{\text{w}} = 0.152\text{ |
| 128 |
|
|
kcal/mol}$. $V_{\text{dp}}$ is the dipole potential with |
| 129 |
|
|
$|\mu_{\text{w}}| = 2.35\text{ D}$. |
| 130 |
mmeineke |
96 |
|
| 131 |
mmeineke |
98 |
The hydrogen bonding of the model is governed by the $V_{\text{sp}}$ term of the potentail. Its form is as follows: |
| 132 |
mmeineke |
96 |
\begin{equation} |
| 133 |
|
|
V_{\text{sp}}(\mathbf{r}_{i\!j},\boldsymbol{\Omega}_{i}, |
| 134 |
|
|
\boldsymbol{\Omega}_{j}) = |
| 135 |
|
|
v^{\circ}[s(r_{ij})w_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i}, |
| 136 |
|
|
\boldsymbol{\Omega}_{j}) |
| 137 |
|
|
+ |
| 138 |
|
|
s'(r_{ij})w^{x}_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i}, |
| 139 |
|
|
\boldsymbol{\Omega}_{j})] |
| 140 |
mmeineke |
98 |
\label{eq:spPot} |
| 141 |
mmeineke |
96 |
\end{equation} |
| 142 |
mmeineke |
98 |
Where $v^\circ$ is responsible for scaling the strength of the |
| 143 |
|
|
interaction. |
| 144 |
|
|
$w_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})$ |
| 145 |
|
|
and |
| 146 |
|
|
$w^{x}_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})$ |
| 147 |
|
|
are responsible for the tetrahedral potential and a correction to the |
| 148 |
|
|
tetrahedral potential respectively. They are, |
| 149 |
mmeineke |
96 |
\begin{equation} |
| 150 |
|
|
w_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j}) = |
| 151 |
|
|
\sin\theta_{ij} \sin 2\theta_{ij} \cos 2\phi_{ij} |
| 152 |
|
|
+ \sin \theta_{ji} \sin 2\theta_{ji} \cos 2\phi_{ji} |
| 153 |
mmeineke |
98 |
\label{eq:apPot2} |
| 154 |
mmeineke |
96 |
\end{equation} |
| 155 |
mmeineke |
98 |
and |
| 156 |
mmeineke |
96 |
\begin{equation} |
| 157 |
|
|
\begin{split} |
| 158 |
mmeineke |
98 |
w^{x}_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j}) = |
| 159 |
|
|
&(\cos\theta_{ij}-0.6)^2(\cos\theta_{ij} + 0.8)^2 \\ |
| 160 |
|
|
&+ (\cos\theta_{ji}-0.6)^2(\cos\theta_{ji} + 0.8)^2 - 2w^{\circ} |
| 161 |
mmeineke |
96 |
\end{split} |
| 162 |
mmeineke |
98 |
\label{eq:spCorrection} |
| 163 |
mmeineke |
96 |
\end{equation} |
| 164 |
mmeineke |
98 |
The correction |
| 165 |
|
|
$w^{x}_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})$ |
| 166 |
|
|
is needed because |
| 167 |
|
|
$w_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})$ |
| 168 |
|
|
vanishes when $\theta_{ij}$ is $0^\circ$ or $180^\circ$. The angles $\theta_{ij}$ and $\phi_{ij}$ are defined by the spherical polar coordinates of the position of sphere $j$ in the reference frame fixed on sphere $i$ with the z-axis alligned with the dipole moment. |
| 169 |
mmeineke |
96 |
|
| 170 |
mmeineke |
98 |
Finaly, the sticky potentail is scaled by a cutoff function, $s(r_{ij})$ that scales smoothly between 0 and 1. It is represented by: |
| 171 |
mmeineke |
96 |
\begin{equation} |
| 172 |
|
|
s(r_{ij}) = |
| 173 |
|
|
\begin{cases} |
| 174 |
|
|
1& \text{if $r_{ij} < r_{L}$}, \\ |
| 175 |
|
|
\frac{(r_{U} - r_{ij})^2 (r_{U} + 2r_{ij} |
| 176 |
|
|
- 3r_{L})}{(r_{U}-r_{L})^3}& |
| 177 |
|
|
