ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/matt_papers/MWTCC03/poster.tex
Revision: 553
Committed: Tue Jun 10 16:04:33 2003 UTC (22 years, 1 month ago) by mmeineke
Content type: application/x-tex
File size: 18792 byte(s)
Log Message:
mostly final version

File Contents

# Content
1 %% this is my poster for the Midwest Theoretical Conference
2
3
4 \documentclass[10pt]{scrartcl}
5 %%
6 %
7 % This is a poster template with latex macros and using
8 % the University of Florida Logo. For further information
9 % on making postscript, resizeing, and printing the poster file
10 % please see web site
11 % http://www.phys.ufl.edu/~pjh/posters/poster_howto_UF.html
12 %
13 % N.B. This format is cribbed from one obtained from the University
14 % of Karlsruhe, so some macro names and parameters are in German
15 % Here is a short glosary:
16 % Breite: width
17 % Hoehe: height
18 % Spalte: column
19 % Kasten: box
20 %
21 % All style files necessary are part of standard TeTeX distribution
22 % On the UF unix cluster you should not need to import these files
23 % specially, as they will be automatically located. If you
24 % run on a local PC however, you will need to locate these files.
25 % At UF try /usr/local/TeTeX...
26 %
27 % P. Hirschfeld 2/11/00
28 %
29 % The recommended procedure is to first generate a ``Special Format" size poster
30 % file, which is relatively easy to manipulate and view. It can be
31 % resized later to A0 (900 x 1100 mm) full poster size, or A4 or Letter size
32 % as desired (see web site). Note the large format printers currently
33 % in use at UF's OIR have max width of about 90cm or 3 ft., but the paper
34 % comes in rolls so the length is variable. See below the specifications
35 % for width and height of various formats. Default in the template is
36 % ``Special Format", with 4 columns.
37 %%
38 %%
39 %% Choose your poster size:
40 %% For printing you will later RESIZE your poster by a factor
41 %% 2*sqrt(2) = 2.828 (for A0)
42 %% 2 = 2.00 (for A1)
43 %%
44 %%
45 \def\breite{390mm} % Special Format.
46 \def\hoehe{319.2mm} % Scaled by 2.82 this gives 110cm x 90cm
47 \def\anzspalten{4}
48 %%
49 %%\def\breite{420mm} % A3 LANDSCAPE
50 %%\def\hoehe{297mm}
51 %%\def\anzspalten{4}
52 %%
53 %% \def\breite{297mm} % A3 PORTRAIT
54 %% \def\hoehe{420mm}
55 %% \def\anzspalten{3}
56 %%
57 %% \def\breite{210mm} % A4 PORTRAIT
58 %% \def\hoehe{297mm}
59 %% \def\anzspalten{2}
60 %%
61 %%
62 %% Procedure:
63 %% Generate poster.dvi with latex
64 %% Check with Ghostview
65 %% Make a .ps-file with ``dvips -o poster.ps poster''
66 %% Scale it with poster_resize poster.ps S
67 %% where S is scale factor
68 %% for Special Format->A0 S= 2.828 (= 2^(3/2)))
69 %% for Special Format->A1 S= 2 (= 2^(2/2)))
70 %%
71 %% Sizes (European:)
72 %% A3: 29.73 X 42.04 cm
73 %% A1: 59.5 X 84.1 cm
74 %% A0: 84.1 X 118.9 cm
75 %% N.B. The recommended procedure is ``Special Format x 2.82"
76 %% which gives 90cm x 110cm (not quite A0 dimensions).
