| 1 |
mmeineke |
546 |
%% this is my poster for the Midwest Theoretical Conference |
| 2 |
|
|
|
| 3 |
|
|
|
| 4 |
|
|
\documentclass[10pt]{scrartcl} |
| 5 |
|
|
%% |
| 6 |
|
|
% |
| 7 |
|
|
% This is a poster template with latex macros and using |
| 8 |
|
|
% the University of Florida Logo. For further information |
| 9 |
|
|
% on making postscript, resizeing, and printing the poster file |
| 10 |
|
|
% please see web site |
| 11 |
|
|
% http://www.phys.ufl.edu/~pjh/posters/poster_howto_UF.html |
| 12 |
|
|
% |
| 13 |
|
|
% N.B. This format is cribbed from one obtained from the University |
| 14 |
|
|
% of Karlsruhe, so some macro names and parameters are in German |
| 15 |
|
|
% Here is a short glosary: |
| 16 |
|
|
% Breite: width |
| 17 |
|
|
% Hoehe: height |
| 18 |
|
|
% Spalte: column |
| 19 |
|
|
% Kasten: box |
| 20 |
|
|
% |
| 21 |
|
|
% All style files necessary are part of standard TeTeX distribution |
| 22 |
|
|
% On the UF unix cluster you should not need to import these files |
| 23 |
|
|
% specially, as they will be automatically located. If you |
| 24 |
|
|
% run on a local PC however, you will need to locate these files. |
| 25 |
|
|
% At UF try /usr/local/TeTeX... |
| 26 |
|
|
% |
| 27 |
|
|
% P. Hirschfeld 2/11/00 |
| 28 |
|
|
% |
| 29 |
|
|
% The recommended procedure is to first generate a ``Special Format" size poster |
| 30 |
|
|
% file, which is relatively easy to manipulate and view. It can be |
| 31 |
|
|
% resized later to A0 (900 x 1100 mm) full poster size, or A4 or Letter size |
| 32 |
|
|
% as desired (see web site). Note the large format printers currently |
| 33 |
|
|
% in use at UF's OIR have max width of about 90cm or 3 ft., but the paper |
| 34 |
|
|
% comes in rolls so the length is variable. See below the specifications |
| 35 |
|
|
% for width and height of various formats. Default in the template is |
| 36 |
|
|
% ``Special Format", with 4 columns. |
| 37 |
|
|
%% |
| 38 |
|
|
%% |
| 39 |
|
|
%% Choose your poster size: |
| 40 |
|
|
%% For printing you will later RESIZE your poster by a factor |
| 41 |
|
|
%% 2*sqrt(2) = 2.828 (for A0) |
| 42 |
|
|
%% 2 = 2.00 (for A1) |
| 43 |
|
|
%% |
| 44 |
|
|
%% |
| 45 |
mmeineke |
551 |
\def\breite{390mm} % Special Format. |
| 46 |
mmeineke |
546 |
\def\hoehe{319.2mm} % Scaled by 2.82 this gives 110cm x 90cm |
| 47 |
|
|
\def\anzspalten{4} |
| 48 |
|
|
%% |
| 49 |
|
|
%%\def\breite{420mm} % A3 LANDSCAPE |
| 50 |
|
|
%%\def\hoehe{297mm} |
| 51 |
|
|
%%\def\anzspalten{4} |
| 52 |
|
|
%% |
| 53 |
|
|
%% \def\breite{297mm} % A3 PORTRAIT |
| 54 |
|
|
%% \def\hoehe{420mm} |
| 55 |
|
|
%% \def\anzspalten{3} |
| 56 |
|
|
%% |
| 57 |
|
|
%% \def\breite{210mm} % A4 PORTRAIT |
| 58 |
|
|
%% \def\hoehe{297mm} |
| 59 |
|
|
%% \def\anzspalten{2} |
| 60 |
|
|
%% |
| 61 |
|
|
%% |
| 62 |
|
|
%% Procedure: |
| 63 |
|
|
%% Generate poster.dvi with latex |
| 64 |
|
|
%% Check with Ghostview |
| 65 |
|
|
%% Make a .ps-file with ``dvips -o poster.ps poster'' |
| 66 |
|
|
%% Scale it with poster_resize poster.ps S |
| 67 |
|
|
%% where S is scale factor |
| 68 |
|
|
%% for Special Format->A0 S= 2.828 (= 2^(3/2))) |
| 69 |
|
|
%% for Special Format->A1 S= 2 (= 2^(2/2))) |
| 70 |
|
|
%% |
| 71 |
|
|
%% Sizes (European:) |
| 72 |
|
|
%% A3: 29.73 X 42.04 cm |
| 73 |
|
|
%% A1: 59.5 X 84.1 cm |
| 74 |
|
|
%% A0: 84.1 X 118.9 cm |
| 75 |
|
|
%% N.B. The recommended procedure is ``Special Format x 2.82" |
| 76 |