\text{if $r_{L} \leq r_{ij} \leq r_{U}$},\\ |
| 178 |
|
|
0& \text{if $r_{ij} \geq r_{U}$}. |
| 179 |
|
|
\end{cases} |
| 180 |
mmeineke |
98 |
\label{eq:spCutoff} |
| 181 |
mmeineke |
96 |
\end{equation} |
| 182 |
|
|
|
| 183 |
mmeineke |
98 |
|
| 184 |
mmeineke |
95 |
\subsection{The Phospholipid Model} |
| 185 |
|
|
\label{sec:lipidModel} |
| 186 |
|
|
|
| 187 |
mmeineke |
99 |
\begin{floatingfigure}{90mm} |
| 188 |
|
|
\includegraphics[angle=-90,width=80mm]{lipidModel.epsi} |
| 189 |
|
|
\caption{A representation of the lipid model. $\phi$ is the torsion angle, $\theta$ is the bend angle, $\mu$ is the dipole moment of the head group, and n is the chain length. \vspace{5mm}} |
| 190 |
|
|
\label{fig:lipidModel} |
| 191 |
|
|
\end{floatingfigure} |
| 192 |
mmeineke |
95 |
|
| 193 |
mmeineke |
99 |
The lipid molecules in our simulations are unified atom models. Figure |
| 194 |
|
|
\ref{fig:lipidModel} shows a template drawing for one of our |
| 195 |
|
|
lipids. The Head group of the phospholipid is replaced by a single |
| 196 |
|
|
Lennard-Jones sphere with a freely oriented dipole placed at it's |
| 197 |
|
|
center. The magnitude of it's dipole moment is 20.6 D. The tail atoms |
| 198 |
|
|
are unifed $\text{CH}_2$ and $\text{CH}_3$ atoms and are also modeled |
| 199 |
|
|
as Lennard-Jones spheres. The total potential for the lipid is |
| 200 |
|
|
represented by Equation \ref{eq:lipidModelPot}. |
| 201 |
|
|
|
| 202 |
|
|
\begin{equation} |
| 203 |
|
|
V_{\mbox{lipid}} = \overbrace{% |
| 204 |
|
|
V_{\text{bend}}(\theta_{ijk}) +% |
| 205 |
|
|
V_{\text{tors.}}(\phi_{ijkl})}^{bonded} |
| 206 |
|
|
+ \overbrace{% |
| 207 |
|
|
V_{\text{LJ}}(r_{i\!j}) + |
| 208 |
|
|
V_{\text{dp}}(r_{i\!j},\Omega_{i},\Omega_{j})% |
| 209 |
|
|
}^{non-bonded} |
| 210 |
|
|
\label{eq:lipidModelPot} |
| 211 |
|
|
\end{equation} |
| 212 |
|
|
|
| 213 |
|
|
The non bonded interactions, $V_{\text{LJ}}$ and $V_{\text{dp}}$, are |
| 214 |
|
|
the Lennard-Jones and dipole-dipole interactions respectively. For the |
| 215 |
|
|
non-bonded potentials, only the bend and the torsional potentials are |
| 216 |
|
|
calculated. The bond potential is not calculated, and the bond lengths |
| 217 |
|
|
are constrained via RATTLE.\cite{leach01:mm} The bend potential is of |
| 218 |
|
|
the form: |
| 219 |
|
|
\begin{equation} |
| 220 |
|
|
V_{\text{bend}}(\theta_{ijk}) = k_{\theta}\frac{(\theta_{ijk} - \theta_0)^2}{2} |
| 221 |
|
|
\label{eq:bendPot} |
| 222 |
|
|
\end{equation} |
| 223 |
mmeineke |
100 |
Where $k_{\theta}$ sets the stiffness of the bend potential, and $\theta_0$ |
| 224 |
|
|
sets the equilibrium bend angle. The torsion potential was given by: |
| 225 |
|
|
\begin{equation} |
| 226 |
|
|
V_{\text{tors.}}(\phi_{ijkl}= \cos(\phi_{ijkl}) |
| 227 |
|
|
\label{eq:torsPot} |
| 228 |
|
|
\end{equation} |
| 229 |
mmeineke |
99 |
|
| 230 |
mmeineke |
100 |
\pagebreak |
| 231 |
|
|
\bibliographystyle{achemso} |
| 232 |
mmeineke |
99 |
\bibliography{canidacy_paper} \end{document} |