77 %%
78 %% --------------------------------------------------------------------------
79 %%
80 %% Load the necessary packages
81 %%
82 \usepackage{palatino}
83 \usepackage[latin1]{inputenc}
84 \usepackage{epsf}
85 \usepackage{graphicx,psfrag,color,pstcol,pst-grad}
86 \usepackage{amsmath,amssymb}
87 \usepackage{latexsym}
88 \usepackage{calc}
89 \usepackage{multicol}
90 \usepackage{wrapfig}
91 %%
92 %% Define the required numbers, lengths and boxes
93 %%
94 \newsavebox{\dummybox}
95 \newsavebox{\spalten}
96 %\input psfig.sty
97
98 %%
99 %%
100 \newlength{\bgwidth}\newlength{\bgheight}
101 \setlength\bgheight{\hoehe} \addtolength\bgheight{-1mm}
102 \setlength\bgwidth{\breite} \addtolength\bgwidth{-1mm}
103
104 \newlength{\kastenwidth}
105
106 %% Set paper format
107 \setlength\paperheight{\hoehe}
108 \setlength\paperwidth{\breite}
109 \special{papersize=\breite,\hoehe}
110
111 \topmargin -1in
112 \marginparsep0mm
113 \marginparwidth0mm
114 \headheight0mm
115 \headsep0mm
116
117
118 %% Minimal Margins to Make Correct Bounding Box
119 \setlength{\oddsidemargin}{-2.44cm}
120 \addtolength{\topmargin}{-3mm}
121 \textwidth\paperwidth
122 \textheight\paperheight
123
124 %%
125 %%
126 \parindent0cm
127 \parskip1.5ex plus0.5ex minus 0.5ex
128 \pagestyle{empty}
129
130
131
132 \definecolor{ndgold}{rgb}{0.87,0.82,0.59}
133 \definecolor{ndgold2}{rgb}{0.96,0.91,0.63}
134 \definecolor{ndblue}{rgb}{0,0.1875, 0.6992}
135 \definecolor{recoilcolor}{rgb}{1,0,0}
136 \definecolor{occolor}{rgb}{0,1,0}
137 \definecolor{pink}{rgb}{0,1,1}
138
139
140
141
142
143 \def\UberStil{\normalfont\sffamily\bfseries\large}
144 \def\UnterStil{\normalfont\sffamily\small}
145 \def\LabelStil{\normalfont\sffamily\tiny}
146 \def\LegStil{\normalfont\sffamily\tiny}
147
148 %%
149 %% Define some commands
150 %%
151 \definecolor{JG}{rgb}{0.1,0.9,0.3}
152
153 \newenvironment{kasten}{%
154 \begin{lrbox}{\dummybox}%
155 \begin{minipage}{0.96\linewidth}}%
156 {\end{minipage}%
157 \end{lrbox}%
158 \raisebox{-\depth}{\psshadowbox[framearc=0.05,framesep=1em]{\usebox{\dummybox}}}\\[0.5em]}
159 \newenvironment{spalte}{%
160 \setlength\kastenwidth{1.2\textwidth}
161 \divide\kastenwidth by \anzspalten
162 \begin{minipage}[t]{\kastenwidth}}{\end{minipage}\hfill}
163
164
165
166
167 \def\op#1{\hat{#1}}
168 \begin{document}
169 \bibliographystyle{unsrt}
170 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
171 %%% Background %%%
172 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
173 {\newrgbcolor{gradbegin}{0.0 0.01875 0.6992}%
174 \newrgbcolor{gradend}{1 1 1}%{1 1 0.5}%
175 \psframe[fillstyle=gradient,gradend=gradend,%
176 gradbegin=gradbegin,gradmidpoint=0.1](\bgwidth,-\bgheight)}
177 \vfill
178 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
179 %%% Header %%%
180 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
181 \hfill
182 \psshadowbox[fillstyle=solid,fillcolor=ndgold2]{\makebox[0.95\textwidth]{%
183 \hfill
184 \parbox[c]{2cm}{\includegraphics[width=8cm]{ndLogoScience1a.eps}}
185 \hfill
186 \parbox[c]{0.8\linewidth}{%
187 \begin{center}
188 \color{ndblue}
189 \textbf{\Huge {A Mesoscale Model for Phospholipid Simulations}}\\[0.5em]
190 \textsc{\LARGE \underline{Matthew~A.~Meineke}, and J.~Daniel~Gezelter}\\[0.3em]
191 {\large Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA\\
192 {\tt\ mmeineke@nd.edu}
193 }
194 \end{center}}
195 \hfill}}\hfill\mbox{}\\[1.cm]
196 %\vspace*{1.3cm}
197 \begin{lrbox}{\spalten}
198 \parbox[t][\textheight]{1.3\textwidth}{%
199 \vspace*{0.2cm}
200 \hfill
201 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
202 %%% first column %%%
203 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
204 \begin{spalte}
205 \begin{kasten}
206 %
207 %
208 % This begins the first "kasten" or box
209 %
210 %
211 \begin{center}
212 {\large{\color{red} \underline{ABSTRACT} } }
213 \end{center}
214
215 {\color{ndblue}
216
217 A mesoscale model for phospholipids has been developed for molecular
218 dynamics simulations of phospholipid phase transitions. The model makes several
219 simplifications to both the water and the phospholipids to reduce the
220 computational cost of each force evaluation. The water was represented
221 by the soft sticky dipole model of Ichiye \emph{et
222 al}.\cite{liu96:new_model,liu96:monte_carlo,chandra99:ssd_md} The
223 simplifications to the phospholipids included the reduction of atoms
224 in the tail groups to beads representing $\mbox{CH}_{2}$ and
225 $\mbox{CH}_{3}$ unified atoms, and the replacement of the head groups
226 with a single point mass containing a centrally located dipole. The
227 model was then used to simulate micelle formation from a configuration
228 of randomly placed phospholipids which was simulated for times in
229 excess of 20 nanoseconds.