|
|
%% which gives 90cm x 110cm (not quite A0 dimensions). |
| 77 |
|
|
%% |
| 78 |
|
|
%% -------------------------------------------------------------------------- |
| 79 |
|
|
%% |
| 80 |
|
|
%% Load the necessary packages |
| 81 |
|
|
%% |
| 82 |
mmeineke |
549 |
\usepackage{palatino} |
| 83 |
mmeineke |
546 |
\usepackage[latin1]{inputenc} |
| 84 |
|
|
\usepackage{epsf} |
| 85 |
|
|
\usepackage{graphicx,psfrag,color,pstcol,pst-grad} |
| 86 |
|
|
\usepackage{amsmath,amssymb} |
| 87 |
|
|
\usepackage{latexsym} |
| 88 |
|
|
\usepackage{calc} |
| 89 |
|
|
\usepackage{multicol} |
| 90 |
mmeineke |
550 |
\usepackage{wrapfig} |
| 91 |
mmeineke |
546 |
%% |
| 92 |
|
|
%% Define the required numbers, lengths and boxes |
| 93 |
|
|
%% |
| 94 |
|
|
\newsavebox{\dummybox} |
| 95 |
|
|
\newsavebox{\spalten} |
| 96 |
|
|
%\input psfig.sty |
| 97 |
|
|
|
| 98 |
|
|
%% |
| 99 |
|
|
%% |
| 100 |
|
|
\newlength{\bgwidth}\newlength{\bgheight} |
| 101 |
|
|
\setlength\bgheight{\hoehe} \addtolength\bgheight{-1mm} |
| 102 |
|
|
\setlength\bgwidth{\breite} \addtolength\bgwidth{-1mm} |
| 103 |
|
|
|
| 104 |
|
|
\newlength{\kastenwidth} |
| 105 |
|
|
|
| 106 |
|
|
%% Set paper format |
| 107 |
|
|
\setlength\paperheight{\hoehe} |
| 108 |
|
|
\setlength\paperwidth{\breite} |
| 109 |
|
|
\special{papersize=\breite,\hoehe} |
| 110 |
|
|
|
| 111 |
|
|
\topmargin -1in |
| 112 |
|
|
\marginparsep0mm |
| 113 |
|
|
\marginparwidth0mm |
| 114 |
|
|
\headheight0mm |
| 115 |
|
|
\headsep0mm |
| 116 |
|
|
|
| 117 |
|
|
|
| 118 |
|
|
%% Minimal Margins to Make Correct Bounding Box |
| 119 |
|
|
\setlength{\oddsidemargin}{-2.44cm} |
| 120 |
|
|
\addtolength{\topmargin}{-3mm} |
| 121 |
|
|
\textwidth\paperwidth |
| 122 |
|
|
\textheight\paperheight |
| 123 |
|
|
|
| 124 |
|
|
%% |
| 125 |
|
|
%% |
| 126 |
|
|
\parindent0cm |
| 127 |
|
|
\parskip1.5ex plus0.5ex minus 0.5ex |
| 128 |
|
|
\pagestyle{empty} |
| 129 |
|
|
|
| 130 |
|
|
|
| 131 |
|
|
|
| 132 |
|
|
\definecolor{ndgold}{rgb}{0.87,0.82,0.59} |
| 133 |
|
|
\definecolor{ndgold2}{rgb}{0.96,0.91,0.63} |
| 134 |
mmeineke |
547 |
\definecolor{ndblue}{rgb}{0,0.1875, 0.6992} |
| 135 |
mmeineke |
546 |
\definecolor{recoilcolor}{rgb}{1,0,0} |
| 136 |
|
|
\definecolor{occolor}{rgb}{0,1,0} |
| 137 |
|
|
\definecolor{pink}{rgb}{0,1,1} |
| 138 |
|
|
|
| 139 |
|
|
|
| 140 |
|
|
|
| 141 |
|
|
|
| 142 |
|
|
|
| 143 |
|
|
\def\UberStil{\normalfont\sffamily\bfseries\large} |
| 144 |
|
|
\def\UnterStil{\normalfont\sffamily\small} |
| 145 |
|
|
\def\LabelStil{\normalfont\sffamily\tiny} |
| 146 |
|
|
\def\LegStil{\normalfont\sffamily\tiny} |
| 147 |
|
|
|
| 148 |
|
|
%% |
| 149 |
|
|
%% Define some commands |
| 150 |
|
|
%% |
| 151 |
|
|
\definecolor{JG}{rgb}{0.1,0.9,0.3} |
| 152 |
|
|
|
| 153 |
|
|
\newenvironment{kasten}{% |
| 154 |
|
|
\begin{lrbox}{\dummybox}% |
| 155 |
|
|
\begin{minipage}{0.96\linewidth}}% |
| 156 |
|
|
{\end{minipage}% |
| 157 |
|
|
\end{lrbox}% |
| 158 |
|
|
\raisebox{-\depth}{\psshadowbox[framearc=0.05,framesep=1em]{\usebox{\dummybox}}}\\[0.5em]} |
| 159 |
|
|
\newenvironment{spalte}{% |
| 160 |
|
|
\setlength\kastenwidth{1.2\textwidth} |
| 161 |
|
|
\divide\kastenwidth by \anzspalten |
| 162 |
|
|
\begin{minipage}[t]{\kastenwidth}}{\end{minipage}\hfill} |
| 163 |
|
|
|
| 164 |
|
|
|
| 165 |
|
|
|
| 166 |
mmeineke |
551 |
|
| 167 |
mmeineke |
546 |
\def\op#1{\hat{#1}} |
| 168 |
|
|
\begin{document} |
| 169 |
mmeineke |
553 |
