ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/matt_papers/MWTCC03/poster.tex
(Generate patch)

Comparing trunk/matt_papers/MWTCC03/poster.tex (file contents):
Revision 551 by mmeineke, Mon Jun 9 15:22:52 2003 UTC vs.
Revision 552 by mmeineke, Mon Jun 9 21:19:02 2003 UTC

# Line 224 | Line 224 | with a single point mass containing a centrally locate
224   in the tail groups to beads representing $\mbox{CH}_{2}$ and
225   $\mbox{CH}_{3}$ unified atoms, and the replacement of the head groups
226   with a single point mass containing a centrally located dipole. The
227 < model was then used to simulate micelle and bilayer formation from a
228 < configuration of randomly placed phospholipids which was simulated for
229 < times in excess of 30 nanoseconds.
227 > model was then used to simulate micelle formation from a configuration
228 > of randomly placed phospholipids which was simulated for times in
229 > excess of 20 nanoseconds.
230  
231   }
232        \end{kasten}
# Line 304 | Line 304 | Bilayer Formation Dynamics
304    \end{kasten}
305  
306    \begin{kasten}
307 < \subsection{{\color{ndblue}System Simplfications}}
307 > \subsection{{\color{ndblue}System Simplifications}}
308   \begin{itemize}
309   \item Unified atoms with fixed bond lengths replace groups of atoms.
310 < \item Replace charge distributions with dipoles.(Eq. \ref{eq:dipole}
311 <        vs. Eq. \ref{eq:coloumb})
310 > \item Replace charge distributions with dipoles.(Eq.~\ref{eq:dipole}
311 >        vs. Eq.~\ref{eq:coloumb})
312   \begin{itemize}
313          \item Relatively short range, $\frac{1}{r^3}$, interactions allow
314          the application of computational simplification algorithms,
315 <        ie. neighbor lists.
315 >        i.e. neighbor lists.
316   \end{itemize}
317   \end{itemize}
318   \begin{equation}
# Line 355 | Line 355 | needed between two molecules.
355    \begin{kasten}
356   \section{{\color{red}\underline{Models}}}
357   \label{sec:model}
358 < \subsection{{\color{ndblue}Water Model}}
358 > \subsection{{\color{ndblue}The Water Model}}
359   \label{sec:waterModel}
360  
361   The waters in the simulation were modeled after the Soft Sticky Dipole
# Line 368 | Line 368 | The waters in the simulation were modeled after the So
368   \end{wrapfigure}
369   \mbox{}
370   \begin{itemize}
371 < \item $\sigma$ is the Lennard-Jones length parameter.
372 < \item $\boldsymbol{\mu}_i$ is the dipole vector of molecule $i$,
371 > \item $\sigma$ is the Lennard-Jones length parameter
372 > \item $\boldsymbol{\mu}_i$ is the dipole vector of molecule $i$
373   \item $\mathbf{r}_{ij}$ is the vector between molecules $i$ and $j$
374 < \item $\boldsymbol{\Omega}_i$ and $\boldsymbol{\Omega}_j$ are the Euler angles of molecule $i$ or $j$ respectively.