230
231 }
232 \end{kasten}
233
234
235 \begin{kasten}
236 \section{{\color{red}\underline{Introduction \& Background}}}
237 \label{sec:intro}
238
239 %% \subsection{{\color{ndblue}Motivation}}
240 \label{sec:motivation}
241
242
243 Simulations of phospholipid phases are, by necessity, quite
244 complex. The lipid molecules are large, and contain many
245 atoms. Additionally, the head groups of the lipids are often
246 zwitterions, and the large separation between charges results in a
247 large dipole moment. Adding to the complexity are the number of water
248 molecules needed to properly solvate the lipid bilayer, typically 25
249 water molecules for every lipid molecule. These factors make it
250 difficult to study certain biologically interesting phenomena that
251 have large inherent length or time scale.
252
253 \end{kasten}
254
255 \begin{kasten}
256 \subsection{{\color{ndblue}Ripple Phase}}
257
258 \begin{wrapfigure}{o}{60mm}
259 \centering
260 \includegraphics[width=40mm]{ripple.epsi}
261 \end{wrapfigure}
262
263 \mbox{}
264 \begin{itemize}
265 \item The ripple (~$P_{\beta'}$~) phase lies in the transition from the gel to fluid phase.
266 \item Periodicity of 100 - 200 $\mbox{\AA}$\cite{Cevc87}
267 \item Current simulations have box sizes ranging from 50 - 100 $\mbox{\AA}$ on a side.\cite{saiz02,lindahl00,venable00}
268 \end{itemize}
269
270 \label{sec:ripplePhase}
271
272 \end{kasten}
273
274
275 \begin{kasten}
276 \subsection{{\color{ndblue}Diffusion \& Formation Dynamics}}
277 \begin{itemize}
278
279 \item
280 Drug Diffusion
281 \begin{itemize}
282 \item
283 Some drug molecules may spend appreciable amounts of time in the
284 membrane
285
286 \item
287 Long time scale dynamics are need to observe and characterize their
288 actions
289 \end{itemize}
290
291 \item
292 Bilayer Formation Dynamics
293 \begin{itemize}
294 \item
295 Current lipid simulations indicate\cite{Marrink01}:
296 \begin{itemize}
297 \item Aggregation can happen as quickly as 200 ps
298
299 \item Bilayers can take up to 20 ns to form completely
300 \end{itemize}
301
302 \end{itemize}
303 \end{itemize}
304 \end{kasten}
305
306 \begin{kasten}
307 \subsection{{\color{ndblue}Our Simplifications}}
308 \begin{itemize}
309 \item Unified atoms with fixed bond lengths replace groups of atoms.
310 \item Charge distributions are replaced with dipoles.
311 \begin{itemize}
312 \item Relatively short range, $\frac{1}{r^3}$, interactions allow
313 the application of neighbor lists.