\bibliographystyle{unsrt} |
| 170 |
mmeineke |
546 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 171 |
|
|
%%% Background %%% |
| 172 |
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 173 |
mmeineke |
551 |
{\newrgbcolor{gradbegin}{0.0 0.01875 0.6992}% |
| 174 |
mmeineke |
546 |
\newrgbcolor{gradend}{1 1 1}%{1 1 0.5}% |
| 175 |
|
|
\psframe[fillstyle=gradient,gradend=gradend,% |
| 176 |
|
|
gradbegin=gradbegin,gradmidpoint=0.1](\bgwidth,-\bgheight)} |
| 177 |
|
|
\vfill |
| 178 |
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 179 |
|
|
%%% Header %%% |
| 180 |
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 181 |
|
|
\hfill |
| 182 |
|
|
\psshadowbox[fillstyle=solid,fillcolor=ndgold2]{\makebox[0.95\textwidth]{% |
| 183 |
|
|
\hfill |
| 184 |
mmeineke |
547 |
\parbox[c]{2cm}{\includegraphics[width=8cm]{ndLogoScience1a.eps}} |
| 185 |
mmeineke |
546 |
\hfill |
| 186 |
|
|
\parbox[c]{0.8\linewidth}{% |
| 187 |
|
|
\begin{center} |
| 188 |
mmeineke |
547 |
\color{ndblue} |
| 189 |
mmeineke |
546 |
\textbf{\Huge {A Mesoscale Model for Phospholipid Simulations}}\\[0.5em] |
| 190 |
|
|
\textsc{\LARGE \underline{Matthew~A.~Meineke}, and J.~Daniel~Gezelter}\\[0.3em] |
| 191 |
|
|
{\large Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA\\ |
| 192 |
|
|
{\tt\ mmeineke@nd.edu} |
| 193 |
|
|
} |
| 194 |
|
|
\end{center}} |
| 195 |
|
|
\hfill}}\hfill\mbox{}\\[1.cm] |
| 196 |
|
|
%\vspace*{1.3cm} |
| 197 |
|
|
\begin{lrbox}{\spalten} |
| 198 |
|
|
\parbox[t][\textheight]{1.3\textwidth}{% |
| 199 |
|
|
\vspace*{0.2cm} |
| 200 |
|
|
\hfill |
| 201 |
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 202 |
|
|
%%% first column %%% |
| 203 |
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 204 |
|
|
\begin{spalte} |
| 205 |
|
|
\begin{kasten} |
| 206 |
|
|
% |
| 207 |
|
|
% |
| 208 |
|
|
% This begins the first "kasten" or box |
| 209 |
|
|
% |
| 210 |
|
|
% |
| 211 |
|
|
\begin{center} |
| 212 |
|
|
{\large{\color{red} \underline{ABSTRACT} } } |
| 213 |
|
|
\end{center} |
| 214 |
|
|
|
| 215 |
|
|
{\color{ndblue} |
| 216 |
|
|
|
| 217 |
|
|
A mesoscale model for phospholipids has been developed for molecular |
| 218 |
mmeineke |
553 |
dynamics simulations of phospholipid phase transitions. The model makes several |
| 219 |
mmeineke |
546 |
simplifications to both the water and the phospholipids to reduce the |
| 220 |
|
|
computational cost of each force evaluation. The water was represented |
| 221 |
|
|
by the soft sticky dipole model of Ichiye \emph{et |
| 222 |
|
|
al}.\cite{liu96:new_model,liu96:monte_carlo,chandra99:ssd_md} The |
| 223 |
|
|
simplifications to the phospholipids included the reduction of atoms |
| 224 |
|
|
in the tail groups to beads representing $\mbox{CH}_{2}$ and |
| 225 |
|
|
$\mbox{CH}_{3}$ unified atoms, and the replacement of the head groups |
| 226 |
|
|
with a single point mass containing a centrally located dipole. The |
| 227 |
mmeineke |
552 |
model was then used to simulate micelle formation from a configuration |
| 228 |
|
|
of randomly placed phospholipids which was simulated for times in |
| 229 |
|
|
excess of 20 nanoseconds. |
| 230 |
mmeineke |
546 |
|
| 231 |
|
|
} |
| 232 |
|
|
\end{kasten} |
| 233 |
|
|
|
| 234 |
mmeineke |
550 |
|
| 235 |
|
|
\begin{kasten} |
| 236 |
|
|
\section{{\color{red}\underline{Introduction \& Background}}} |
| 237 |
|
|
\label{sec:intro} |
| 238 |
mmeineke |
546 |
|
| 239 |
mmeineke |
551 |
%% \subsection{{\color{ndblue}Motivation}} |
| 240 |
mmeineke |
550 |
\label{sec:motivation} |
| 241 |
mmeineke |
546 |
|
| 242 |
mmeineke |
550 |
|
| 243 |
mmeineke |
553 |
Simulations of phospholipid phases are, by necessity, quite |
| 244 |
mmeineke |
550 |
complex. The lipid molecules are large, and contain many |
| 245 |
|
|
atoms. Additionally, the head groups of the lipids are often |
| 246 |
|
|
zwitterions, and the large separation between charges results in a |
| 247 |
|
|
large dipole moment. Adding to the complexity are the number of water |
| 248 |
|
|
molecules needed to properly solvate the lipid bilayer, typically 25 |
| 249 |
|
|
water molecules for every lipid molecule. These factors make it |
| 250 |
|
|
difficult to study certain biologically interesting phenomena that |
| 251 |
|
|
have large inherent length or time scale. |
| 252 |
|
|
|
| 253 |
|
|
\end{kasten} |
| 254 |
|
|
|
| 255 |
|
|
\begin{kasten} |
| 256 |
|
|
\subsection{{\color{ndblue}Ripple Phase}} |
| 257 |
|
|
|
| 258 |
|
|
\begin{wrapfigure}{o}{60mm} |
| 259 |
|
|
\centering |
| 260 |
|
|
\includegraphics[width=40mm]{ripple.epsi} |
| 261 |
|
|
\end{wrapfigure} |
| 262 |
|
|
|
| 263 |
|
|
\mbox{} |
| 264 |
|
|
\begin{itemize} |
| 265 |
|
|
\item The ripple (~$P_{\beta'}$~) phase lies in the transition from the gel to fluid phase. |
| 266 |
|
|
\item Periodicity of 100 - 200 $\mbox{\AA}$\cite{Cevc87} |
| 267 |
|
|
\item Current simulations have box sizes ranging from 50 - 100 $\mbox{\AA}$ on a side.\cite{saiz02,lindahl00,venable00} |
| 268 |
|
|
\end{itemize} |
| 269 |
|
|
|
| 270 |
|
|
\label{sec:ripplePhase} |
| 271 |
|
|
|
| 272 |
|
|
\end{kasten} |
| 273 |
|
|
|
| 274 |
|
|
|
| 275 |
|
|
\begin{kasten} |
| 276 |
|
|
\subsection{{\color{ndblue}Diffusion \& Formation Dynamics}} |
| 277 |
|
|
\begin{itemize} |
| 278 |
|
|
|
| 279 |
|
|
\item |
| 280 |
|
|
Drug Diffusion |
| 281 |
|
|
\begin{itemize} |
| 282 |
|
|
\item |
| 283 |
|
|
Some drug molecules may spend appreciable amounts of time in the |
| 284 |
|
|
membrane |
| 285 |
|
|
|
| 286 |
|
|
\item |
| 287 |
|
|
Long time scale dynamics are need to observe and characterize their |
| 288 |
|
|
actions |
| 289 |
|
|
\end{itemize} |
| 290 |
|
|
|
| 291 |
|
|
\item |
| 292 |
|
|
Bilayer Formation Dynamics |
| 293 |
|
|
\begin{itemize} |
| 294 |
|
|
\item |
| 295 |
|
|
Current lipid simulations indicate\cite{Marrink01}: |
| 296 |
|
|
\begin{itemize} |
| 297 |
|
|
\item Aggregation can happen as quickly as 200 ps |
| 298 |
|
|
|
| 299 |
|
|
\item Bilayers can take up to 20 ns to form completely |
| 300 |
|
|
\end{itemize} |
| 301 |
|
|
|
| 302 |
|
|
\end{itemize} |
| 303 |
|
|
\end{itemize} |
| 304 |
|
|
\end{kasten} |
| 305 |
|
|
|
| 306 |
|
|
\begin{kasten} |
| 307 |
mmeineke |
553 |
\subsection{{\color{ndblue}Our Simplifications}} |
| 308 |
mmeineke |
550 |
\begin{itemize} |
| 309 |
|
|
\item Unified atoms with fixed bond lengths replace groups of atoms. |
| 310 |
mmeineke |
553 |
\item Charge distributions are replaced with dipoles. |
| 311 |
mmeineke |
550 |
\begin{itemize} |
| 312 |
|
|
\item Relatively short range, $\frac{1}{r^3}$, interactions allow |
| 313 |
mmeineke |
553 |
the application of neighbor lists. |
| 314 |
mmeineke |
550 |
\end{itemize} |
| 315 |
|
|
\end{itemize} |
| 316 |
|
|
\begin{equation} |
| 317 |
|
|
V^{\text{dp}}_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i}, |
| 318 |
|
|
\boldsymbol{\Omega}_{j}) = \frac{1}{4\pi\epsilon_{0}} \biggl[ |
| 319 |
|
|
\frac{\boldsymbol{\mu}_{i} \cdot \boldsymbol{\mu}_{j}}{r^{3}_{ij}} |
| 320 |
|
|
- |
| 321 |
|
|
\frac{3(\boldsymbol{\mu}_i \cdot \mathbf{r}_{ij}) % |
| 322 |
|
|
(\boldsymbol{\mu}_j \cdot \mathbf{r}_{ij}) } |
| 323 |
|
|
{r^{5}_{ij}} \biggr] |
| 324 |
|
|
\label{eq:dipole} |
| 325 |
|
|
\end{equation} |
| 326 |
|
|
\end{kasten} |
| 327 |
|
|
|
| 328 |
|
|
|
| 329 |
|
|
|
| 330 |
mmeineke |
546 |
\end{spalte} |
| 331 |
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 332 |
|
|
%%% second column %%% |
| 333 |
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 334 |
|
|
\begin{spalte} |
| 335 |
|
|
|
| 336 |
|
|
|
| 337 |
mmeineke |
550 |
\begin{kasten} |
| 338 |
|
|
\subsection{{\color{ndblue}Reduction in calculations}} |
| 339 |
|
|
Unified water and lipid models and decrease the number of interactions |
| 340 |
|
|
needed between two molecules. |
| 341 |
|
|
|
| 342 |
|
|
\begin{center} |
| 343 |
|
|
\includegraphics[width=50mm,angle=-90]{reduction.epsi} |
| 344 |
|
|
\end{center} |
| 345 |
mmeineke |
546 |
\end{kasten} |
| 346 |
|
|
|
| 347 |
|
|
|
| 348 |
mmeineke |
550 |
\begin{kasten} |
| 349 |
|
|
\section{{\color{red}\underline{Models}}} |
| 350 |
|
|
\label{sec:model} |
| 351 |
mmeineke |
552 |
\subsection{{\color{ndblue}The Water Model}} |
| 352 |
mmeineke |
550 |
\label{sec:waterModel} |
| 353 |
mmeineke |
546 |
|
| 354 |
mmeineke |
550 |
The waters in the simulation were modeled after the Soft Sticky Dipole |
| 355 |
|
|
(SSD) model of Ichiye.\cite{liu96:new_model} Where: |
| 356 |
mmeineke |
546 |
|
| 357 |
mmeineke |
550 |
\begin{wrapfigure}[10]{o}{60mm} |
| 358 |
|
|
\begin{center} |
| 359 |
|
|
\includegraphics[width=40mm]{ssd.epsi} |
| 360 |
|
|
\end{center} |
| 361 |
|
|
\end{wrapfigure} |
| 362 |
|
|
\mbox{} |
| 363 |
|
|
\begin{itemize} |
| 364 |
mmeineke |
552 |
\item $\sigma$ is the Lennard-Jones length parameter |
| 365 |
|
|
\item $\boldsymbol{\mu}_i$ is the dipole vector of molecule $i$ |
| 366 |
mmeineke |
550 |
\item $\mathbf{r}_{ij}$ is the vector between molecules $i$ and $j$ |
| 367 |
mmeineke |
552 |
\item $\boldsymbol{\Omega}_i$ and $\boldsymbol{\Omega}_j$ are the Euler angles of molecule $i$ or $j$ respectively |
| 368 |
mmeineke |
550 |
\end{itemize} |
| 369 |
|
|
|
| 370 |
|
|
It's potential is as follows: |
| 371 |
|
|
\begin{equation} |
| 372 |
|
|
V_{s\!s\!d} = V_{L\!J}(r_{i\!j}) + V_{d\!p}(r_{i\!j},\Omega_{i},\Omega_{j}) |
| 373 |
|
|
+ V_{s\!p}(r_{i\!j},\Omega_{i},\Omega_{j}) |
| 374 |
mmeineke |
552 |
\label{eq:ssdPot} |
| 375 |
mmeineke |
550 |
\end{equation} |
| 376 |
mmeineke |
553 |
Where $V_{d\!p}(r_{i\!j})$ is given in Eq.~\ref{eq:dipole}, and $V_{L\!J}(r_{i\!j})$ is the Lennard-Jones potential. |
| 377 |
mmeineke |
550 |
\end{kasten} |
| 378 |
|
|
|
| 379 |
mmeineke |
552 |
\begin{kasten} |
| 380 |
|
|
\subsection{{\color{ndblue}Soft Sticky Potential}} |
| 381 |
|
|
\label{sec:SSeq} |
| 382 |
mmeineke |
550 |
|
| 383 |
mmeineke |
552 |
Hydrogen bonding in the SSD model is described by the |
| 384 |
|
|
$V_{\text{sp}}$ term in Eq.~\ref{eq:ssdPot}. Its form is as follows: |
| 385 |
|
|
\begin{equation} |
| 386 |
|
|
V_{\text{sp}}(\mathbf{r}_{i\!j},\boldsymbol{\Omega}_{i}, |
| 387 |
|
|
\boldsymbol{\Omega}_{j}) = |
| 388 |
|
|
v^{\circ}[s(r_{ij})w_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i}, |
| 389 |
|
|
\boldsymbol{\Omega}_{j}) |
| 390 |
|
|
+ |
| 391 |
|
|
s'(r_{ij})w^{x}_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i}, |
| 392 |
|
|
\boldsymbol{\Omega}_{j})] |
| 393 |
|
|
\label{eq:spPot} |
| 394 |
|
|
\end{equation} |
| 395 |
|
|
Where $v^\circ$ scales the strength of the interaction. |
| 396 |
|
|
$w_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})$ |
| 397 |
|
|
and |
| 398 |
|
|
$w^{x}_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})$ |
| 399 |
|
|
are responsible for the tetrahedral potential and a correction to the |
| 400 |
|
|
tetrahedral potential respectively. They are, |
| 401 |
|
|
\begin{equation} |
| 402 |
|
|
w_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j}) = |
| 403 |
|
|
\sin\theta_{ij} \sin 2\theta_{ij} \cos 2\phi_{ij} |
| 404 |
|
|
+ \sin \theta_{ji} \sin 2\theta_{ji} \cos 2\phi_{ji} |
| 405 |
|
|
\label{eq:spPot2} |
| 406 |
mmeineke |
553 |
\end{equation} |
| 407 |
mmeineke |
552 |
and |
| 408 |
|
|
\begin{equation} |
| 409 |
|
|
\begin{split} |
| 410 |
|
|
w^{x}_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j}) = |
| 411 |
|
|
&(\cos\theta_{ij}-0.6)^2(\cos\theta_{ij} + 0.8)^2 \\ |
| 412 |
|
|
&+ (\cos\theta_{ji}-0.6)^2(\cos\theta_{ji} + 0.8)^2 - 2w^{\circ} |
| 413 |
|
|
\end{split} |
| 414 |
|
|
\label{eq:spCorrection} |
| 415 |
|
|
\end{equation} |
| 416 |
|
|
The angles $\theta_{ij}$ and $\phi_{ij}$ are defined by the spherical |
| 417 |
|
|
coordinates of the position of molecule $j$ in the reference frame |
| 418 |
|
|
fixed on molecule $i$ with the z-axis aligned with the dipole moment. |
| 419 |
|
|
The correction |
| 420 |
|
|
$w^{x}_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})$ |
| 421 |
|
|
is needed because |
| 422 |
|
|
$w_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})$ |
| 423 |
|
|
vanishes when $\theta_{ij}$ is $0^\circ$ or $180^\circ$. Finally, the |
| 424 |
|
|
potential is scaled by the switching function $s(r_{ij})$, |
| 425 |
|
|
which scales smoothly from 0 to 1. |
| 426 |
|
|
\begin{equation} |
| 427 |
|
|
s(r_{ij}) = |
| 428 |
|
|
\begin{cases} |
| 429 |
|
|
1& \text{if $r_{ij} < r_{L}$}, \\ |
| 430 |
|
|
\frac{(r_{U} - r_{ij})^2 (r_{U} + 2r_{ij} |
| 431 |
|
|
- 3r_{L})}{(r_{U}-r_{L})^3}& |
| 432 |
|
|
\text{if $r_{L} \leq r_{ij} \leq r_{U}$},\\ |
| 433 |
|
|
0& \text{if $r_{ij} \geq r_{U}$}. |
| 434 |
|
|
\end{cases} |
| 435 |
|
|
\label{eq:spCutoff} |
| 436 |
|
|
\end{equation} |
| 437 |
mmeineke |
550 |
|
| 438 |
mmeineke |
552 |
\end{kasten} |
| 439 |
mmeineke |
550 |
|
| 440 |
mmeineke |
552 |
|
| 441 |
mmeineke |
546 |
\end{spalte} |
| 442 |
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 443 |
|
|
%%% third column %%% |
| 444 |
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 445 |
|
|
\begin{spalte} |
| 446 |
|
|
|
| 447 |
mmeineke |
552 |
\begin{kasten} |
| 448 |
|
|
\subsection{{\color{ndblue}Hydrogen Bonding in SSD}} |
| 449 |
|
|
\label{sec:hbonding} |
| 450 |
mmeineke |
546 |
|
| 451 |
mmeineke |
552 |
The SSD model's $V_{s\!p}(r_{i\!j},\Omega_{i},\Omega_{j})$ |
| 452 |
|
|
recreates the hydrogen bonding network of water. |
| 453 |
|
|
\begin{center} |
| 454 |
|
|
\begin{minipage}{100mm} |
| 455 |
|
|
\begin{minipage}[t]{48mm} |
| 456 |
|
|
\begin{center} |
| 457 |
|
|
\includegraphics[width=48mm]{iced_final.eps}\\ |
| 458 |
|
|
SSD Relaxed on a diamond lattice |
| 459 |
|
|
\end{center} |
| 460 |
|
|
\end{minipage} |
| 461 |
|
|
\hspace{4mm}% |
| 462 |
|
|
\begin{minipage}[t]{48mm} |
