ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/matt_papers/MWTCC03/poster.tex
Revision: 550
Committed: Fri Jun 6 21:43:40 2003 UTC (22 years, 1 month ago) by mmeineke
Content type: application/x-tex
File size: 12914 byte(s)
Log Message:
about halfway there.

File Contents

# Content
1 %% this is my poster for the Midwest Theoretical Conference
2
3
4 \documentclass[10pt]{scrartcl}
5 %%
6 %
7 % This is a poster template with latex macros and using
8 % the University of Florida Logo. For further information
9 % on making postscript, resizeing, and printing the poster file
10 % please see web site
11 % http://www.phys.ufl.edu/~pjh/posters/poster_howto_UF.html
12 %
13 % N.B. This format is cribbed from one obtained from the University
14 % of Karlsruhe, so some macro names and parameters are in German
15 % Here is a short glosary:
16 % Breite: width
17 % Hoehe: height
18 % Spalte: column
19 % Kasten: box
20 %
21 % All style files necessary are part of standard TeTeX distribution
22 % On the UF unix cluster you should not need to import these files
23 % specially, as they will be automatically located. If you
24 % run on a local PC however, you will need to locate these files.
25 % At UF try /usr/local/TeTeX...
26 %
27 % P. Hirschfeld 2/11/00
28 %
29 % The recommended procedure is to first generate a ``Special Format" size poster
30 % file, which is relatively easy to manipulate and view. It can be
31 % resized later to A0 (900 x 1100 mm) full poster size, or A4 or Letter size
32 % as desired (see web site). Note the large format printers currently
33 % in use at UF's OIR have max width of about 90cm or 3 ft., but the paper
34 % comes in rolls so the length is variable. See below the specifications
35 % for width and height of various formats. Default in the template is
36 % ``Special Format", with 4 columns.
37 %%
38 %%
39 %% Choose your poster size:
40 %% For printing you will later RESIZE your poster by a factor
41 %% 2*sqrt(2) = 2.828 (for A0)
42 %% 2 = 2.00 (for A1)
43 %%
44 %%
45 %%\def\breite{452mm} % Gives a 4.1 foot width
46 \def\breite{390mm} % Special Format.
47 \def\hoehe{319.2mm} % Scaled by 2.82 this gives 110cm x 90cm
48 \def\anzspalten{4}
49 %%
50 %%\def\breite{420mm} % A3 LANDSCAPE
51 %%\def\hoehe{297mm}
52 %%\def\anzspalten{4}
53 %%
54 %% \def\breite{297mm} % A3 PORTRAIT
55 %% \def\hoehe{420mm}
56 %% \def\anzspalten{3}
57 %%
58 %% \def\breite{210mm} % A4 PORTRAIT
59 %% \def\hoehe{297mm}
60 %% \def\anzspalten{2}
61 %%
62 %%
63 %% Procedure:
64 %% Generate poster.dvi with latex
65 %% Check with Ghostview
66 %% Make a .ps-file with ``dvips -o poster.ps poster''
67 %% Scale it with poster_resize poster.ps S
68 %% where S is scale factor
69 %% for Special Format->A0 S= 2.828 (= 2^(3/2)))
70 %% for Special Format->A1 S= 2 (= 2^(2/2)))
71 %%
72 %% Sizes (European:)
73 %% A3: 29.73 X 42.04 cm
74 %% A1: 59.5 X 84.1 cm
75 %% A0: 84.1 X 118.9 cm
76 %% N.B. The recommended procedure is ``Special Format x 2.82"
77 %% which gives 90cm x 110cm (not quite A0 dimensions).