314 \end{itemize}
315 \end{itemize}
316 \begin{equation}
317 V^{\text{dp}}_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},
318 \boldsymbol{\Omega}_{j}) = \frac{1}{4\pi\epsilon_{0}} \biggl[
319 \frac{\boldsymbol{\mu}_{i} \cdot \boldsymbol{\mu}_{j}}{r^{3}_{ij}}
320 -
321 \frac{3(\boldsymbol{\mu}_i \cdot \mathbf{r}_{ij}) %
322 (\boldsymbol{\mu}_j \cdot \mathbf{r}_{ij}) }
323 {r^{5}_{ij}} \biggr]
324 \label{eq:dipole}
325 \end{equation}
326 \end{kasten}
327
328
329
330 \end{spalte}
331 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
332 %%% second column %%%
333 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
334 \begin{spalte}
335
336
337 \begin{kasten}
338 \subsection{{\color{ndblue}Reduction in calculations}}
339 Unified water and lipid models and decrease the number of interactions
340 needed between two molecules.
341
342 \begin{center}
343 \includegraphics[width=50mm,angle=-90]{reduction.epsi}
344 \end{center}
345 \end{kasten}
346
347
348 \begin{kasten}
349 \section{{\color{red}\underline{Models}}}
350 \label{sec:model}
351 \subsection{{\color{ndblue}The Water Model}}
352 \label{sec:waterModel}
353
354 The waters in the simulation were modeled after the Soft Sticky Dipole
355 (SSD) model of Ichiye.\cite{liu96:new_model} Where:
356
357 \begin{wrapfigure}[10]{o}{60mm}
358 \begin{center}
359 \includegraphics[width=40mm]{ssd.epsi}
360 \end{center}
361 \end{wrapfigure}
362 \mbox{}
363 \begin{itemize}
364 \item $\sigma$ is the Lennard-Jones length parameter
365 \item $\boldsymbol{\mu}_i$ is the dipole vector of molecule $i$
366 \item $\mathbf{r}_{ij}$ is the vector between molecules $i$ and $j$
367 \item $\boldsymbol{\Omega}_i$ and $\boldsymbol{\Omega}_j$ are the Euler angles of molecule $i$ or $j$ respectively
368 \end{itemize}
369
370 It's potential is as follows:
371 \begin{equation}
372 V_{s\!s\!d} = V_{L\!J}(r_{i\!j}) + V_{d\!p}(r_{i\!j},\Omega_{i},\Omega_{j})
373 + V_{s\!p}(r_{i\!j},\Omega_{i},\Omega_{j})
374 \label{eq:ssdPot}
375 \end{equation}
376 Where $V_{d\!p}(r_{i\!j})$ is given in Eq.~\ref{eq:dipole}, and $V_{L\!J}(r_{i\!j})$ is the Lennard-Jones potential.
377 \end{kasten}
378
379 \begin{kasten}
380 \subsection{{\color{ndblue}Soft Sticky Potential}}
381 \label{sec:SSeq}
382
383 Hydrogen bonding in the SSD model is described by the
384 $V_{\text{sp}}$ term in Eq.~\ref{eq:ssdPot}. Its form is as follows:
385 \begin{equation}
386 V_{\text{sp}}(\mathbf{r}_{i\!j},\boldsymbol{\Omega}_{i},
387 \boldsymbol{\Omega}_{j}) =
388 v^{\circ}[s(r_{ij})w_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},
389 \boldsymbol{\Omega}_{j})
390 +
391 s'(r_{ij})w^{x}_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},
392 \boldsymbol{\Omega}_{j})]
393 \label{eq:spPot}
394 \end{equation}
395 Where $v^\circ$ scales the strength of the interaction.
396 $w_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})$
397 and
398 $w^{x}_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})$
399 are responsible for the tetrahedral potential and a correction to the
400 tetrahedral potential respectively. They are,
401 \begin{equation}
402 w_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j}) =
403 \sin\theta_{ij} \sin 2\theta_{ij} \cos 2\phi_{ij}
404 + \sin \theta_{ji} \sin 2\theta_{ji} \cos 2\phi_{ji}
405 \label{eq:spPot2}
406 \end{equation}
407 and
408 \begin{equation}
409 \begin{split}
410 w^{x}_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j}) =
411 &(\cos\theta_{ij}-0.6)^2(\cos\theta_{ij} + 0.8)^2 \\
412 &+ (\cos\theta_{ji}-0.6)^2(\cos\theta_{ji} + 0.8)^2 - 2w^{\circ}
413 \end{split}
414 \label{eq:spCorrection}
415 \end{equation}
416 The angles $\theta_{ij}$ and $\phi_{ij}$ are defined by the spherical
417 coordinates of the position of molecule $j$ in the reference frame
418 fixed on molecule $i$ with the z-axis aligned with the dipole moment.