374 > \item $\boldsymbol{\Omega}_i$ and $\boldsymbol{\Omega}_j$ are the Euler angles of molecule $i$ or $j$ respectively
375   \end{itemize}
376  
377   It's potential is as follows:
378
378   \begin{equation}
379   V_{s\!s\!d} = V_{L\!J}(r_{i\!j}) + V_{d\!p}(r_{i\!j},\Omega_{i},\Omega_{j})
380          + V_{s\!p}(r_{i\!j},\Omega_{i},\Omega_{j})
381 + \label{eq:ssdPot}
382   \end{equation}
383 <
383 > Where $V_{d\!p}(r_{i\!j}$ is given in Eq.~\ref{eq:dipole}, and $V_{L\!J}(r_{i\!j})$ is the Lennard-Jones potential:
384 > \begin{equation}
385 > V_{\text{LJ}} =
386 >        4\epsilon_{ij} \biggl[
387 >        \biggl(\frac{\sigma_{ij}}{r_{ij}}\biggr)^{12}
388 >        - \biggl(\frac{\sigma_{ij}}{r_{ij}}\biggr)^{6}
389 >        \biggr]
390 > \label{eq:lennardJonesPot}
391 > \end{equation}
392  
393    \end{kasten}
394  
395 +  \begin{kasten}
396 +        \subsection{{\color{ndblue}Soft Sticky Potential}}
397 +        \label{sec:SSeq}
398 +
399 +        Hydrogen bonding in the SSD model is described by the
400 +        $V_{\text{sp}}$ term in Eq.~\ref{eq:ssdPot}. Its form is as follows:
401 + \begin{equation}
402 + V_{\text{sp}}(\mathbf{r}_{i\!j},\boldsymbol{\Omega}_{i},
403 +        \boldsymbol{\Omega}_{j}) =
404 +        v^{\circ}[s(r_{ij})w_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},
405 +                \boldsymbol{\Omega}_{j})
406 +        +
407 +        s'(r_{ij})w^{x}_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},
408 +                \boldsymbol{\Omega}_{j})]
409 + \label{eq:spPot}
410 + \end{equation}
411 + Where $v^\circ$ scales the strength of the interaction.
412 + $w_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})$
413 + and
414 + $w^{x}_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})$
415 + are responsible for the tetrahedral potential and a correction to the
416 + tetrahedral potential respectively. They are,
417 + \begin{equation}
418 + w_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j}) =
419 +        \sin\theta_{ij} \sin 2\theta_{ij} \cos 2\phi_{ij}
420 +        + \sin \theta_{ji} \sin 2\theta_{ji} \cos 2\phi_{ji}
421 + \label{eq:spPot2}
422 + \end{equation}o
423 + and
424 + \begin{equation}
425 + \begin{split}
426 + w^{x}_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j}) =
427 +        &(\cos\theta_{ij}-0.6)^2(\cos\theta_{ij} + 0.8)^2 \\
428 +        &+ (\cos\theta_{ji}-0.6)^2(\cos\theta_{ji} + 0.8)^2 - 2w^{\circ}
429 + \end{split}
430 + \label{eq:spCorrection}
431 + \end{equation}
432 + The angles $\theta_{ij}$ and $\phi_{ij}$ are defined by the spherical
433 + coordinates of the position of molecule $j$ in the reference frame
434 + fixed on molecule $i$ with the z-axis aligned with the dipole moment.
435 + The correction
436 + $w^{x}_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})$
437 + is needed because
438 + $w_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})$
439 + vanishes when $\theta_{ij}$ is $0^\circ$ or $180^\circ$. Finally, the
440 + potential is scaled by the switching function $s(r_{ij})$,
441 + which scales smoothly from 0 to 1.
442 + \begin{equation}
443 + s(r_{ij}) =
444 +        \begin{cases}
445 +        1&      \text{if $r_{ij} < r_{L}$}, \\
446 +        \frac{(r_{U} - r_{ij})^2 (r_{U} + 2r_{ij}
447 +                - 3r_{L})}{(r_{U}-r_{L})^3}&
448 +                \text{if $r_{L} \leq r_{ij} \leq r_{U}$},\\
449 +        0&      \text{if $r_{ij} \geq r_{U}$}.
450 +        \end{cases}
451 + \label{eq:spCutoff}
452 + \end{equation}
453  
454 +  \end{kasten}
455  
456  
457      \end{spalte}
# Line 393 | Line 460 | V_{s\!s\!d} = V_{L\!J}(r_{i\!j}) + V_{d\!p}(r_{i\!j},\
460   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
461      \begin{spalte}
462  
463 <     \begin{kasten}
464 <    
465 <     \section{{\color{ndblue}Ima third column holder}}
399 <    
400 <        hello
463 > \begin{kasten}
464 >        \subsection{{\color{ndblue}Hydrogen Bonding in SSD}}
465 >        \label{sec:hbonding}
466  
467 <     \end{kasten}
467 >        The SSD model's $V_{s\!p}(r_{i\!j},\Omega_{i},\Omega_{j})$
468 >        recreates the hydrogen bonding network of water.
