ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/matt_papers/MWTCC03/poster.tex
Revision: 552
Committed: Mon Jun 9 21:19:02 2003 UTC (22 years, 1 month ago) by mmeineke
Content type: application/x-tex
File size: 19679 byte(s)
Log Message:
First completed rough draft (spell checked even).

File Contents

# Content
1 %% this is my poster for the Midwest Theoretical Conference
2
3
4 \documentclass[10pt]{scrartcl}
5 %%
6 %
7 % This is a poster template with latex macros and using
8 % the University of Florida Logo. For further information
9 % on making postscript, resizeing, and printing the poster file
10 % please see web site
11 % http://www.phys.ufl.edu/~pjh/posters/poster_howto_UF.html
12 %
13 % N.B. This format is cribbed from one obtained from the University
14 % of Karlsruhe, so some macro names and parameters are in German
15 % Here is a short glosary:
16 % Breite: width
17 % Hoehe: height
18 % Spalte: column
19 % Kasten: box
20 %
21 % All style files necessary are part of standard TeTeX distribution
22 % On the UF unix cluster you should not need to import these files
23 % specially, as they will be automatically located. If you
24 % run on a local PC however, you will need to locate these files.
25 % At UF try /usr/local/TeTeX...
26 %
27 % P. Hirschfeld 2/11/00
28 %
29 % The recommended procedure is to first generate a ``Special Format" size poster
30 % file, which is relatively easy to manipulate and view. It can be
31 % resized later to A0 (900 x 1100 mm) full poster size, or A4 or Letter size
32 % as desired (see web site). Note the large format printers currently
33 % in use at UF's OIR have max width of about 90cm or 3 ft., but the paper
34 % comes in rolls so the length is variable. See below the specifications
35 % for width and height of various formats. Default in the template is
36 % ``Special Format", with 4 columns.
37 %%
38 %%
39 %% Choose your poster size:
40 %% For printing you will later RESIZE your poster by a factor
41 %% 2*sqrt(2) = 2.828 (for A0)
42 %% 2 = 2.00 (for A1)
43 %%
44 %%
45 \def\breite{390mm} % Special Format.
46 \def\hoehe{319.2mm} % Scaled by 2.82 this gives 110cm x 90cm
47 \def\anzspalten{4}
48 %%
49 %%\def\breite{420mm} % A3 LANDSCAPE
50 %%\def\hoehe{297mm}
51 %%\def\anzspalten{4}
52 %%
53 %% \def\breite{297mm} % A3 PORTRAIT
54 %% \def\hoehe{420mm}
55 %% \def\anzspalten{3}
56 %%
57 %% \def\breite{210mm} % A4 PORTRAIT
58 %% \def\hoehe{297mm}
59 %% \def\anzspalten{2}
60 %%
61 %%
62 %% Procedure:
63 %% Generate poster.dvi with latex
64 %% Check with Ghostview
65 %% Make a .ps-file with ``dvips -o poster.ps poster''
66 %% Scale it with poster_resize poster.ps S
67 %% where S is scale factor
68 %% for Special Format->A0 S= 2.828 (= 2^(3/2)))
69 %% for Special Format->A1 S= 2 (= 2^(2/2)))
70 %%
71 %% Sizes (European:)
72 %% A3: 29.73 X 42.04 cm
73 %% A1: 59.5 X 84.1 cm
74 %% A0: 84.1 X 118.9 cm
75 %% N.B. The recommended procedure is ``Special Format x 2.82"
76 %% which gives 90cm x 110cm (not quite A0 dimensions).
77 %%
78 %% --------------------------------------------------------------------------
79 %%
80 %% Load the necessary packages
81 %%
82 \usepackage{palatino}
83 \usepackage[latin1]{inputenc}
84 \usepackage{epsf}
85 \usepackage{graphicx,psfrag,color,pstcol,pst-grad}
86 \usepackage{amsmath,amssymb}
87 \usepackage{latexsym}
88 \usepackage{calc}
89 \usepackage{multicol}
90 \usepackage{wrapfig}
91 %%
92 %% Define the required numbers, lengths and boxes
93 %%
94 \newsavebox{\dummybox}
95 \newsavebox{\spalten}
96 %\input psfig.sty
97
98 %%
99 %%
100 \newlength{\bgwidth}\newlength{\bgheight}
101 \setlength\bgheight{\hoehe} \addtolength\bgheight{-1mm}
102 \setlength\bgwidth{\breite} \addtolength\bgwidth{-1mm}
103
104 \newlength{\kastenwidth}
105
106 %% Set paper format
107 \setlength\paperheight{\hoehe}
108 \setlength\paperwidth{\breite}
109 \special{papersize=\breite,\hoehe}
110
111 \topmargin -1in
112 \marginparsep0mm
113 \marginparwidth0mm
114 \headheight0mm
115 \headsep0mm
116
117
118 %% Minimal Margins to Make Correct Bounding Box
119 \setlength{\oddsidemargin}{-2.44cm}
120 \addtolength{\topmargin}{-3mm}
121 \textwidth\paperwidth
122 \textheight\paperheight
123
124 %%
125 %%
126 \parindent0cm
127 \parskip1.5ex plus0.5ex minus 0.5ex
128 \pagestyle{empty}
129
130
131
132 \definecolor{ndgold}{rgb}{0.87,0.82,0.59}
133 \definecolor{ndgold2}{rgb}{0.96,0.91,0.63}
134 \definecolor{ndblue}{rgb}{0,0.1875, 0.6992}
135 \definecolor{recoilcolor}{rgb}{1,0,0}
136 \definecolor{occolor}{rgb}{0,1,0}
137 \definecolor{pink}{rgb}{0,1,1}
138
139
140
141
142
143 \def\UberStil{\normalfont\sffamily\bfseries\large}
144 \def\UnterStil{\normalfont\sffamily\small}
145 \def\LabelStil{\normalfont\sffamily\tiny}
146 \def\LegStil{\normalfont\sffamily\tiny}
147
148 %%
149 %% Define some commands
150 %%
151 \definecolor{JG}{rgb}{0.1,0.9,0.3}
152
153 \newenvironment{kasten}{%
154 \begin{lrbox}{\dummybox}%
155 \begin{minipage}{0.96\linewidth}}%
156 {\end{minipage}%
157 \end{lrbox}%
158 \raisebox{-\depth}{\psshadowbox[framearc=0.05,framesep=1em]{\usebox{\dummybox}}}\\[0.5em]}
159 \newenvironment{spalte}{%
160 \setlength\kastenwidth{1.2\textwidth}
161 \divide\kastenwidth by \anzspalten
162 \begin{minipage}[t]{\kastenwidth}}{\end{minipage}\hfill}
163
164
165
166
167 \def\op#1{\hat{#1}}
168 \begin{document}
169 \bibliographystyle{plain}
170 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
171 %%% Background %%%
172 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
173 {\newrgbcolor{gradbegin}{0.0 0.01875 0.6992}%
174 \newrgbcolor{gradend}{1 1 1}%{1 1 0.5}%
175 \psframe[fillstyle=gradient,gradend=gradend,%
176 gradbegin=gradbegin,gradmidpoint=0.1](\bgwidth,-\bgheight)}
177 \vfill
178 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
179 %%% Header %%%
180 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
181 \hfill
182 \psshadowbox[fillstyle=solid,fillcolor=ndgold2]{\makebox[0.95\textwidth]{%
183 \hfill
184 \parbox[c]{2cm}{\includegraphics[width=8cm]{ndLogoScience1a.eps}}
185 \hfill
186 \parbox[c]{0.8\linewidth}{%
187 \begin{center}
188 \color{ndblue}
189 \textbf{\Huge {A Mesoscale Model for Phospholipid Simulations}}\\[0.5em]
190 \textsc{\LARGE \underline{Matthew~A.~Meineke}, and J.~Daniel~Gezelter}\\[0.3em]
191 {\large Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA\\
192 {\tt\ mmeineke@nd.edu}
193 }
194 \end{center}}
195 \hfill}}\hfill\mbox{}\\[1.cm]
196 %\vspace*{1.3cm}
197 \begin{lrbox}{\spalten}
198 \parbox[t][\textheight]{1.3\textwidth}{%
199 \vspace*{0.2cm}
200 \hfill
201 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
202 %%% first column %%%
203 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
204 \begin{spalte}
205 \begin{kasten}
206 %
207 %
208 % This begins the first "kasten" or box
209 %
210 %
211 \begin{center}
212 {\large{\color{red} \underline{ABSTRACT} } }
213 \end{center}
214
215 {\color{ndblue}
216
217 A mesoscale model for phospholipids has been developed for molecular
218 dynamics simulations of lipid bilayers. The model makes several
219 simplifications to both the water and the phospholipids to reduce the
220 computational cost of each force evaluation. The water was represented
221 by the soft sticky dipole model of Ichiye \emph{et
222 al}.\cite{liu96:new_model,liu96:monte_carlo,chandra99:ssd_md} The
223 simplifications to the phospholipids included the reduction of atoms
224 in the tail groups to beads representing $\mbox{CH}_{2}$ and
225 $\mbox{CH}_{3}$ unified atoms, and the replacement of the head groups
226 with a single point mass containing a centrally located dipole. The
227 model was then used to simulate micelle formation from a configuration
228 of randomly placed phospholipids which was simulated for times in
229 excess of 20 nanoseconds.
230
231 }
232 \end{kasten}
233
234
235 \begin{kasten}
236 \section{{\color{red}\underline{Introduction \& Background}}}
237 \label{sec:intro}
238
239 %% \subsection{{\color{ndblue}Motivation}}
240 \label{sec:motivation}
241
242
243 Simulations of phospholipid bilayers are, by necessity, quite
244 complex. The lipid molecules are large, and contain many
245 atoms. Additionally, the head groups of the lipids are often
246 zwitterions, and the large separation between charges results in a
247 large dipole moment. Adding to the complexity are the number of water
248 molecules needed to properly solvate the lipid bilayer, typically 25
249 water molecules for every lipid molecule. These factors make it
250 difficult to study certain biologically interesting phenomena that
251 have large inherent length or time scale.
252
253 \end{kasten}
254
255 \begin{kasten}
256 \subsection{{\color{ndblue}Ripple Phase}}
257
258 \begin{wrapfigure}{o}{60mm}
259 \centering
260 \includegraphics[width=40mm]{ripple.epsi}
261 \end{wrapfigure}
262
263 \mbox{}
264 \begin{itemize}
265 \item The ripple (~$P_{\beta'}$~) phase lies in the transition from the gel to fluid phase.
266 \item Periodicity of 100 - 200 $\mbox{\AA}$\cite{Cevc87}
267 \item Current simulations have box sizes ranging from 50 - 100 $\mbox{\AA}$ on a side.\cite{saiz02,lindahl00,venable00}
268 \end{itemize}
269
270 \label{sec:ripplePhase}
271
272 \end{kasten}
273
274
275 \begin{kasten}
276 \subsection{{\color{ndblue}Diffusion \& Formation Dynamics}}
277 \begin{itemize}
278
279 \item
280 Drug Diffusion
281 \begin{itemize}
282 \item
283 Some drug molecules may spend appreciable amounts of time in the
284 membrane
285
286 \item
287 Long time scale dynamics are need to observe and characterize their
288 actions
289 \end{itemize}
290
291 \item
292 Bilayer Formation Dynamics
293 \begin{itemize}
294 \item
295 Current lipid simulations indicate\cite{Marrink01}:
296 \begin{itemize}
297 \item Aggregation can happen as quickly as 200 ps
298
299 \item Bilayers can take up to 20 ns to form completely
300 \end{itemize}
301
302 \end{itemize}
303 \end{itemize}
304 \end{kasten}
305
306 \begin{kasten}
307 \subsection{{\color{ndblue}System Simplifications}}
308 \begin{itemize}
309 \item Unified atoms with fixed bond lengths replace groups of atoms.
310 \item Replace charge distributions with dipoles.(Eq.~\ref{eq:dipole}
311 vs. Eq.~\ref{eq:coloumb})
312 \begin{itemize}
313 \item Relatively short range, $\frac{1}{r^3}$, interactions allow
314 the application of computational simplification algorithms,
315 i.e. neighbor lists.
316 \end{itemize}
317 \end{itemize}
318 \begin{equation}
319 V^{\text{dp}}_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},
320 \boldsymbol{\Omega}_{j}) = \frac{1}{4\pi\epsilon_{0}} \biggl[
321 \frac{\boldsymbol{\mu}_{i} \cdot \boldsymbol{\mu}_{j}}{r^{3}_{ij}}
322 -
323 \frac{3(\boldsymbol{\mu}_i \cdot \mathbf{r}_{ij}) %
324 (\boldsymbol{\mu}_j \cdot \mathbf{r}_{ij}) }
325 {r^{5}_{ij}} \biggr]
326 \label{eq:dipole}
327 \end{equation}
328 \begin{equation}
329 V^{\text{ch}}_{ij}(\mathbf{r}_{ij}) = \frac{q_{i}q_{j}}%
330 {4\pi\epsilon_{0} r_{ij}}
331 \label{eq:coloumb}
332 \end{equation}
333 \end{kasten}
334
335
336
337 \end{spalte}
338 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
339 %%% second column %%%
340 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
341 \begin{spalte}
342
343
344 \begin{kasten}
345 \subsection{{\color{ndblue}Reduction in calculations}}
346 Unified water and lipid models and decrease the number of interactions
347 needed between two molecules.
348
349 \begin{center}
350 \includegraphics[width=50mm,angle=-90]{reduction.epsi}
351 \end{center}
352 \end{kasten}
353
354
355 \begin{kasten}
356 \section{{\color{red}\underline{Models}}}
357 \label{sec:model}
358 \subsection{{\color{ndblue}The Water Model}}
359 \label{sec:waterModel}
360
361 The waters in the simulation were modeled after the Soft Sticky Dipole
362 (SSD) model of Ichiye.\cite{liu96:new_model} Where:
363
364 \begin{wrapfigure}[10]{o}{60mm}
365 \begin{center}
366 \includegraphics[width=40mm]{ssd.epsi}
367 \end{center}
368 \end{wrapfigure}
369 \mbox{}
370 \begin{itemize}
371 \item $\sigma$ is the Lennard-Jones length parameter
372 \item $\boldsymbol{\mu}_i$ is the dipole vector of molecule $i$
373 \item $\mathbf{r}_{ij}$ is the vector between molecules $i$ and $j$
374 \item $\boldsymbol{\Omega}_i$ and $\boldsymbol{\Omega}_j$ are the Euler angles of molecule $i$ or $j$ respectively
375 \end{itemize}
376
377 It's potential is as follows:
378 \begin{equation}
379 V_{s\!s\!d} = V_{L\!J}(r_{i\!j}) + V_{d\!p}(r_{i\!j},\Omega_{i},\Omega_{j})
380 + V_{s\!p}(r_{i\!j},\Omega_{i},\Omega_{j})
381 \label{eq:ssdPot}
382 \end{equation}
383 Where $V_{d\!p}(r_{i\!j}$ is given in Eq.~\ref{eq:dipole}, and $V_{L\!J}(r_{i\!j})$ is the Lennard-Jones potential:
384 \begin{equation}
385 V_{\text{LJ}} =
386 4\epsilon_{ij} \biggl[
387 \biggl(\frac{\sigma_{ij}}{r_{ij}}\biggr)^{12}
388 - \biggl(\frac{\sigma_{ij}}{r_{ij}}\biggr)^{6}
389 \biggr]
390 \label{eq:lennardJonesPot}
391 \end{equation}
392
393 \end{kasten}
394
395 \begin{kasten}
396 \subsection{{\color{ndblue}Soft Sticky Potential}}
397 \label{sec:SSeq}
398
399 Hydrogen bonding in the SSD model is described by the
400 $V_{\text{sp}}$ term in Eq.~\ref{eq:ssdPot}. Its form is as follows:
401 \begin{equation}
402 V_{\text{sp}}(\mathbf{r}_{i\!j},\boldsymbol{\Omega}_{i},
403 \boldsymbol{\Omega}_{j}) =
404 v^{\circ}[s(r_{ij})w_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},
405 \boldsymbol{\Omega}_{j})
406 +
407 s'(r_{ij})w^{x}_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},
408 \boldsymbol{\Omega}_{j})]
409 \label{eq:spPot}
410 \end{equation}
411 Where $v^\circ$ scales the strength of the interaction.
412 $w_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})$
413 and
414 $w^{x}_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})$
415 are responsible for the tetrahedral potential and a correction to the
416 tetrahedral potential respectively. They are,
417 \begin{equation}
418 w_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j}) =
419 \sin\theta_{ij} \sin 2\theta_{ij} \cos 2\phi_{ij}
420 + \sin \theta_{ji} \sin 2\theta_{ji} \cos 2\phi_{ji}
421 \label{eq:spPot2}
422 \end{equation}o
423 and
424 \begin{equation}
425 \begin{split}
426 w^{x}_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j}) =
427 &(\cos\theta_{ij}-0.6)^2(\cos\theta_{ij} + 0.8)^2 \\
428 &+ (\cos\theta_{ji}-0.6)^2(\cos\theta_{ji} + 0.8)^2 - 2w^{\circ}
429 \end{split}
430 \label{eq:spCorrection}
431 \end{equation}
432 The angles $\theta_{ij}$ and $\phi_{ij}$ are defined by the spherical
433 coordinates of the position of molecule $j$ in the reference frame
434 fixed on molecule $i$ with the z-axis aligned with the dipole moment.
435 The correction
436 $w^{x}_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})$
437 is needed because
438 $w_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})$
439 vanishes when $\theta_{ij}$ is $0^\circ$ or $180^\circ$. Finally, the
440 potential is scaled by the switching function $s(r_{ij})$,
441 which scales smoothly from 0 to 1.
442 \begin{equation}
443 s(r_{ij}) =
444 \begin{cases}
445 1& \text{if $r_{ij} < r_{L}$}, \\
446 \frac{(r_{U} - r_{ij})^2 (r_{U} + 2r_{ij}
447 - 3r_{L})}{(r_{U}-r_{L})^3}&
448 \text{if $r_{L} \leq r_{ij} \leq r_{U}$},\\
449 0& \text{if $r_{ij} \geq r_{U}$}.
450 \end{cases}
451 \label{eq:spCutoff}
452 \end{equation}
453
454 \end{kasten}
455
456
457 \end{spalte}
458 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
459 %%% third column %%%
460 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
461 \begin{spalte}
462
463 \begin{kasten}
464 \subsection{{\color{ndblue}Hydrogen Bonding in SSD}}
465 \label{sec:hbonding}
466
467 The SSD model's $V_{s\!p}(r_{i\!j},\Omega_{i},\Omega_{j})$
468 recreates the hydrogen bonding network of water.
469 \begin{center}
470 \begin{minipage}{100mm}
471 \begin{minipage}[t]{48mm}
472 \begin{center}
473 \includegraphics[width=48mm]{iced_final.eps}\\
474 SSD Relaxed on a diamond lattice
475 \end{center}
476 \end{minipage}
477 \hspace{4mm}%
478 \begin{minipage}[t]{48mm}
479 \begin{center}
480 \includegraphics[width=48mm]{dipoled_final.eps}\\
481 Stockmayer Spheres relaxed on a diamond lattice
482 \end{center}
483 \end{minipage}
484 \end{minipage}
485
486 \end{center}
487
488
489 \end{kasten}
490
491
492 \begin{kasten}
493
494 \subsection{{\color{ndblue}The Lipid Model}}
495 \label{sec:lipidModel}
496
497 \begin{center}
498 \includegraphics[width=25mm,angle=-90]{lipidModel.epsi}
499 \end{center}
500
501 \begin{itemize}
502 \item Head group replaced by a single Lennard-Jones sphere containing a dipole at its center
503 \item Atoms in the tail chains modeled as unified groups of atoms
504 \item Tail group interaction parameters based on those of TraPPE\cite{Siepmann1998}
505 \end{itemize}
506
507 The total potential is given by:
508 \begin{equation}
509 V_{\text{lipid}} =
510 \sum_{i}V_{i}^{\text{internal}}
511 + \sum_i \sum_{j>i} \sum_{\text{$\alpha$ in $i$}}
512 \sum_{\text{$\beta$ in $j$}}
513 V_{\text{LJ}}(r_{\alpha_{i}\beta_{j}})
514 +\sum_i\sum_{j>i}V_{\text{dp}}(r_{1_i,1_j},\Omega_{1_i},\Omega_{1_j})
515 \end{equation}
516 Where
517 \begin{equation}
518 V_{i}^{\text{internal}} =
519 \sum_{\text{bends}}V_{\text{bend}}(\theta_{\alpha\beta\gamma})
520 + \sum_{\text{torsions}}V_{\text{tors.}}(\phi_{\alpha\beta\gamma\zeta})
521 + \sum_{\alpha} \sum_{\beta>\alpha}V_{\text{LJ}}(r_{\alpha \beta})
522 \end{equation}
523 The bend and torsion potentials were of the form:
524 \begin{equation}
525 V_{\text{bend}}(\theta_{\alpha\beta\gamma})
526 = k_{\theta}\frac{(\theta_{\alpha\beta\gamma} - \theta_0)^2}{2}
527 \label{eq:bendPot}
528 \end{equation}
529 \begin{equation}
530 V_{\text{tors.}}(\phi_{\alpha\beta\gamma\zeta})
531 = c_1 [1+\cos\phi_{\alpha\beta\gamma\zeta}]
532 + c_2 [1 - \cos(2\phi_{\alpha\beta\gamma\zeta})]
533 + c_3 [1 + \cos(3\phi_{\alpha\beta\gamma\zeta})]
534 \label{eq:torsPot}
535 \end{equation}
536
537
538 \end{kasten}
539
540 \begin{kasten}
541
542 \section{{\color{red}\underline{Initial Results}}}
543 \label{sec:results}
544 \subsection{{\color{ndblue}50 lipids randomly arranged in water}}
545 \label{sec:r50}
546
547 \begin{center}
548 \begin{minipage}{130mm}
549 \begin{minipage}[t]{40mm}
550 \begin{itemize}
551 \item $N_{\mbox{lipids}} = 25$
552 \end{itemize}
553 \end{minipage}
554 \begin{minipage}[t]{40mm}
555 \begin{itemize}
556 \item $N_{\mbox{H}_{2}\mbox{O}} = 1386$
557 \end{itemize}
558 \end{minipage}
559 \begin{minipage}[t]{40mm}
560 \begin{itemize}
561 \item T = 300 K
562 \end{itemize}
563 \end{minipage}
564 \end{minipage}
565 \end{center}
566
567 \end{kasten}
568
569 \begin{kasten}
570
571 \subsection{{\color{ndblue}Simulation Snapshots}}
572 \label{sec:r50snapshots}
573
574 \begin{center}
575 \includegraphics[width=105mm]{r50-montage.eps}
576 \end{center}
577
578 \end{kasten}
579
580
581 \end{spalte}
582 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
583 %%% fourth column %%%
584 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
585 \begin{spalte}
586
587 \begin{kasten}
588
589 \subsection{{\color{ndblue}Position and Angular Correlations}}
590 \label{sec:r50corr}
591
592 \begin{center}
593 \begin{minipage}{110mm}
594 \begin{minipage}[t]{55mm}
595 \begin{center}
596 \includegraphics[width=36mm,angle=-90]{r50-HEAD-HEAD.epsi}\\
597 The self correlation of the head groups
598 \end{center}
599 \end{minipage}
600 \begin{minipage}[t]{55mm}
601 \begin{center}
602 \includegraphics[width=36mm,angle=-90]{r50-CH2-CH2.epsi}\\
603 The self correlation of the tail beads.
604 \end{center}
605 \end{minipage}
606 \end{minipage}
607 \end{center}
608 \begin{equation}
609 g(r) = \frac{V}{N_{\text{pairs}}}\langle \sum_{i} \sum_{j > i}
610 \delta(|\mathbf{r} - \mathbf{r}_{ij}|) \rangle
611 \label{eq:gofr}
612 \end{equation}
613 \begin{equation}
614 g_{\gamma}(r) = \langle \sum_i \sum_{j>i}
615 (\cos \gamma_{ij}) \delta(| \mathbf{r} - \mathbf{r}_{ij}|) \rangle
616 \label{eq:gammaofr}
617 \end{equation}
618
619 \end{kasten}
620
621
622 \begin{kasten}
623
624 \subsection{{\color{red}\underline{Discussion}}}
625 \label{sec:discussion}
626
627 The initial results show much promise for the model. The
628 system of 50 lipids was able to form micelles quickly, however
629 bilayer formation was not seen on the time scale of the
630 current simulation. Current simulations are exploring the
631 phase space of the model when the tail beads are larger than
632 the head group. This should help to drive the system toward a
633 bilayer rather than a micelle. Work is also being done on the
634 simulation engine to allow for the box size of the system to
635 be adjustable in all three dimensions to allow for constant
636 pressure.
637
638 \end{kasten}
639
640
641 \begin{kasten}
642 \begin{center}
643 {\large{\color{red} \underline{Acknowledgments}}}
644 \end{center}
645
646 The authors would like to acknowledge Charles Vardeman, Christopher
647 Fennell, and Teng lin for their contributions to the simulation
648 engine. MAM would also like to extend a special thank you to Charles
649 Vardeman for his help with the \TeX formatting of this
650 poster. Computation time was provided on the Notre Dame Bunch-of-Boxes (B.o.B.)
651 cluster under NSF grant DMR 00 79647. The authors acknowledge support
652 under NSF grant CHE-0134881.
653
654 \end{kasten}
655
656 \vspace{0.5cm}
657 \begin{kasten}
658 {\small
659 \bibliography{poster}
660 }
661 \end{kasten}
662 \end{spalte}
663 }
664 \end{lrbox}
665 \resizebox*{0.98\textwidth}{!}{%
666 \usebox{\spalten}}\hfill\mbox{}\vfill
667 \end{document}