| 463 |
|
|
\begin{center} |
| 464 |
|
|
\includegraphics[width=48mm]{dipoled_final.eps}\\ |
| 465 |
|
|
Stockmayer Spheres relaxed on a diamond lattice |
| 466 |
|
|
\end{center} |
| 467 |
|
|
\end{minipage} |
| 468 |
|
|
\end{minipage} |
| 469 |
mmeineke |
546 |
|
| 470 |
mmeineke |
552 |
\end{center} |
| 471 |
|
|
|
| 472 |
mmeineke |
546 |
|
| 473 |
mmeineke |
552 |
\end{kasten} |
| 474 |
|
|
|
| 475 |
|
|
|
| 476 |
|
|
\begin{kasten} |
| 477 |
|
|
|
| 478 |
|
|
\subsection{{\color{ndblue}The Lipid Model}} |
| 479 |
|
|
\label{sec:lipidModel} |
| 480 |
|
|
|
| 481 |
|
|
\begin{center} |
| 482 |
|
|
\includegraphics[width=25mm,angle=-90]{lipidModel.epsi} |
| 483 |
|
|
\end{center} |
| 484 |
|
|
|
| 485 |
|
|
\begin{itemize} |
| 486 |
mmeineke |
553 |
\item PC \& PE head groups are replaced by a Lennard-Jones sphere containing a dipole at its center |
| 487 |
mmeineke |
552 |
\item Atoms in the tail chains modeled as unified groups of atoms |
| 488 |
|
|
\item Tail group interaction parameters based on those of TraPPE\cite{Siepmann1998} |
| 489 |
|
|
\end{itemize} |
| 490 |
|
|
|
| 491 |
|
|
The total potential is given by: |
| 492 |
|
|
\begin{equation} |
| 493 |
|
|
V_{\text{lipid}} = |
| 494 |
|
|
\sum_{i}V_{i}^{\text{internal}} |
| 495 |
|
|
+ \sum_i \sum_{j>i} \sum_{\text{$\alpha$ in $i$}} |
| 496 |
|
|
\sum_{\text{$\beta$ in $j$}} |
| 497 |
|
|
V_{\text{LJ}}(r_{\alpha_{i}\beta_{j}}) |
| 498 |
|
|
+\sum_i\sum_{j>i}V_{\text{dp}}(r_{1_i,1_j},\Omega_{1_i},\Omega_{1_j}) |
| 499 |
|
|
\end{equation} |
| 500 |
|
|
Where |
| 501 |
|
|
\begin{equation} |
| 502 |
|
|
V_{i}^{\text{internal}} = |
| 503 |
|
|
\sum_{\text{bends}}V_{\text{bend}}(\theta_{\alpha\beta\gamma}) |
| 504 |
|
|
+ \sum_{\text{torsions}}V_{\text{tors.}}(\phi_{\alpha\beta\gamma\zeta}) |
| 505 |
|
|
+ \sum_{\alpha} \sum_{\beta>\alpha}V_{\text{LJ}}(r_{\alpha \beta}) |
| 506 |
|
|
\end{equation} |
| 507 |
|
|
The bend and torsion potentials were of the form: |
| 508 |
|
|
\begin{equation} |
| 509 |
|
|
V_{\text{bend}}(\theta_{\alpha\beta\gamma}) |
| 510 |
|
|
= k_{\theta}\frac{(\theta_{\alpha\beta\gamma} - \theta_0)^2}{2} |
| 511 |
|
|
\label{eq:bendPot} |
| 512 |
|
|
\end{equation} |
| 513 |
|
|
\begin{equation} |
| 514 |
|
|
V_{\text{tors.}}(\phi_{\alpha\beta\gamma\zeta}) |
| 515 |
|
|
= c_1 [1+\cos\phi_{\alpha\beta\gamma\zeta}] |
| 516 |
|
|
+ c_2 [1 - \cos(2\phi_{\alpha\beta\gamma\zeta})] |
| 517 |
|
|
+ c_3 [1 + \cos(3\phi_{\alpha\beta\gamma\zeta})] |
| 518 |
|
|
\label{eq:torsPot} |
| 519 |
|
|
\end{equation} |
| 520 |
|
|
|
| 521 |
|
|
|
| 522 |
|
|
\end{kasten} |
| 523 |
|
|
|
| 524 |
|
|
\begin{kasten} |
| 525 |
|
|
|
| 526 |
|
|
\section{{\color{red}\underline{Initial Results}}} |
| 527 |
mmeineke |
553 |
\label{sec:results} |
| 528 |
|
|
\subsection{{\color{ndblue}Simulation Snapshots:50 lipids in a sea of 1384 waters}} |
| 529 |
mmeineke |
552 |
\label{sec:r50snapshots} |
| 530 |
|
|
|
| 531 |
|
|
\begin{center} |
| 532 |
|
|
\includegraphics[width=105mm]{r50-montage.eps} |
| 533 |
|
|
\end{center} |
| 534 |
|
|
|
| 535 |
|
|
\end{kasten} |
| 536 |
|
|
|
| 537 |
|
|
|
| 538 |
mmeineke |
546 |
\end{spalte} |
| 539 |
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 540 |
|
|
%%% fourth column %%% |
| 541 |
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 542 |
|
|
\begin{spalte} |
| 543 |
|
|
|
| 544 |
mmeineke |
552 |
\begin{kasten} |
| 545 |
|
|
|
| 546 |
|
|