469 >        \begin{center}
470 >        \begin{minipage}{100mm}
471 >          \begin{minipage}[t]{48mm}
472 >                \begin{center}
473 >                \includegraphics[width=48mm]{iced_final.eps}\\
474 >                SSD Relaxed on a diamond lattice
475 >                \end{center}
476 >          \end{minipage}
477 >          \hspace{4mm}%
478 >          \begin{minipage}[t]{48mm}
479 >                \begin{center}
480 >                \includegraphics[width=48mm]{dipoled_final.eps}\\
481 >                Stockmayer Spheres relaxed on a diamond lattice
482 >                \end{center}
483 >          \end{minipage}
484 >        \end{minipage}
485 >
486 >        \end{center}
487 >        
488 >
489 >  \end{kasten}
490 >
491 >
492 >  \begin{kasten}
493 >
494 >        \subsection{{\color{ndblue}The Lipid Model}}
495 >        \label{sec:lipidModel}
496 >
497 >        \begin{center}
498 >        \includegraphics[width=25mm,angle=-90]{lipidModel.epsi}
499 >        \end{center}
500  
501 +        \begin{itemize}
502 +        \item Head group replaced by a single Lennard-Jones sphere containing a dipole at its center
503 +        \item Atoms in the tail chains modeled as unified groups of atoms
504 +        \item Tail group interaction parameters based on those of TraPPE\cite{Siepmann1998}
505 +        \end{itemize}
506  
507 +        The total potential is given by:
508 +        \begin{equation}
509 + V_{\text{lipid}} =
510 +        \sum_{i}V_{i}^{\text{internal}}
511 +        + \sum_i \sum_{j>i} \sum_{\text{$\alpha$ in $i$}}
512 +        \sum_{\text{$\beta$ in $j$}}
513 +        V_{\text{LJ}}(r_{\alpha_{i}\beta_{j}})
514 +        +\sum_i\sum_{j>i}V_{\text{dp}}(r_{1_i,1_j},\Omega_{1_i},\Omega_{1_j})
515 + \end{equation}
516 + Where
517 + \begin{equation}
518 + V_{i}^{\text{internal}} =
519 +        \sum_{\text{bends}}V_{\text{bend}}(\theta_{\alpha\beta\gamma})
520 +        + \sum_{\text{torsions}}V_{\text{tors.}}(\phi_{\alpha\beta\gamma\zeta})
521 +        + \sum_{\alpha} \sum_{\beta>\alpha}V_{\text{LJ}}(r_{\alpha \beta})
522 + \end{equation}
523 + The bend and torsion potentials were of the form:
524 + \begin{equation}
525 + V_{\text{bend}}(\theta_{\alpha\beta\gamma})
526 +        = k_{\theta}\frac{(\theta_{\alpha\beta\gamma} - \theta_0)^2}{2}
527 + \label{eq:bendPot}
528 + \end{equation}
529 + \begin{equation}
530 + V_{\text{tors.}}(\phi_{\alpha\beta\gamma\zeta})
531 +        = c_1 [1+\cos\phi_{\alpha\beta\gamma\zeta}]
532 +        + c_2 [1 - \cos(2\phi_{\alpha\beta\gamma\zeta})]
533 +        + c_3 [1 + \cos(3\phi_{\alpha\beta\gamma\zeta})]
534 + \label{eq:torsPot}
535 + \end{equation}
536 +        
537 +
538 +  \end{kasten}
539 +
540 +  \begin{kasten}
541 +
542 +        \section{{\color{red}\underline{Initial Results}}}
543 +        \label{sec:results}
544 +        \subsection{{\color{ndblue}50 lipids randomly arranged in water}}
545 +        \label{sec:r50}
546 +
547 +        \begin{center}
548 +        \begin{minipage}{130mm}
549 +                \begin{minipage}[t]{40mm}
550 +        \begin{itemize}
551 +        \item $N_{\mbox{lipids}} = 25$
552 +        \end{itemize}
553 +                \end{minipage}
554 +                \begin{minipage}[t]{40mm}
555 +        \begin{itemize}
556 +        \item $N_{\mbox{H}_{2}\mbox{O}} = 1386$
557 +        \end{itemize}
558 +                \end{minipage}
559 +                \begin{minipage}[t]{40mm}
560 +        \begin{itemize}
561 +        \item T = 300 K
562 +        \end{itemize}
563 +                \end{minipage}
564 +        \end{minipage}
565 +        \end{center}
566 +
