ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/matt_papers/MWTCC03/poster.tex
Revision: 551
Committed: Mon Jun 9 15:22:52 2003 UTC (22 years, 1 month ago) by mmeineke
Content type: application/x-tex
File size: 12726 byte(s)
Log Message:
fixed the left alignment bug. Bugger if I know what was causing it.

File Contents

# Content
1 %% this is my poster for the Midwest Theoretical Conference
2
3
4 \documentclass[10pt]{scrartcl}
5 %%
6 %
7 % This is a poster template with latex macros and using
8 % the University of Florida Logo. For further information
9 % on making postscript, resizeing, and printing the poster file
10 % please see web site
11 % http://www.phys.ufl.edu/~pjh/posters/poster_howto_UF.html
12 %
13 % N.B. This format is cribbed from one obtained from the University
14 % of Karlsruhe, so some macro names and parameters are in German
15 % Here is a short glosary:
16 % Breite: width
17 % Hoehe: height
18 % Spalte: column
19 % Kasten: box
20 %
21 % All style files necessary are part of standard TeTeX distribution
22 % On the UF unix cluster you should not need to import these files
23 % specially, as they will be automatically located. If you
24 % run on a local PC however, you will need to locate these files.
25 % At UF try /usr/local/TeTeX...
26 %
27 % P. Hirschfeld 2/11/00
28 %
29 % The recommended procedure is to first generate a ``Special Format" size poster
30 % file, which is relatively easy to manipulate and view. It can be
31 % resized later to A0 (900 x 1100 mm) full poster size, or A4 or Letter size
32 % as desired (see web site). Note the large format printers currently
33 % in use at UF's OIR have max width of about 90cm or 3 ft., but the paper
34 % comes in rolls so the length is variable. See below the specifications
35 % for width and height of various formats. Default in the template is
36 % ``Special Format", with 4 columns.
37 %%
38 %%
39 %% Choose your poster size:
40 %% For printing you will later RESIZE your poster by a factor
41 %% 2*sqrt(2) = 2.828 (for A0)
42 %% 2 = 2.00 (for A1)
43 %%
44 %%
45 \def\breite{390mm} % Special Format.
46 \def\hoehe{319.2mm} % Scaled by 2.82 this gives 110cm x 90cm
47 \def\anzspalten{4}
48 %%
49 %%\def\breite{420mm} % A3 LANDSCAPE
50 %%\def\hoehe{297mm}
51 %%\def\anzspalten{4}
52 %%
53 %% \def\breite{297mm} % A3 PORTRAIT
54 %% \def\hoehe{420mm}
55 %% \def\anzspalten{3}
56 %%
57 %% \def\breite{210mm} % A4 PORTRAIT
58 %% \def\hoehe{297mm}
59 %% \def\anzspalten{2}
60 %%
61 %%
62 %% Procedure:
63 %% Generate poster.dvi with latex
64 %% Check with Ghostview
65 %% Make a .ps-file with ``dvips -o poster.ps poster''
66 %% Scale it with poster_resize poster.ps S
67 %% where S is scale factor
68 %% for Special Format->A0 S= 2.828 (= 2^(3/2)))
69 %% for Special Format->A1 S= 2 (= 2^(2/2)))
70 %%
71 %% Sizes (European:)
72 %% A3: 29.73 X 42.04 cm
73 %% A1: 59.5 X 84.1 cm
74 %% A0: 84.1 X 118.9 cm
75 %% N.B. The recommended procedure is ``Special Format x 2.82"
76 %% which gives 90cm x 110cm (not quite A0 dimensions).
77 %%
78 %% --------------------------------------------------------------------------
79 %%
80 %% Load the necessary packages
81 %%
82 \usepackage{palatino}
83 \usepackage[latin1]{inputenc}
84 \usepackage{epsf}
85 \usepackage{graphicx,psfrag,color,pstcol,pst-grad}
86 \usepackage{amsmath,amssymb}
87 \usepackage{latexsym}
88 \usepackage{calc}
89 \usepackage{multicol}
90 \usepackage{wrapfig}
91 %%
92 %% Define the required numbers, lengths and boxes
93 %%
94 \newsavebox{\dummybox}
95 \newsavebox{\spalten}
96 %\input psfig.sty
97
98 %%
99 %%
100 \newlength{\bgwidth}\newlength{\bgheight}
101 \setlength\bgheight{\hoehe} \addtolength\bgheight{-1mm}
102 \setlength\bgwidth{\breite} \addtolength\bgwidth{-1mm}
103
104 \newlength{\kastenwidth}
105
106 %% Set paper format
107 \setlength\paperheight{\hoehe}
108 \setlength\paperwidth{\breite}
109 \special{papersize=\breite,\hoehe}
110
111 \topmargin -1in
112 \marginparsep0mm
113 \marginparwidth0mm
114 \headheight0mm
115 \headsep0mm
116
117
118 %% Minimal Margins to Make Correct Bounding Box
119 \setlength{\oddsidemargin}{-2.44cm}
120 \addtolength{\topmargin}{-3mm}
121 \textwidth\paperwidth
122 \textheight\paperheight
123
124 %%
125 %%
126 \parindent0cm
127 \parskip1.5ex plus0.5ex minus 0.5ex
128 \pagestyle{empty}
129
130
131
132 \definecolor{ndgold}{rgb}{0.87,0.82,0.59}
133 \definecolor{ndgold2}{rgb}{0.96,0.91,0.63}
134 \definecolor{ndblue}{rgb}{0,0.1875, 0.6992}
135 \definecolor{recoilcolor}{rgb}{1,0,0}
136 \definecolor{occolor}{rgb}{0,1,0}
137 \definecolor{pink}{rgb}{0,1,1}
138
139
140
141
142
143 \def\UberStil{\normalfont\sffamily\bfseries\large}
144 \def\UnterStil{\normalfont\sffamily\small}
145 \def\LabelStil{\normalfont\sffamily\tiny}
146 \def\LegStil{\normalfont\sffamily\tiny}
147
148 %%
149 %% Define some commands
150 %%
151 \definecolor{JG}{rgb}{0.1,0.9,0.3}
152
153 \newenvironment{kasten}{%
154 \begin{lrbox}{\dummybox}%
155 \begin{minipage}{0.96\linewidth}}%
156 {\end{minipage}%
157 \end{lrbox}%
158 \raisebox{-\depth}{\psshadowbox[framearc=0.05,framesep=1em]{\usebox{\dummybox}}}\\[0.5em]}
159 \newenvironment{spalte}{%
160 \setlength\kastenwidth{1.2\textwidth}
161 \divide\kastenwidth by \anzspalten
162 \begin{minipage}[t]{\kastenwidth}}{\end{minipage}\hfill}
163
164
165
166
167 \def\op#1{\hat{#1}}
168 \begin{document}
169 \bibliographystyle{plain}
170 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
171 %%% Background %%%
172 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
173 {\newrgbcolor{gradbegin}{0.0 0.01875 0.6992}%
174 \newrgbcolor{gradend}{1 1 1}%{1 1 0.5}%
175 \psframe[fillstyle=gradient,gradend=gradend,%
176 gradbegin=gradbegin,gradmidpoint=0.1](\bgwidth,-\bgheight)}
177 \vfill
178 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
179 %%% Header %%%
180 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
181 \hfill
182 \psshadowbox[fillstyle=solid,fillcolor=ndgold2]{\makebox[0.95\textwidth]{%
183 \hfill
184 \parbox[c]{2cm}{\includegraphics[width=8cm]{ndLogoScience1a.eps}}
185 \hfill
186 \parbox[c]{0.8\linewidth}{%
187 \begin{center}
188 \color{ndblue}
189 \textbf{\Huge {A Mesoscale Model for Phospholipid Simulations}}\\[0.5em]
190 \textsc{\LARGE \underline{Matthew~A.~Meineke}, and J.~Daniel~Gezelter}\\[0.3em]
191 {\large Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA\\
192 {\tt\ mmeineke@nd.edu}
193 }
194 \end{center}}
195 \hfill}}\hfill\mbox{}\\[1.cm]
196 %\vspace*{1.3cm}
197 \begin{lrbox}{\spalten}
198 \parbox[t][\textheight]{1.3\textwidth}{%
199 \vspace*{0.2cm}
200 \hfill
201 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
202 %%% first column %%%
203 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
204 \begin{spalte}
205 \begin{kasten}
206 %
207 %
208 % This begins the first "kasten" or box
209 %
210 %
211 \begin{center}
212 {\large{\color{red} \underline{ABSTRACT} } }
213 \end{center}
214
215 {\color{ndblue}
216
217 A mesoscale model for phospholipids has been developed for molecular
218 dynamics simulations of lipid bilayers. The model makes several
219 simplifications to both the water and the phospholipids to reduce the
220 computational cost of each force evaluation. The water was represented
221 by the soft sticky dipole model of Ichiye \emph{et
222 al}.\cite{liu96:new_model,liu96:monte_carlo,chandra99:ssd_md} The
223 simplifications to the phospholipids included the reduction of atoms
224 in the tail groups to beads representing $\mbox{CH}_{2}$ and
225 $\mbox{CH}_{3}$ unified atoms, and the replacement of the head groups
226 with a single point mass containing a centrally located dipole. The
227 model was then used to simulate micelle and bilayer formation from a
228 configuration of randomly placed phospholipids which was simulated for
229 times in excess of 30 nanoseconds.
230
231 }
232 \end{kasten}
233
234
235 \begin{kasten}
236 \section{{\color{red}\underline{Introduction \& Background}}}
237 \label{sec:intro}
238
239 %% \subsection{{\color{ndblue}Motivation}}
240 \label{sec:motivation}
241
242
243 Simulations of phospholipid bilayers are, by necessity, quite
244 complex. The lipid molecules are large, and contain many
245 atoms. Additionally, the head groups of the lipids are often
246 zwitterions, and the large separation between charges results in a
247 large dipole moment. Adding to the complexity are the number of water
248 molecules needed to properly solvate the lipid bilayer, typically 25
249 water molecules for every lipid molecule. These factors make it
250 difficult to study certain biologically interesting phenomena that
251 have large inherent length or time scale.
252
253 \end{kasten}
254
255 \begin{kasten}
256 \subsection{{\color{ndblue}Ripple Phase}}
257
258 \begin{wrapfigure}{o}{60mm}
259 \centering
260 \includegraphics[width=40mm]{ripple.epsi}
261 \end{wrapfigure}
262
263 \mbox{}
264 \begin{itemize}
265 \item The ripple (~$P_{\beta'}$~) phase lies in the transition from the gel to fluid phase.
266 \item Periodicity of 100 - 200 $\mbox{\AA}$\cite{Cevc87}
267 \item Current simulations have box sizes ranging from 50 - 100 $\mbox{\AA}$ on a side.\cite{saiz02,lindahl00,venable00}
268 \end{itemize}
269
270 \label{sec:ripplePhase}
271
272 \end{kasten}
273
274
275 \begin{kasten}
276 \subsection{{\color{ndblue}Diffusion \& Formation Dynamics}}
277 \begin{itemize}
278
279 \item
280 Drug Diffusion
281 \begin{itemize}
282 \item
283 Some drug molecules may spend appreciable amounts of time in the
284 membrane
285
286 \item
287 Long time scale dynamics are need to observe and characterize their
288 actions
289 \end{itemize}
290
291 \item
292 Bilayer Formation Dynamics
293 \begin{itemize}
294 \item
295 Current lipid simulations indicate\cite{Marrink01}:
296 \begin{itemize}
297 \item Aggregation can happen as quickly as 200 ps
298
299 \item Bilayers can take up to 20 ns to form completely
300 \end{itemize}
301
302 \end{itemize}
303 \end{itemize}
304 \end{kasten}
305
306 \begin{kasten}
307 \subsection{{\color{ndblue}System Simplfications}}
308 \begin{itemize}
309 \item Unified atoms with fixed bond lengths replace groups of atoms.
310 \item Replace charge distributions with dipoles.(Eq. \ref{eq:dipole}
311 vs. Eq. \ref{eq:coloumb})
312 \begin{itemize}
313 \item Relatively short range, $\frac{1}{r^3}$, interactions allow
314 the application of computational simplification algorithms,
315 ie. neighbor lists.