78 %%
79 %% --------------------------------------------------------------------------
80 %%
81 %% Load the necessary packages
82 %%
83 %%\usepackage{berkeley}
84 \usepackage{palatino}
85 \usepackage[latin1]{inputenc}
86 \usepackage{epsf}
87 \usepackage{graphicx,psfrag,color,pstcol,pst-grad}
88 \usepackage{amsmath,amssymb}
89 \usepackage{latexsym}
90 \usepackage{calc}
91 \usepackage{multicol}
92
93 %% My Packages
94 \usepackage{wrapfig}
95
96 %%
97 %% Define the required numbers, lengths and boxes
98 %%
99 \newsavebox{\dummybox}
100 \newsavebox{\spalten}
101 %\input psfig.sty
102
103 %%
104 %%
105 \newlength{\bgwidth}\newlength{\bgheight}
106 \setlength\bgheight{\hoehe} \addtolength\bgheight{-1mm}
107 \setlength\bgwidth{\breite} \addtolength\bgwidth{-1mm}
108
109 \newlength{\kastenwidth}
110
111 %% Set paper format
112 \setlength\paperheight{\hoehe}
113 \setlength\paperwidth{\breite}
114 \special{papersize=\breite,\hoehe}
115
116 \topmargin -1in
117 \marginparsep0mm
118 \marginparwidth0mm
119 \headheight0mm
120 \headsep0mm
121
122
123 %% Minimal Margins to Make Correct Bounding Box
124 \setlength{\oddsidemargin}{-2.44cm}
125 \addtolength{\topmargin}{-3mm}
126 \textwidth\paperwidth
127 \textheight\paperheight
128
129 %%
130 %%
131 \parindent0cm
132 \parskip1.5ex plus0.5ex minus 0.5ex
133 \pagestyle{empty}
134
135
136
137 \definecolor{ndgold}{rgb}{0.87,0.82,0.59}
138 \definecolor{ndgold2}{rgb}{0.96,0.91,0.63}
139 \definecolor{ndblue}{rgb}{0,0.1875, 0.6992}
140 \definecolor{recoilcolor}{rgb}{1,0,0}
141 \definecolor{occolor}{rgb}{0,1,0}
142 \definecolor{pink}{rgb}{0,1,1}
143
144
145
146
147
148 \def\UberStil{\normalfont\sffamily\bfseries\large}
149 \def\UnterStil{\normalfont\sffamily\small}
150 \def\LabelStil{\normalfont\sffamily\tiny}
151 \def\LegStil{\normalfont\sffamily\tiny}
152
153 %%
154 %% Define some commands
155 %%
156 \definecolor{JG}{rgb}{0.1,0.9,0.3}
157
158 \newenvironment{kasten}{%
159 \begin{lrbox}{\dummybox}%
160 \begin{minipage}{0.96\linewidth}}%
161 {\end{minipage}%
162 \end{lrbox}%
163 \raisebox{-\depth}{\psshadowbox[framearc=0.05,framesep=1em]{\usebox{\dummybox}}}\\[0.5em]}
164 \newenvironment{spalte}{%
165 \setlength\kastenwidth{1.2\textwidth}
166 \divide\kastenwidth by \anzspalten
167 \begin{minipage}[t]{\kastenwidth}}{\end{minipage}\hfill}
168
169 %%\renewcommand{\emph}[1]{{\color{red}\textbf{#1}}}
170
171
172 \def\op#1{\hat{#1}}
173 \begin{document}
174 \bibliographystyle{plain}
175 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
176 %%% Background %%%
177 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
178
179 %%{\newrgbcolor{gradbegin}{0.87 0.82 0.59}%
180 {\newrgbcolor{gradbegin}{0.0 0.1875 0.6992}%
181 \newrgbcolor{gradend}{1 1 1}%{1 1 0.5}%
182 \psframe[fillstyle=gradient,gradend=gradend,%
183 gradbegin=gradbegin,gradmidpoint=0.1](\bgwidth,-\bgheight)}
184 \vfill
185 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
186 %%% Header %%%
187 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
188 \hfill
189 \psshadowbox[fillstyle=solid,fillcolor=ndgold2]{\makebox[0.95\textwidth]{%
190 \hfill
191 \parbox[c]{2cm}{\includegraphics[width=8cm]{ndLogoScience1a.eps}}
192 \hfill
193 \parbox[c]{0.8\linewidth}{%
194 \begin{center}
195 \color{ndblue}
196 \textbf{\Huge {A Mesoscale Model for Phospholipid Simulations}}\\[0.5em]
197 \textsc{\LARGE \underline{Matthew~A.~Meineke}, and J.~Daniel~Gezelter}\\[0.3em]
198 {\large Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA\\
199 {\tt\ mmeineke@nd.edu}
200 }
201 \end{center}}
202 \hfill}}\hfill\mbox{}\\[1.cm]
203 %\vspace*{1.3cm}
204 \begin{lrbox}{\spalten}
205 \parbox[t][\textheight]{1.3\textwidth}{%
206 \vspace*{0.2cm}
207 \hfill
208 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
209 %%% first column %%%