567 +  \end{kasten}
568 +
569 +  \begin{kasten}
570 +        
571 +        \subsection{{\color{ndblue}Simulation Snapshots}}
572 +        \label{sec:r50snapshots}
573 +        
574 +        \begin{center}
575 +        \includegraphics[width=105mm]{r50-montage.eps}
576 +        \end{center}
577 +
578 +  \end{kasten}
579 +
580 +
581      \end{spalte}
582   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
583   %%%               fourth column                  %%%            
584   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
585      \begin{spalte}
586  
587 +  \begin{kasten}
588 +        
589 +        \subsection{{\color{ndblue}Position and Angular Correlations}}
590 +        \label{sec:r50corr}
591  
592 +        \begin{center}
593 +        \begin{minipage}{110mm}
594 +                \begin{minipage}[t]{55mm}
595 +                \begin{center}
596 +                \includegraphics[width=36mm,angle=-90]{r50-HEAD-HEAD.epsi}\\
597 +                The self correlation of the head groups
598 +                \end{center}
599 +                \end{minipage}
600 +                \begin{minipage}[t]{55mm}
601 +                \begin{center}
602 +                \includegraphics[width=36mm,angle=-90]{r50-CH2-CH2.epsi}\\
603 +                The self correlation of the tail beads.
604 +                \end{center}
605 +                \end{minipage}
606 +        \end{minipage}
607 +        \end{center}
608 + \begin{equation}
609 + g(r) = \frac{V}{N_{\text{pairs}}}\langle \sum_{i} \sum_{j > i}
610 +        \delta(|\mathbf{r} - \mathbf{r}_{ij}|) \rangle
611 + \label{eq:gofr}
612 + \end{equation}
613 + \begin{equation}
614 + g_{\gamma}(r) = \langle \sum_i \sum_{j>i}
615 +        (\cos \gamma_{ij}) \delta(| \mathbf{r} - \mathbf{r}_{ij}|) \rangle
616 + \label{eq:gammaofr}
617 + \end{equation}
618  
619 +  \end{kasten}
620  
621  
622 +  \begin{kasten}
623 +
624 +        \subsection{{\color{red}\underline{Discussion}}}
625 +        \label{sec:discussion}
626 +        
627 +        The initial results show much promise for the model. The
628 +        system of 50 lipids was able to form micelles quickly, however
629 +        bilayer formation was not seen on the time scale of the
630 +        current simulation. Current simulations are exploring the
631 +        phase space of the model when the tail beads are larger than
632 +        the head group. This should help to drive the system toward a
633 +        bilayer rather than a micelle. Work is also being done on the
634 +        simulation engine to allow for the box size of the system to
635 +        be adjustable in all three dimensions to allow for constant
636 +        pressure.
637 +
638 +  \end{kasten}
639 +
640 +
641       \begin{kasten}
642          \begin{center}  
643          {\large{\color{red} \underline{Acknowledgments}}}
# Line 420 | Line 646 | engine. MAM would also like to extend a special thank
646   The authors would like to acknowledge Charles Vardeman, Christopher
647   Fennell, and Teng lin for their contributions to the simulation
648   engine. MAM would also like to extend a special thank you to Charles
649 < Vardeman for his help with the TeX formatting of this
650 < poster. Computaion time was provided on the Bunch-of-Boxes (B.o.B.)
649 > Vardeman for his help with the \TeX formatting of this
650 > poster. Computation time was provided on the Notre Dame Bunch-of-Boxes (B.o.B.)
651   cluster under NSF grant DMR 00 79647. The authors acknowledge support
652   under NSF grant CHE-0134881.
653  

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines