ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/mattDisertation/oopse.tex
(Generate patch)

Comparing trunk/mattDisertation/oopse.tex (file contents):
Revision 1112 by mmeineke, Thu Apr 15 02:45:10 2004 UTC vs.
Revision 1115 by mmeineke, Thu Apr 15 19:19:06 2004 UTC

# Line 160 | Line 160 | the rigid body. The torque on rigid body $i$ is
160   \begin{equation}
161   \boldsymbol{\tau}_i=
162          \sum_{a}\biggl[(\mathbf{r}_{ia}-\mathbf{r}_i)\times \mathbf{f}_{ia}
163 <        + \boldsymbol{\tau}_{ia}\biggr]
163 >        + \boldsymbol{\tau}_{ia}\biggr],
164   \label{eq:torqueAccumulate}
165   \end{equation}
166   where $\boldsymbol{\tau}_i$ and $\mathbf{r}_i$ are the torque on and
# Line 227 | Line 227 | V_{\text{LJ}}(r_{ij}) =
227          4\epsilon_{ij} \biggl[
228          \biggl(\frac{\sigma_{ij}}{r_{ij}}\biggr)^{12}
229          - \biggl(\frac{\sigma_{ij}}{r_{ij}}\biggr)^{6}
230 <        \biggr]
230 >        \biggr],
231   \label{eq:lennardJonesPot}
232   \end{equation}
233 < Where $r_{ij}$ is the distance between particles $i$ and $j$,
233 > where $r_{ij}$ is the distance between particles $i$ and $j$,
234   $\sigma_{ij}$ scales the length of the interaction, and
235   $\epsilon_{ij}$ scales the well depth of the potential. Scheme
236   \ref{sch:LJFF} gives an example \texttt{.bass} file that
# Line 271 | Line 271 | rules:\cite{allen87:csl}
271   calculated through the Lorentz-Berthelot mixing
272   rules:\cite{allen87:csl}
273   \begin{equation}
274 < \sigma_{ij} = \frac{1}{2}[\sigma_{ii} + \sigma_{jj}]
274 > \sigma_{ij} = \frac{1}{2}[\sigma_{ii} + \sigma_{jj}],
275   \label{eq:sigmaMix}
276   \end{equation}
277   and
278   \begin{equation}
279 < \epsilon_{ij} = \sqrt{\epsilon_{ii} \epsilon_{jj}}
279 > \epsilon_{ij} = \sqrt{\epsilon_{ii} \epsilon_{jj}}.
280   \label{eq:epsilonMix}
281   \end{equation}
282  
# Line 364 | Line 364 | V = \sum^{N}_{I=1} V^{I}_{\text{Internal}}
364   The total potential energy function in {\sc duff} is
365   \begin{equation}
366   V = \sum^{N}_{I=1} V^{I}_{\text{Internal}}
367 <        + \sum^{N-1}_{I=1} \sum_{J>I} V^{IJ}_{\text{Cross}}
367 >        + \sum^{N-1}_{I=1} \sum_{J>I} V^{IJ}_{\text{Cross}},
368   \label{eq:totalPotential}
369   \end{equation}
370 < Where $V^{I}_{\text{Internal}}$ is the internal potential of molecule $I$:
370 > where $V^{I}_{\text{Internal}}$ is the internal potential of molecule $I$:
371   \begin{equation}
372   V^{I}_{\text{Internal}} =
373          \sum_{\theta_{ijk} \in I} V_{\text{bend}}(\theta_{ijk})
# Line 375 | Line 375 | Where $V^{I}_{\text{Internal}}$ is the internal potent
375          + \sum_{i \in I} \sum_{(j>i+4) \in I}
376          \biggl[ V_{\text{LJ}}(r_{ij}) +  V_{\text{dipole}}
377          (\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})
378 <        \biggr]
378 >        \biggr].
379   \label{eq:internalPotential}
380   \end{equation}
381   Here $V_{\text{bend}}$ is the bend potential for all 1, 3 bonded pairs
# Line 386 | Line 386 | The bend potential of a molecule is represented by the
386  
387   The bend potential of a molecule is represented by the following function:
388   \begin{equation}
389 < V_{\text{bend}}(\theta_{ijk}) = k_{\theta}( \theta_{ijk} - \theta_0 )^2 \label{eq:bendPot}
389 > V_{\text{bend}}(\theta_{ijk}) = k_{\theta}( \theta_{ijk} - \theta_0 )^2, \label{eq:bendPot}
390   \end{equation}
391 < Where $\theta_{ijk}$ is the angle defined by atoms $i$, $j$, and $k$
391 > where $\theta_{ijk}$ is the angle defined by atoms $i$, $j$, and $k$
392   (see Fig.~\ref{oopseFig:lipidModel}), $\theta_0$ is the equilibrium
393   bond angle, and $k_{\theta}$ is the force constant which determines the
394   strength of the harmonic bend. The parameters for $k_{\theta}$ and
# Line 399 | Line 399 | V_{\text{torsion}}(\phi) = c_1[1 + \cos \phi]
399   \begin{equation}
400   V_{\text{torsion}}(\phi) = c_1[1 + \cos \phi]
401          + c_2[1 + \cos(2\phi)]
402 <        + c_3[1 + \cos(3\phi)]
402 >        + c_3[1 + \cos(3\phi)],
403   \label{eq:origTorsionPot}
404   \end{equation}
405 < Where:
405 > where:
406   \begin{equation}
407   \cos\phi = (\hat{\mathbf{r}}_{ij} \times \hat{\mathbf{r}}_{jk}) \cdot
408 <        (\hat{\mathbf{r}}_{jk} \times \hat{\mathbf{r}}_{kl})
408 >        (\hat{\mathbf{r}}_{jk} \times \hat{\mathbf{r}}_{kl}).
409   \label{eq:torsPhi}
410   \end{equation}
411   Here, $\hat{\mathbf{r}}_{\alpha\beta}$ are the set of unit bond
# Line 415 | Line 415 | V_{\text{torsion}}(\phi) =  
415   a power series of the form:
416   \begin{equation}
417   V_{\text{torsion}}(\phi) =  
418 <        k_3 \cos^3 \phi + k_2 \cos^2 \phi + k_1 \cos \phi + k_0
418 >        k_3 \cos^3 \phi + k_2 \cos^2 \phi + k_1 \cos \phi + k_0,
419   \label{eq:torsionPot}
420   \end{equation}
421 < Where:
421 > where:
422   \begin{align*}
423 < k_0 &= c_1 + c_3 \\
424 < k_1 &= c_1 - 3c_3 \\
425 < k_2 &= 2 c_2 \\
426 < k_3 &= 4c_3
423 > k_0 &= c_1 + c_3, \\
424 > k_1 &= c_1 - 3c_3, \\
425 > k_2 &= 2 c_2, \\
426 > k_3 &= 4c_3.
427   \end{align*}
428   By recasting the potential as a power series, repeated trigonometric
429   evaluations are avoided during the calculation of the potential energy.
# Line 438 | Line 438 | V^{IJ}_{\text{Cross}} =
438          (\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})
439          + V_{\text{sticky}}
440          (\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})
441 <        \biggr]
441 >        \biggr],
442   \label{eq:crossPotentail}
443   \end{equation}
444 < Where $V_{\text{LJ}}$ is the Lennard Jones potential,
444 > where $V_{\text{LJ}}$ is the Lennard Jones potential,
445   $V_{\text{dipole}}$ is the dipole dipole potential, and
446   $V_{\text{sticky}}$ is the sticky potential defined by the SSD model
447   (Sec.~\ref{oopseSec:SSD}). Note that not all atom types include all
# Line 454 | Line 454 | V_{\text{dipole}}(\mathbf{r}_{ij},\boldsymbol{\Omega}_
454          \boldsymbol{\hat{u}}_{i} \cdot \boldsymbol{\hat{u}}_{j}
455          -
456          3(\boldsymbol{\hat{u}}_i \cdot \hat{\mathbf{r}}_{ij}) %
457 <                (\boldsymbol{\hat{u}}_j \cdot \hat{\mathbf{r}}_{ij}) \biggr]
457 >                (\boldsymbol{\hat{u}}_j \cdot \hat{\mathbf{r}}_{ij}) \biggr].
458   \label{eq:dipolePot}
459   \end{equation}
460   Here $\mathbf{r}_{ij}$ is the vector starting at atom $i$ pointing
# Line 492 | Line 492 | by {\sc oopse} is the extended Soft Sticky Dipole (SSD
492  
493   In the interest of computational efficiency, the default solvent used
494   by {\sc oopse} is the extended Soft Sticky Dipole (SSD/E) water
495 < model.\cite{Gezelter04} The original SSD was developed by Ichiye
495 > model.\cite{fennell04} The original SSD was developed by Ichiye
496   \emph{et al.}\cite{liu96:new_model} as a modified form of the hard-sphere
497   water model proposed by Bratko, Blum, and
498   Luzar.\cite{Bratko85,Bratko95} It consists of a single point dipole
# Line 566 | Line 566 | SSD model that led to lower than expected densities at
566  
567   Recent constant pressure simulations revealed issues in the original
568   SSD model that led to lower than expected densities at all target
569 < pressures.\cite{Ichiye03,Gezelter04} The default model in {\sc oopse}
569 > pressures.\cite{Ichiye03,fennell04} The default model in {\sc oopse}
570   is therefore SSD/E, a density corrected derivative of SSD that
571   exhibits improved liquid structure and transport behavior. If the use
572   of a reaction field long-range interaction correction is desired, it
# Line 575 | Line 575 | density corrected SSD models can be found in
575   \texttt{.bass} file as illustrated in the scheme below. A table of the
576   parameter values and the drawbacks and benefits of the different
577   density corrected SSD models can be found in
578 < reference~\cite{Gezelter04}.
578 > reference~\cite{fennell04}.
579  
580   \begin{lstlisting}[float,caption={[A simulation of {\sc ssd} water]A portion of a \texttt{.bass} file showing a simulation including {\sc ssd} water.},label={sch:ssd}]
581  
# Line 625 | Line 625 | V & = & \sum_{i} F_{i}\left[\rho_{i}\right] + \sum_{i}
625   The {\sc eam} potential has the form:
626   \begin{eqnarray}
627   V & = & \sum_{i} F_{i}\left[\rho_{i}\right] + \sum_{i} \sum_{j \neq i}
628 < \phi_{ij}({\bf r}_{ij})  \\
629 < \rho_{i}  & = & \sum_{j \neq i} f_{j}({\bf r}_{ij})
628 > \phi_{ij}({\bf r}_{ij}),  \\
629 > \rho_{i}  & = & \sum_{j \neq i} f_{j}({\bf r}_{ij}),
630   \end{eqnarray}
631   where $F_{i} $ is the embedding function that equates the energy
632   required to embed a positively-charged core ion $i$ into a linear
# Line 659 | Line 659 | size of the simulation box. $\mathsf{H}$ is defined:
659   use a $3 \times 3$ matrix, $\mathsf{H}$, to describe the shape and
660   size of the simulation box. $\mathsf{H}$ is defined:
661   \begin{equation}
662 < \mathsf{H} = ( \mathbf{h}_x, \mathbf{h}_y, \mathbf{h}_z )
662 > \mathsf{H} = ( \mathbf{h}_x, \mathbf{h}_y, \mathbf{h}_z ),
663   \end{equation}
664 < Where $\mathbf{h}_{\alpha}$ is the column vector of the $\alpha$ axis of the
664 > where $\mathbf{h}_{\alpha}$ is the column vector of the $\alpha$ axis of the
665   box.  During the course of the simulation both the size and shape of
666   the box can be changed to allow volume fluctuations when constraining
667   the pressure.
# Line 669 | Line 669 | vector, $\mathbf{s}$, and back through the following t
669   A real space vector, $\mathbf{r}$ can be transformed in to a box space
670   vector, $\mathbf{s}$, and back through the following transformations:
671   \begin{align}
672 < \mathbf{s} &= \mathsf{H}^{-1} \mathbf{r} \\
673 < \mathbf{r} &= \mathsf{H} \mathbf{s}
672 > \mathbf{s} &= \mathsf{H}^{-1} \mathbf{r}, \\
673 > \mathbf{r} &= \mathsf{H} \mathbf{s}.
674   \end{align}
675   The vector $\mathbf{s}$ is now a vector expressed as the number of box
676   lengths in the $\mathbf{h}_x$, $\mathbf{h}_y$, and $\mathbf{h}_z$
# Line 678 | Line 678 | cast each element to lie in the range $[-0.5,0.5]$:
678   first convert it to its corresponding vector in box space, and then,
679   cast each element to lie in the range $[-0.5,0.5]$:
680   \begin{equation}
681 < s_{i}^{\prime}=s_{i}-\roundme(s_{i})
681 > s_{i}^{\prime}=s_{i}-\roundme(s_{i}),
682   \end{equation}
683 < Where $s_i$ is the $i$th element of $\mathbf{s}$, and
683 > where $s_i$ is the $i$th element of $\mathbf{s}$, and
684   $\roundme(s_i)$ is given by
685   \begin{equation}
686   \roundme(x) =
687          \begin{cases}
688 <        \lfloor x+0.5 \rfloor & \text{if $x \ge 0$} \\
689 <        \lceil x-0.5 \rceil & \text{if $x < 0$ }
688 >        \lfloor x+0.5 \rfloor & \text{if $x \ge 0$,} \\
689 >        \lceil x-0.5 \rceil & \text{if $x < 0$.}
690          \end{cases}
691   \end{equation}
692   Here $\lfloor x \rfloor$ is the floor operator, and gives the largest
# Line 698 | Line 698 | transforming back to real space,
698   Finally, we obtain the minimum image coordinates $\mathbf{r}^{\prime}$ by
699   transforming back to real space,
700   \begin{equation}
701 < \mathbf{r}^{\prime}=\mathsf{H}^{-1}\mathbf{s}^{\prime}%
701 > \mathbf{r}^{\prime}=\mathsf{H}^{-1}\mathbf{s}^{\prime}.%
702   \end{equation}
703   In this way, particles are allowed to diffuse freely in $\mathbf{r}$,
704   but their minimum images, $\mathbf{r}^{\prime}$ are used to compute
# Line 906 | Line 906 | H = \sum_{i} \left( \frac{1}{2} m_i {\bf v}_i^T \cdot
906   H = \sum_{i} \left( \frac{1}{2} m_i {\bf v}_i^T \cdot {\bf v}_i +
907   \frac{1}{2} {\bf j}_i^T \cdot \overleftrightarrow{\mathsf{I}}_i^{-1} \cdot
908   {\bf j}_i \right) +
909 < V\left(\left\{{\bf r}\right\}, \left\{\mathsf{A}\right\}\right)
909 > V\left(\left\{{\bf r}\right\}, \left\{\mathsf{A}\right\}\right),
910   \end{equation}
911 < Where ${\bf r}_i$ and ${\bf v}_i$ are the cartesian position vector
911 > where ${\bf r}_i$ and ${\bf v}_i$ are the cartesian position vector
912   and velocity of the center of mass of particle $i$, and ${\bf j}_i$,
913   $\overleftrightarrow{\mathsf{I}}_i$ are the body-fixed angular
914   momentum and moment of inertia tensor respectively, and the
# Line 920 | Line 920 | Hamilton's equations and are quite simple,
920   equations of motion for the particle centers of mass are derived from
921   Hamilton's equations and are quite simple,
922   \begin{eqnarray}
923 < \dot{{\bf r}} & = & {\bf v} \\
924 < \dot{{\bf v}} & = & \frac{{\bf f}}{m}
923 > \dot{{\bf r}} & = & {\bf v}, \\
924 > \dot{{\bf v}} & = & \frac{{\bf f}}{m},
925   \end{eqnarray}
926   where ${\bf f}$ is the instantaneous force on the center of mass
927   of the particle,
# Line 933 | Line 933 | The equations of motion for the orientational degrees
933   The equations of motion for the orientational degrees of freedom are
934   \begin{eqnarray}
935   \dot{\mathsf{A}} & = & \mathsf{A} \cdot
936 < \mbox{ skew}\left(\overleftrightarrow{\mathsf{I}}^{-1} \cdot {\bf j}\right) \\
936 > \mbox{ skew}\left(\overleftrightarrow{\mathsf{I}}^{-1} \cdot {\bf j}\right),\\
937   \dot{{\bf j}} & = & {\bf j} \times \left( \overleftrightarrow{\mathsf{I}}^{-1}
938   \cdot {\bf j} \right) - \mbox{ rot}\left(\mathsf{A}^{T} \cdot \frac{\partial
939 < V}{\partial \mathsf{A}} \right)
939 > V}{\partial \mathsf{A}} \right).
940   \end{eqnarray}
941   In these equations of motion, the $\mbox{skew}$ matrix of a vector
942   ${\bf v} = \left( v_1, v_2, v_3 \right)$ is defined:
# Line 947 | Line 947 | v_2 & -v_1 & 0
947   -v_3 & 0 & v_1 \\
948   v_2 & -v_1 & 0
949   \end{array}
950 < \right)
950 > \right).
951   \end{equation}
952   The $\mbox{rot}$ notation refers to the mapping of the $3 \times 3$
953   rotation matrix to a vector of orientations by first computing the
# Line 956 | Line 956 | $\mbox{skew}$ function above:
956   $\mbox{skew}$ function above:
957   \begin{equation}
958   \mbox{rot}\left(\mathsf{A}\right) := \mbox{ skew}^{-1}\left(\mathsf{A}
959 < - \mathsf{A}^{T} \right)
959 > - \mathsf{A}^{T} \right).
960   \end{equation}
961   Written this way, the $\mbox{rot}$ operation creates a set of
962   conjugate angle coordinates to the body-fixed angular momenta
# Line 964 | Line 964 | is equivalent to the more familiar body-fixed forms,
964   is equivalent to the more familiar body-fixed forms,
965   \begin{eqnarray}
966   \dot{j_{x}} & = & \tau^b_x(t)  +
967 < \left(\overleftrightarrow{\mathsf{I}}_{yy} - \overleftrightarrow{\mathsf{I}}_{zz} \right) j_y j_z \\
967 > \left(\overleftrightarrow{\mathsf{I}}_{yy} - \overleftrightarrow{\mathsf{I}}_{zz} \right) j_y j_z, \\
968   \dot{j_{y}} & = & \tau^b_y(t) +
969 < \left(\overleftrightarrow{\mathsf{I}}_{zz} - \overleftrightarrow{\mathsf{I}}_{xx} \right) j_z j_x \\
969 > \left(\overleftrightarrow{\mathsf{I}}_{zz} - \overleftrightarrow{\mathsf{I}}_{xx} \right) j_z j_x,\\
970   \dot{j_{z}} & = & \tau^b_z(t) +
971 < \left(\overleftrightarrow{\mathsf{I}}_{xx} - \overleftrightarrow{\mathsf{I}}_{yy} \right) j_x j_y
971 > \left(\overleftrightarrow{\mathsf{I}}_{xx} - \overleftrightarrow{\mathsf{I}}_{yy} \right) j_x j_y,
972   \end{eqnarray}
973   which utilize the body-fixed torques, ${\bf \tau}^b$. Torques are
974   most easily derived in the space-fixed frame,
975   \begin{equation}
976 < {\bf \tau}^b(t) = \mathsf{A}(t) \cdot {\bf \tau}^s(t)
976 > {\bf \tau}^b(t) = \mathsf{A}(t) \cdot {\bf \tau}^s(t),
977   \end{equation}
978   where the torques are either derived from the forces on the
979   constituent atoms of the rigid body, or for directional atoms,
# Line 1003 | Line 1003 | velocity-Verlet style 2-part algorithm, where $h= \del
1003   {\tt moveA:}
1004   \begin{align*}
1005   {\bf v}\left(t + h / 2\right)  &\leftarrow  {\bf v}(t)
1006 <        + \frac{h}{2} \left( {\bf f}(t) / m \right) \\
1006 >        + \frac{h}{2} \left( {\bf f}(t) / m \right), \\
1007   %
1008   {\bf r}(t + h) &\leftarrow {\bf r}(t)
1009 <        + h  {\bf v}\left(t + h / 2 \right) \\
1009 >        + h  {\bf v}\left(t + h / 2 \right), \\
1010   %
1011   {\bf j}\left(t + h / 2 \right)  &\leftarrow {\bf j}(t)
1012 <        + \frac{h}{2} {\bf \tau}^b(t)  \\
1012 >        + \frac{h}{2} {\bf \tau}^b(t), \\
1013   %
1014   \mathsf{A}(t + h) &\leftarrow \mathrm{rotate}\left( h {\bf j}
1015 <        (t + h / 2) \cdot \overleftrightarrow{\mathsf{I}}^{-1} \right)
1015 >        (t + h / 2) \cdot \overleftrightarrow{\mathsf{I}}^{-1} \right).
1016   \end{align*}
1017  
1018   In this context, the $\mathrm{rotate}$ function is the reversible product
# Line 1020 | Line 1020 | of the three body-fixed rotations,
1020   \begin{equation}
1021   \mathrm{rotate}({\bf a}) = \mathsf{G}_x(a_x / 2) \cdot
1022   \mathsf{G}_y(a_y / 2) \cdot \mathsf{G}_z(a_z) \cdot \mathsf{G}_y(a_y /
1023 < 2) \cdot \mathsf{G}_x(a_x /2)
1023 > 2) \cdot \mathsf{G}_x(a_x /2),
1024   \end{equation}
1025   where each rotational propagator, $\mathsf{G}_\alpha(\theta)$, rotates
1026   both the rotation matrix ($\mathsf{A}$) and the body-fixed angular
# Line 1029 | Line 1029 | $\alpha$,
1029   \begin{equation}
1030   \mathsf{G}_\alpha( \theta ) = \left\{
1031   \begin{array}{lcl}
1032 < \mathsf{A}(t) & \leftarrow & \mathsf{A}(0) \cdot \mathsf{R}_\alpha(\theta)^T \\
1033 < {\bf j}(t) & \leftarrow & \mathsf{R}_\alpha(\theta) \cdot {\bf j}(0)
1032 > \mathsf{A}(t) & \leftarrow & \mathsf{A}(0) \cdot \mathsf{R}_\alpha(\theta)^T, \\
1033 > {\bf j}(t) & \leftarrow & \mathsf{R}_\alpha(\theta) \cdot {\bf j}(0).
1034   \end{array}
1035   \right.
1036   \end{equation}
# Line 1057 | Line 1057 | torques are calculated at the new positions and orient
1057   {\tt doForces:}
1058   \begin{align*}
1059   {\bf f}(t + h) &\leftarrow  
1060 <        - \left(\frac{\partial V}{\partial {\bf r}}\right)_{{\bf r}(t + h)} \\
1060 >        - \left(\frac{\partial V}{\partial {\bf r}}\right)_{{\bf r}(t + h)}, \\
1061   %
1062   {\bf \tau}^{s}(t + h) &\leftarrow {\bf u}(t + h)
1063 <        \times \frac{\partial V}{\partial {\bf u}} \\
1063 >        \times \frac{\partial V}{\partial {\bf u}}, \\
1064   %
1065   {\bf \tau}^{b}(t + h) &\leftarrow \mathsf{A}(t + h)
1066 <        \cdot {\bf \tau}^s(t + h)
1066 >        \cdot {\bf \tau}^s(t + h).
1067   \end{align*}
1068  
1069   {\sc oopse} automatically updates ${\bf u}$ when the rotation matrix
# Line 1074 | Line 1074 | advanced to the same time value.
1074   {\tt moveB:}
1075   \begin{align*}
1076   {\bf v}\left(t + h \right)  &\leftarrow  {\bf v}\left(t + h / 2 \right)
1077 <        + \frac{h}{2} \left( {\bf f}(t + h) / m \right) \\
1077 >        + \frac{h}{2} \left( {\bf f}(t + h) / m \right), \\
1078   %
1079   {\bf j}\left(t + h \right)  &\leftarrow {\bf j}\left(t + h / 2 \right)
1080 <        + \frac{h}{2} {\bf \tau}^b(t + h)  
1080 >        + \frac{h}{2} {\bf \tau}^b(t + h) .
1081   \end{align*}
1082  
1083   The matrix rotations used in the DLM method end up being more costly
# Line 1195 | Line 1195 | The Nos\'e-Hoover equations of motion are given by\cit
1195  
1196   The Nos\'e-Hoover equations of motion are given by\cite{Hoover85}
1197   \begin{eqnarray}
1198 < \dot{{\bf r}} & = & {\bf v} \\
1199 < \dot{{\bf v}} & = & \frac{{\bf f}}{m} - \chi {\bf v} \\
1198 > \dot{{\bf r}} & = & {\bf v}, \\
1199 > \dot{{\bf v}} & = & \frac{{\bf f}}{m} - \chi {\bf v} ,\\
1200   \dot{\mathsf{A}} & = & \mathsf{A} \cdot
1201 < \mbox{ skew}\left(\overleftrightarrow{\mathsf{I}}^{-1} \cdot {\bf j}\right) \\
1201 > \mbox{ skew}\left(\overleftrightarrow{\mathsf{I}}^{-1} \cdot {\bf j}\right), \\
1202   \dot{{\bf j}} & = & {\bf j} \times \left( \overleftrightarrow{\mathsf{I}}^{-1}
1203   \cdot {\bf j} \right) - \mbox{ rot}\left(\mathsf{A}^{T} \cdot \frac{\partial
1204 < V}{\partial \mathsf{A}} \right) - \chi {\bf j}
1204 > V}{\partial \mathsf{A}} \right) - \chi {\bf j}.
1205   \label{eq:nosehoovereom}
1206   \end{eqnarray}
1207  
# Line 1219 | Line 1219 | Here, $f$ is the total number of degrees of freedom in
1219   \end{equation}
1220   Here, $f$ is the total number of degrees of freedom in the system,
1221   \begin{equation}
1222 < f = 3 N + 3 N_{\mathrm{orient}} - N_{\mathrm{constraints}}
1222 > f = 3 N + 3 N_{\mathrm{orient}} - N_{\mathrm{constraints}},
1223   \end{equation}
1224   and $K$ is the total kinetic energy,
1225   \begin{equation}
1226   K = \sum_{i=1}^{N} \frac{1}{2} m_i {\bf v}_i^T \cdot {\bf v}_i +
1227   \sum_{i=1}^{N_{\mathrm{orient}}}  \frac{1}{2} {\bf j}_i^T \cdot
1228 < \overleftrightarrow{\mathsf{I}}_i^{-1} \cdot {\bf j}_i
1228 > \overleftrightarrow{\mathsf{I}}_i^{-1} \cdot {\bf j}_i.
1229   \end{equation}
1230  
1231   In eq.(\ref{eq:nosehooverext}), $\tau_T$ is the time constant for
# Line 1239 | Line 1239 | part algorithm:
1239  
1240   {\tt moveA:}
1241   \begin{align*}
1242 < T(t) &\leftarrow \left\{{\bf v}(t)\right\}, \left\{{\bf j}(t)\right\} \\
1242 > T(t) &\leftarrow \left\{{\bf v}(t)\right\}, \left\{{\bf j}(t)\right\} ,\\
1243   %
1244   {\bf v}\left(t + h / 2\right)  &\leftarrow {\bf v}(t)
1245          + \frac{h}{2} \left( \frac{{\bf f}(t)}{m} - {\bf v}(t)
1246 <        \chi(t)\right) \\
1246 >        \chi(t)\right), \\
1247   %
1248   {\bf r}(t + h) &\leftarrow {\bf r}(t)
1249 <        + h {\bf v}\left(t + h / 2 \right) \\
1249 >        + h {\bf v}\left(t + h / 2 \right) ,\\
1250   %
1251   {\bf j}\left(t + h / 2 \right)  &\leftarrow {\bf j}(t)
1252          + \frac{h}{2} \left( {\bf \tau}^b(t) - {\bf j}(t)
1253 <        \chi(t) \right) \\
1253 >        \chi(t) \right) ,\\
1254   %
1255   \mathsf{A}(t + h) &\leftarrow \mathrm{rotate}
1256          \left(h * {\bf j}(t + h / 2)
1257 <        \overleftrightarrow{\mathsf{I}}^{-1} \right) \\
1257 >        \overleftrightarrow{\mathsf{I}}^{-1} \right) ,\\
1258   %
1259   \chi\left(t + h / 2 \right) &\leftarrow \chi(t)
1260          + \frac{h}{2 \tau_T^2} \left( \frac{T(t)}
1261 <        {T_{\mathrm{target}}} - 1 \right)
1261 >        {T_{\mathrm{target}}} - 1 \right) .
1262   \end{align*}
1263  
1264   Here $\mathrm{rotate}(h * {\bf j}
# Line 1279 | Line 1279 | T(t + h) &\leftarrow \left\{{\bf v}(t + h)\right\},
1279   {\tt moveB:}
1280   \begin{align*}
1281   T(t + h) &\leftarrow \left\{{\bf v}(t + h)\right\},
1282 <        \left\{{\bf j}(t + h)\right\} \\
1282 >        \left\{{\bf j}(t + h)\right\}, \\
1283   %
1284   \chi\left(t + h \right) &\leftarrow \chi\left(t + h /
1285          2 \right) + \frac{h}{2 \tau_T^2} \left( \frac{T(t+h)}
1286 <        {T_{\mathrm{target}}} - 1 \right) \\
1286 >        {T_{\mathrm{target}}} - 1 \right), \\
1287   %
1288   {\bf v}\left(t + h \right)  &\leftarrow {\bf v}\left(t
1289          + h / 2 \right) + \frac{h}{2} \left(
1290          \frac{{\bf f}(t + h)}{m} - {\bf v}(t + h)
1291 <        \chi(t h)\right) \\
1291 >        \chi(t h)\right) ,\\
1292   %
1293   {\bf j}\left(t + h \right) &\leftarrow {\bf j}\left(t
1294          + h / 2 \right) + \frac{h}{2}
1295          \left( {\bf \tau}^b(t + h) - {\bf j}(t + h)
1296 <        \chi(t + h) \right)
1296 >        \chi(t + h) \right) .
1297   \end{align*}
1298  
1299   Since ${\bf v}(t + h)$ and ${\bf j}(t + h)$ are required to caclculate
# Line 1310 | Line 1310 | H_{\mathrm{NVT}} = V + K + f k_B T_{\mathrm{target}} \
1310   \begin{equation}
1311   H_{\mathrm{NVT}} = V + K + f k_B T_{\mathrm{target}} \left(
1312   \frac{\tau_{T}^2 \chi^2(t)}{2} + \int_{0}^{t} \chi(t^\prime) dt^\prime
1313 < \right)
1313 > \right).
1314   \end{equation}
1315   Poor choices of $h$ or $\tau_T$ can result in non-conservation
1316   of $H_{\mathrm{NVT}}$, so the conserved quantity is maintained in the
# Line 1329 | Line 1329 | equations of motion,\cite{melchionna93}
1329   equations of motion,\cite{melchionna93}
1330  
1331   \begin{eqnarray}
1332 < \dot{{\bf r}} & = & {\bf v} + \eta \left( {\bf r} - {\bf R}_0 \right) \\
1333 < \dot{{\bf v}} & = & \frac{{\bf f}}{m} - (\eta + \chi) {\bf v} \\
1332 > \dot{{\bf r}} & = & {\bf v} + \eta \left( {\bf r} - {\bf R}_0 \right), \\
1333 > \dot{{\bf v}} & = & \frac{{\bf f}}{m} - (\eta + \chi) {\bf v}, \\
1334   \dot{\mathsf{A}} & = & \mathsf{A} \cdot
1335 < \mbox{ skew}\left(\overleftrightarrow{I}^{-1} \cdot {\bf j}\right) \\
1335 > \mbox{ skew}\left(\overleftrightarrow{I}^{-1} \cdot {\bf j}\right),\\
1336   \dot{{\bf j}} & = & {\bf j} \times \left( \overleftrightarrow{I}^{-1}
1337   \cdot {\bf j} \right) - \mbox{ rot}\left(\mathsf{A}^{T} \cdot \frac{\partial
1338 < V}{\partial \mathsf{A}} \right) - \chi {\bf j} \\
1338 > V}{\partial \mathsf{A}} \right) - \chi {\bf j}, \\
1339   \dot{\chi} & = & \frac{1}{\tau_{T}^2} \left(
1340 < \frac{T}{T_{\mathrm{target}}} - 1 \right) \\
1340 > \frac{T}{T_{\mathrm{target}}} - 1 \right) ,\\
1341   \dot{\eta} & = & \frac{1}{\tau_{B}^2 f k_B T_{\mathrm{target}}} V \left( P -
1342 < P_{\mathrm{target}} \right) \\
1343 < \dot{\mathcal{V}} & = & 3 \mathcal{V} \eta
1342 > P_{\mathrm{target}} \right), \\
1343 > \dot{\mathcal{V}} & = & 3 \mathcal{V} \eta .
1344   \label{eq:melchionna1}
1345   \end{eqnarray}
1346  
# Line 1353 | Line 1353 | describes the box shape:
1353   volume can be calculated from the determinant of the matrix which
1354   describes the box shape:
1355   \begin{equation}
1356 < \mathcal{V} = \det(\mathsf{H})
1356 > \mathcal{V} = \det(\mathsf{H}).
1357   \end{equation}
1358  
1359   The NPTi integrator requires an instantaneous pressure. This quantity
# Line 1361 | Line 1361 | is calculated via the pressure tensor,
1361   \begin{equation}
1362   \overleftrightarrow{\mathsf{P}}(t) = \frac{1}{\mathcal{V}(t)} \left(
1363   \sum_{i=1}^{N} m_i {\bf v}_i(t) \otimes {\bf v}_i(t) \right) +
1364 < \overleftrightarrow{\mathsf{W}}(t)
1364 > \overleftrightarrow{\mathsf{W}}(t).