419 The correction
420 $w^{x}_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})$
421 is needed because
422 $w_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})$
423 vanishes when $\theta_{ij}$ is $0^\circ$ or $180^\circ$. Finally, the
424 potential is scaled by the switching function $s(r_{ij})$,
425 which scales smoothly from 0 to 1.
426 \begin{equation}
427 s(r_{ij}) =
428 \begin{cases}
429 1& \text{if $r_{ij} < r_{L}$}, \\
430 \frac{(r_{U} - r_{ij})^2 (r_{U} + 2r_{ij}
431 - 3r_{L})}{(r_{U}-r_{L})^3}&
432 \text{if $r_{L} \leq r_{ij} \leq r_{U}$},\\
433 0& \text{if $r_{ij} \geq r_{U}$}.
434 \end{cases}
435 \label{eq:spCutoff}
436 \end{equation}
437
438 \end{kasten}
439
440
441 \end{spalte}
442 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
443 %%% third column %%%
444 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
445 \begin{spalte}
446
447 \begin{kasten}
448 \subsection{{\color{ndblue}Hydrogen Bonding in SSD}}
449 \label{sec:hbonding}
450
451 The SSD model's $V_{s\!p}(r_{i\!j},\Omega_{i},\Omega_{j})$
452 recreates the hydrogen bonding network of water.
453 \begin{center}
454 \begin{minipage}{100mm}
455 \begin{minipage}[t]{48mm}
456 \begin{center}
457 \includegraphics[width=48mm]{iced_final.eps}\\
458 SSD Relaxed on a diamond lattice
459 \end{center}
460 \end{minipage}
461 \hspace{4mm}%
462 \begin{minipage}[t]{48mm}
463 \begin{center}
464 \includegraphics[width=48mm]{dipoled_final.eps}\\
465 Stockmayer Spheres relaxed on a diamond lattice
466 \end{center}
467 \end{minipage}
468 \end{minipage}
469
470 \end{center}
471
472
473 \end{kasten}
474
475
476 \begin{kasten}
477
478 \subsection{{\color{ndblue}The Lipid Model}}
479 \label{sec:lipidModel}
480
481 \begin{center}
482 \includegraphics[width=25mm,angle=-90]{lipidModel.epsi}
483 \end{center}
484
485 \begin{itemize}
486 \item PC \& PE head groups are replaced by a Lennard-Jones sphere containing a dipole at its center
487 \item Atoms in the tail chains modeled as unified groups of atoms
488 \item Tail group interaction parameters based on those of TraPPE\cite{Siepmann1998}
489 \end{itemize}
490
491 The total potential is given by:
492 \begin{equation}
493 V_{\text{lipid}} =
494 \sum_{i}V_{i}^{\text{internal}}
495 + \sum_i \sum_{j>i} \sum_{\text{$\alpha$ in $i$}}
496 \sum_{\text{$\beta$ in $j$}}
497 V_{\text{LJ}}(r_{\alpha_{i}\beta_{j}})
498 +\sum_i\sum_{j>i}V_{\text{dp}}(r_{1_i,1_j},\Omega_{1_i},\Omega_{1_j})
499 \end{equation}
500 Where
501 \begin{equation}
502 V_{i}^{\text{internal}} =
503 \sum_{\text{bends}}V_{\text{bend}}(\theta_{\alpha\beta\gamma})
504 + \sum_{\text{torsions}}V_{\text{tors.}}(\phi_{\alpha\beta\gamma\zeta})
505 + \sum_{\alpha} \sum_{\beta>\alpha}V_{\text{LJ}}(r_{\alpha \beta})
506 \end{equation}
507 The bend and torsion potentials were of the form:
508 \begin{equation}
509 V_{\text{bend}}(\theta_{\alpha\beta\gamma})
510 = k_{\theta}\frac{(\theta_{\alpha\beta\gamma} - \theta_0)^2}{2}
511 \label{eq:bendPot}
512 \end{equation}
513 \begin{equation}
514 V_{\text{tors.}}(\phi_{\alpha\beta\gamma\zeta})
515 = c_1 [1+\cos\phi_{\alpha\beta\gamma\zeta}]
516 + c_2 [1 - \cos(2\phi_{\alpha\beta\gamma\zeta})]