210 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
211
212
213 \begin{spalte}
214 \begin{kasten}
215 %
216 %
217 % This begins the first "kasten" or box
218 %
219 %
220 \begin{center}
221 {\large{\color{red} \underline{ABSTRACT} } }
222 \end{center}
223
224 {\color{ndblue}
225
226 A mesoscale model for phospholipids has been developed for molecular
227 dynamics simulations of lipid bilayers. The model makes several
228 simplifications to both the water and the phospholipids to reduce the
229 computational cost of each force evaluation. The water was represented
230 by the soft sticky dipole model of Ichiye \emph{et
231 al}.\cite{liu96:new_model,liu96:monte_carlo,chandra99:ssd_md} The
232 simplifications to the phospholipids included the reduction of atoms
233 in the tail groups to beads representing $\mbox{CH}_{2}$ and
234 $\mbox{CH}_{3}$ unified atoms, and the replacement of the head groups
235 with a single point mass containing a centrally located dipole. The
236 model was then used to simulate micelle and bilayer formation from a
237 configuration of randomly placed phospholipids which was simulated for
238 times in excess of 30 nanoseconds.
239
240 }
241 \end{kasten}
242
243
244 \begin{kasten}
245 \section{{\color{red}\underline{Introduction \& Background}}}
246 \label{sec:intro}
247
248 \subsection{{\color{ndblue}Motivation}}
249 \label{sec:motivation}
250
251
252 Simulations of phospholipid bilayers are, by necessity, quite
253 complex. The lipid molecules are large, and contain many
254 atoms. Additionally, the head groups of the lipids are often
255 zwitterions, and the large separation between charges results in a
256 large dipole moment. Adding to the complexity are the number of water
257 molecules needed to properly solvate the lipid bilayer, typically 25
258 water molecules for every lipid molecule. These factors make it
259 difficult to study certain biologically interesting phenomena that
260 have large inherent length or time scale.
261
262 \end{kasten}
263
264 \begin{kasten}
265 \subsection{{\color{ndblue}Ripple Phase}}
266
267 \begin{wrapfigure}{o}{60mm}
268 \centering
269 \includegraphics[width=40mm]{ripple.epsi}
270 \end{wrapfigure}
271
272 \mbox{}
273 \begin{itemize}
274 \item The ripple (~$P_{\beta'}$~) phase lies in the transition from the gel to fluid phase.
275 \item Periodicity of 100 - 200 $\mbox{\AA}$\cite{Cevc87}
276 \item Current simulations have box sizes ranging from 50 - 100 $\mbox{\AA}$ on a side.\cite{saiz02,lindahl00,venable00}
277 \end{itemize}
278
279 \label{sec:ripplePhase}
280
281 \end{kasten}
282
283
284 \begin{kasten}
285 \subsection{{\color{ndblue}Diffusion \& Formation Dynamics}}
286 \begin{itemize}
287
288 \item
289 Drug Diffusion
290 \begin{itemize}
291 \item
292 Some drug molecules may spend appreciable amounts of time in the
293 membrane
294
295 \item
296 Long time scale dynamics are need to observe and characterize their
297 actions
298 \end{itemize}
299
300 \item
301 Bilayer Formation Dynamics
302 \begin{itemize}
303 \item
304 Current lipid simulations indicate\cite{Marrink01}:
305 \begin{itemize}
306 \item Aggregation can happen as quickly as 200 ps
307
308 \item Bilayers can take up to 20 ns to form completely
309 \end{itemize}
310
311 \end{itemize}
312 \end{itemize}
313 \end{kasten}
314
315 \begin{kasten}
316 \subsection{{\color{ndblue}System Simplfications}}
317 \begin{itemize}
318 \item Unified atoms with fixed bond lengths replace groups of atoms.
319 \item Replace charge distributions with dipoles.(Eq. \ref{eq:dipole}
320 vs. Eq. \ref{eq:coloumb})
321 \begin{itemize}
322 \item Relatively short range, $\frac{1}{r^3}$, interactions allow
323 the application of computational simplification algorithms,
324 ie. neighbor lists.