316 \end{itemize}
317 \end{itemize}
318 \begin{equation}
319 V^{\text{dp}}_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},
320 \boldsymbol{\Omega}_{j}) = \frac{1}{4\pi\epsilon_{0}} \biggl[
321 \frac{\boldsymbol{\mu}_{i} \cdot \boldsymbol{\mu}_{j}}{r^{3}_{ij}}
322 -
323 \frac{3(\boldsymbol{\mu}_i \cdot \mathbf{r}_{ij}) %
324 (\boldsymbol{\mu}_j \cdot \mathbf{r}_{ij}) }
325 {r^{5}_{ij}} \biggr]
326 \label{eq:dipole}
327 \end{equation}
328 \begin{equation}
329 V^{\text{ch}}_{ij}(\mathbf{r}_{ij}) = \frac{q_{i}q_{j}}%
330 {4\pi\epsilon_{0} r_{ij}}
331 \label{eq:coloumb}
332 \end{equation}
333 \end{kasten}
334
335
336
337 \end{spalte}
338 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
339 %%% second column %%%
340 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
341 \begin{spalte}
342
343
344 \begin{kasten}
345 \subsection{{\color{ndblue}Reduction in calculations}}
346 Unified water and lipid models and decrease the number of interactions
347 needed between two molecules.
348
349 \begin{center}
350 \includegraphics[width=50mm,angle=-90]{reduction.epsi}
351 \end{center}
352 \end{kasten}
353
354
355 \begin{kasten}
356 \section{{\color{red}\underline{Models}}}
357 \label{sec:model}
358 \subsection{{\color{ndblue}Water Model}}
359 \label{sec:waterModel}
360
361 The waters in the simulation were modeled after the Soft Sticky Dipole
362 (SSD) model of Ichiye.\cite{liu96:new_model} Where:
363
364 \begin{wrapfigure}[10]{o}{60mm}
365 \begin{center}
366 \includegraphics[width=40mm]{ssd.epsi}
367 \end{center}
368 \end{wrapfigure}
369 \mbox{}
370 \begin{itemize}
371 \item $\sigma$ is the Lennard-Jones length parameter.
372 \item $\boldsymbol{\mu}_i$ is the dipole vector of molecule $i$,
373 \item $\mathbf{r}_{ij}$ is the vector between molecules $i$ and $j$
374 \item $\boldsymbol{\Omega}_i$ and $\boldsymbol{\Omega}_j$ are the Euler angles of molecule $i$ or $j$ respectively.
375 \end{itemize}
376
377 It's potential is as follows:
378
379 \begin{equation}
380 V_{s\!s\!d} = V_{L\!J}(r_{i\!j}) + V_{d\!p}(r_{i\!j},\Omega_{i},\Omega_{j})
381 + V_{s\!p}(r_{i\!j},\Omega_{i},\Omega_{j})
382 \end{equation}
383
384
385 \end{kasten}
386
387
388
389
390 \end{spalte}
391 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
392 %%% third column %%%
393 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
394 \begin{spalte}
395
396 \begin{kasten}
397
398 \section{{\color{ndblue}Ima third column holder}}
399
400 hello
401
402 \end{kasten}
403
404
405 \end{spalte}
406 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
407 %%% fourth column %%%
408 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
409 \begin{spalte}
410
411
412
413
414
415 \begin{kasten}
416 \begin{center}
417 {\large{\color{red} \underline{Acknowledgments}}}
418 \end{center}
419
420 The authors would like to acknowledge Charles Vardeman, Christopher
421 Fennell, and Teng lin for their contributions to the simulation
422 engine. MAM would also like to extend a special thank you to Charles
423 Vardeman for his help with the TeX formatting of this
424 poster. Computaion time was provided on the Bunch-of-Boxes (B.o.B.)
425 cluster under NSF grant DMR 00 79647. The authors acknowledge support
426 under NSF grant CHE-0134881.
427
428 \end{kasten}
429
430 \vspace{0.5cm}
431 \begin{kasten}
432 {\small
433 \bibliography{poster}
434 }
435 \end{kasten}
436 \end{spalte}
437 }
438 \end{lrbox}
439 \resizebox*{0.98\textwidth}{!}{%
440 \usebox{\spalten}}\hfill\mbox{}\vfill
441 \end{document}