517 + c_3 [1 + \cos(3\phi_{\alpha\beta\gamma\zeta})]
518 \label{eq:torsPot}
519 \end{equation}
520
521
522 \end{kasten}
523
524 \begin{kasten}
525
526 \section{{\color{red}\underline{Initial Results}}}
527 \label{sec:results}
528 \subsection{{\color{ndblue}Simulation Snapshots:50 lipids in a sea of 1384 waters}}
529 \label{sec:r50snapshots}
530
531 \begin{center}
532 \includegraphics[width=105mm]{r50-montage.eps}
533 \end{center}
534
535 \end{kasten}
536
537
538 \end{spalte}
539 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
540 %%% fourth column %%%
541 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
542 \begin{spalte}
543
544 \begin{kasten}
545
546 \subsection{{\color{ndblue}Position and Angular Correlations}}
547 \label{sec:r50corr}
548
549 \begin{center}
550 \begin{minipage}{110mm}
551 \begin{minipage}[t]{55mm}
552 \begin{center}
553 \includegraphics[width=36mm,angle=-90]{r50-HEAD-HEAD.epsi}\\
554 The self correlation of the head groups
555 \end{center}
556 \end{minipage}
557 \begin{minipage}[t]{55mm}
558 \begin{center}
559 \includegraphics[width=36mm,angle=-90]{r50-CH2-CH2.epsi}\\
560 The self correlation of the tail beads.
561 \end{center}
562 \end{minipage}
563 \end{minipage}
564 \end{center}
565 \begin{equation}
566 g(r) = \frac{V}{N_{\text{pairs}}}\langle \sum_{i} \sum_{j > i}
567 \delta(|\mathbf{r} - \mathbf{r}_{ij}|) \rangle
568 \label{eq:gofr}
569 \end{equation}
570 \begin{equation}
571 g_{\gamma}(r) = \langle \sum_i \sum_{j>i}
572 (\cos \gamma_{ij}) \delta(| \mathbf{r} - \mathbf{r}_{ij}|) \rangle
573 \label{eq:gammaofr}
574 \end{equation}
575
576 \end{kasten}
577
578
579 \begin{kasten}
580
581 \subsection{{\color{red}\underline{Discussion}}}
582 \label{sec:discussion}
583
584 The initial results show much promise for the model. The
585 system of 50 lipids was able to form micelles quickly, however
586 bilayer formation was not seen on the time scale of the
587 current simulation. Current simulations are exploring the
588 parameter space of the model when the tail beads are larger than
589 the head group. This should help to drive the system toward a
590 bilayer rather than a micelle. Work is also being done on the
591 simulation engine to allow for the box size of the system to
592 be adjustable in all three dimensions to allow for constant
593 pressure.
594
595 \end{kasten}
596
597
598 \begin{kasten}
599 \begin{center}
600 {\large{\color{red} \underline{Acknowledgments}}}
601 \end{center}
602
603 The authors would like to acknowledge Charles Vardeman, Christopher
604 Fennell, and Teng lin for their contributions to the simulation
605 engine. MAM would also like to extend a special thank you to Charles
606 Vardeman for his help with the \TeX formatting of this
607 poster. Computation time was provided on the Notre Dame Bunch-of-Boxes (B.o.B.)
608 cluster under NSF grant DMR 00 79647. The authors acknowledge support
609 under NSF grant CHE-0134881.
610
611 \end{kasten}
612
613 \vspace{0.5cm}
614 \begin{kasten}
615 {\small
616 \bibliography{poster}
617 }
618 \end{kasten}
619 \end{spalte}
620 }
621 \end{lrbox}
622 \resizebox*{0.98\textwidth}{!}{%
623 \usebox{\spalten}}\hfill\mbox{}\vfill
624 \end{document}