325 \end{itemize}
326 \end{itemize}
327 \begin{equation}
328 V^{\text{dp}}_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},
329 \boldsymbol{\Omega}_{j}) = \frac{1}{4\pi\epsilon_{0}} \biggl[
330 \frac{\boldsymbol{\mu}_{i} \cdot \boldsymbol{\mu}_{j}}{r^{3}_{ij}}
331 -
332 \frac{3(\boldsymbol{\mu}_i \cdot \mathbf{r}_{ij}) %
333 (\boldsymbol{\mu}_j \cdot \mathbf{r}_{ij}) }
334 {r^{5}_{ij}} \biggr]
335 \label{eq:dipole}
336 \end{equation}
337 \begin{equation}
338 V^{\text{ch}}_{ij}(\mathbf{r}_{ij}) = \frac{q_{i}q_{j}}%
339 {4\pi\epsilon_{0} r_{ij}}
340 \label{eq:coloumb}
341 \end{equation}
342 \end{kasten}
343
344
345
346 \end{spalte}
347 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
348 %%% second column %%%
349 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
350 \begin{spalte}
351
352
353 \begin{kasten}
354 \subsection{{\color{ndblue}Reduction in calculations}}
355 Unified water and lipid models and decrease the number of interactions
356 needed between two molecules.
357
358 \begin{center}
359 \includegraphics[width=50mm,angle=-90]{reduction.epsi}
360 \end{center}
361 \end{kasten}
362
363
364 \begin{kasten}
365 \section{{\color{red}\underline{Models}}}
366 \label{sec:model}
367 \subsection{{\color{ndblue}Water Model}}
368 \label{sec:waterModel}
369
370 The waters in the simulation were modeled after the Soft Sticky Dipole
371 (SSD) model of Ichiye.\cite{liu96:new_model} Where:
372
373 \begin{wrapfigure}[10]{o}{60mm}
374 \begin{center}
375 \includegraphics[width=40mm]{ssd.epsi}
376 \end{center}
377 \end{wrapfigure}
378 \mbox{}
379 \begin{itemize}
380 \item $\sigma$ is the Lennard-Jones length parameter.
381 \item $\boldsymbol{\mu}_i$ is the dipole vector of molecule $i$,
382 \item $\mathbf{r}_{ij}$ is the vector between molecules $i$ and $j$
383 \item $\boldsymbol{\Omega}_i$ and $\boldsymbol{\Omega}_j$ are the Euler angles of molecule $i$ or $j$ respectively.
384 \end{itemize}
385
386 It's potential is as follows:
387
388 \begin{equation}
389 V_{s\!s\!d} = V_{L\!J}(r_{i\!j}) + V_{d\!p}(r_{i\!j},\Omega_{i},\Omega_{j})
390 + V_{s\!p}(r_{i\!j},\Omega_{i},\Omega_{j})
391 \end{equation}
392
393
394 \end{kasten}
395
396
397
398
399 \end{spalte}
400 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
401 %%% third column %%%
402 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
403 \begin{spalte}
404
405 \begin{kasten}
406
407 \section{{\color{ndblue}Ima third column holder}}
408
409 hello
410
411 \end{kasten}
412
413
414 \end{spalte}
415 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
416 %%% fourth column %%%
417 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
418 \begin{spalte}
419
420
421
422
423
424 \begin{kasten}
425 \begin{center}
426 {\large{\color{red} \underline{Acknowledgments}}}
427 \end{center}
428
429 The authors would like to acknowledge Charles Vardeman, Christopher
430 Fennell, and Teng lin for their contributions to the simulation
431 engine. MAM would also like to extend a special thank you to Charles
432 Vardeman for his help with the TeX formatting of this
433 poster. Computaion time was provided on the Bunch-of-Boxes (B.o.B.)
434 cluster under NSF grant DMR 00 79647. The authors acknowledge support
435 under NSF grant CHE-0134881.
436
437 \end{kasten}
438
439 \vspace{0.5cm}
440 \begin{kasten}
441 {\small
442 \bibliography{poster}
443 }
444 \end{kasten}
445 \end{spalte}
446 }
447 \end{lrbox}
448 \resizebox*{0.98\textwidth}{!}{%
449 \usebox{\spalten}}\hfill\mbox{}\vfill
450 \end{document}