\subsection{{\color{ndblue}Position and Angular Correlations}} |
| 547 |
|
|
\label{sec:r50corr} |
| 548 |
mmeineke |
546 |
|
| 549 |
mmeineke |
552 |
\begin{center} |
| 550 |
|
|
\begin{minipage}{110mm} |
| 551 |
|
|
\begin{minipage}[t]{55mm} |
| 552 |
|
|
\begin{center} |
| 553 |
|
|
\includegraphics[width=36mm,angle=-90]{r50-HEAD-HEAD.epsi}\\ |
| 554 |
|
|
The self correlation of the head groups |
| 555 |
|
|
\end{center} |
| 556 |
|
|
\end{minipage} |
| 557 |
|
|
\begin{minipage}[t]{55mm} |
| 558 |
|
|
\begin{center} |
| 559 |
|
|
\includegraphics[width=36mm,angle=-90]{r50-CH2-CH2.epsi}\\ |
| 560 |
|
|
The self correlation of the tail beads. |
| 561 |
|
|
\end{center} |
| 562 |
|
|
\end{minipage} |
| 563 |
|
|
\end{minipage} |
| 564 |
|
|
\end{center} |
| 565 |
|
|
\begin{equation} |
| 566 |
|
|
g(r) = \frac{V}{N_{\text{pairs}}}\langle \sum_{i} \sum_{j > i} |
| 567 |
|
|
\delta(|\mathbf{r} - \mathbf{r}_{ij}|) \rangle |
| 568 |
|
|
\label{eq:gofr} |
| 569 |
|
|
\end{equation} |
| 570 |
|
|
\begin{equation} |
| 571 |
|
|
g_{\gamma}(r) = \langle \sum_i \sum_{j>i} |
| 572 |
|
|
(\cos \gamma_{ij}) \delta(| \mathbf{r} - \mathbf{r}_{ij}|) \rangle |
| 573 |
|
|
\label{eq:gammaofr} |
| 574 |
|
|
\end{equation} |
| 575 |
mmeineke |
546 |
|
| 576 |
mmeineke |
552 |
\end{kasten} |
| 577 |
mmeineke |
546 |
|
| 578 |
|
|
|
| 579 |
mmeineke |
552 |
\begin{kasten} |
| 580 |
|
|
|
| 581 |
|
|
\subsection{{\color{red}\underline{Discussion}}} |
| 582 |
|
|
\label{sec:discussion} |
| 583 |
|
|
|
| 584 |
|
|
The initial results show much promise for the model. The |
| 585 |
|
|
system of 50 lipids was able to form micelles quickly, however |
| 586 |
|
|
bilayer formation was not seen on the time scale of the |
| 587 |
|
|
current simulation. Current simulations are exploring the |
| 588 |
mmeineke |
553 |
parameter space of the model when the tail beads are larger than |
| 589 |
mmeineke |
552 |
the head group. This should help to drive the system toward a |
| 590 |
|
|
bilayer rather than a micelle. Work is also being done on the |
| 591 |
|
|
simulation engine to allow for the box size of the system to |
| 592 |
|
|
be adjustable in all three dimensions to allow for constant |
| 593 |
|
|
pressure. |
| 594 |
|
|
|
| 595 |
|
|
\end{kasten} |
| 596 |
|
|
|
| 597 |
|
|
|
| 598 |
mmeineke |
546 |
\begin{kasten} |
| 599 |
|
|
\begin{center} |
| 600 |
|
|
{\large{\color{red} \underline{Acknowledgments}}} |
| 601 |
|
|
\end{center} |
| 602 |
|
|
|
| 603 |
|
|
The authors would like to acknowledge Charles Vardeman, Christopher |
| 604 |
|
|
Fennell, and Teng lin for their contributions to the simulation |
| 605 |
|
|
engine. MAM would also like to extend a special thank you to Charles |
| 606 |
mmeineke |
552 |
Vardeman for his help with the \TeX formatting of this |
| 607 |
|
|
poster. Computation time was provided on the Notre Dame Bunch-of-Boxes (B.o.B.) |
| 608 |
mmeineke |
546 |
cluster under NSF grant DMR 00 79647. The authors acknowledge support |
| 609 |
|
|
under NSF grant CHE-0134881. |
| 610 |
|
|
|
| 611 |
|
|
\end{kasten} |
| 612 |
|
|
|
| 613 |
|
|
\vspace{0.5cm} |
| 614 |
|
|
\begin{kasten} |
| 615 |
|
|
{\small |
| 616 |
|
|
\bibliography{poster} |
| 617 |
|
|
} |
| 618 |
|
|
\end{kasten} |
| 619 |
|
|
\end{spalte} |
| 620 |
|
|
} |
| 621 |
|
|
\end{lrbox} |
| 622 |
|
|
\resizebox*{0.98\textwidth}{!}{% |
| 623 |
|
|
\usebox{\spalten}}\hfill\mbox{}\vfill |
| 624 |
|
|
\end{document} |