1365   \end{equation}
1366   The kinetic contribution to the pressure tensor utilizes the {\it
1367   outer} product of the velocities denoted by the $\otimes$ symbol.  The
# Line 1370 | Line 1370 | r}_i$) with the forces between the same two atoms,
1370   r}_i$) with the forces between the same two atoms,
1371   \begin{equation}
1372   \overleftrightarrow{\mathsf{W}}(t) = \sum_{i} \sum_{j>i} {\bf r}_{ij}(t)
1373 < \otimes {\bf f}_{ij}(t)
1373 > \otimes {\bf f}_{ij}(t).
1374   \end{equation}
1375   The instantaneous pressure is then simply obtained from the trace of
1376   the Pressure tensor,
1377   \begin{equation}
1378 < P(t) = \frac{1}{3} \mathrm{Tr} \left( \overleftrightarrow{\mathsf{P}}(t)
1378 > P(t) = \frac{1}{3} \mathrm{Tr} \left( \overleftrightarrow{\mathsf{P}}(t).
1379   \right)
1380   \end{equation}
1381  
# Line 1390 | Line 1390 | velocity-Verlet style 2 part algorithm:
1390  
1391   {\tt moveA:}
1392   \begin{align*}
1393 < T(t) &\leftarrow \left\{{\bf v}(t)\right\}, \left\{{\bf j}(t)\right\} \\
1393 > T(t) &\leftarrow \left\{{\bf v}(t)\right\}, \left\{{\bf j}(t)\right\} ,\\
1394   %
1395 < P(t) &\leftarrow \left\{{\bf r}(t)\right\}, \left\{{\bf v}(t)\right\} \\
1395 > P(t) &\leftarrow \left\{{\bf r}(t)\right\}, \left\{{\bf v}(t)\right\} ,\\
1396   %
1397   {\bf v}\left(t + h / 2\right)  &\leftarrow {\bf v}(t)
1398          + \frac{h}{2} \left( \frac{{\bf f}(t)}{m} - {\bf v}(t)
1399 <        \left(\chi(t) + \eta(t) \right) \right) \\
1399 >        \left(\chi(t) + \eta(t) \right) \right), \\
1400   %
1401   {\bf j}\left(t + h / 2 \right)  &\leftarrow {\bf j}(t)
1402          + \frac{h}{2} \left( {\bf \tau}^b(t) - {\bf j}(t)
1403 <        \chi(t) \right) \\
1403 >        \chi(t) \right), \\
1404   %
1405   \mathsf{A}(t + h) &\leftarrow \mathrm{rotate}\left(h *
1406          {\bf j}(t + h / 2) \overleftrightarrow{\mathsf{I}}^{-1}
1407 <        \right) \\
1407 >        \right) ,\\
1408   %
1409   \chi\left(t + h / 2 \right) &\leftarrow \chi(t) +
1410          \frac{h}{2 \tau_T^2} \left( \frac{T(t)}{T_{\mathrm{target}}} - 1
1411 <        \right) \\
1411 >        \right) ,\\
1412   %
1413   \eta(t + h / 2) &\leftarrow \eta(t) + \frac{h
1414          \mathcal{V}(t)}{2 N k_B T(t) \tau_B^2} \left( P(t)
1415 <        - P_{\mathrm{target}} \right) \\
1415 >        - P_{\mathrm{target}} \right), \\
1416   %
1417   {\bf r}(t + h) &\leftarrow {\bf r}(t) + h
1418          \left\{ {\bf v}\left(t + h / 2 \right)
1419          + \eta(t + h / 2)\left[ {\bf r}(t + h)
1420 <        - {\bf R}_0 \right] \right\} \\
1420 >        - {\bf R}_0 \right] \right\} ,\\
1421   %
1422   \mathsf{H}(t + h) &\leftarrow e^{-h \eta(t + h / 2)}
1423 <        \mathsf{H}(t)
1423 >        \mathsf{H}(t).
1424   \end{align*}
1425  
1426   Most of these equations are identical to their counterparts in the NVT
# Line 1433 | Line 1433 | the box by
1433   h / 2$.  Reshaping the box uniformly also scales the volume of
1434   the box by
1435   \begin{equation}
1436 < \mathcal{V}(t + h) \leftarrow e^{ - 3 h \eta(t + h /2)}
1436 > \mathcal{V}(t + h) \leftarrow e^{ - 3 h \eta(t + h /2)}.
1437   \mathcal{V}(t)
1438   \end{equation}
1439  
# Line 1445 | Line 1445 | T(t + h) &\leftarrow \left\{{\bf v}(t + h)\right\},
1445   {\tt moveB:}
1446   \begin{align*}
1447   T(t + h) &\leftarrow \left\{{\bf v}(t + h)\right\},
1448 <        \left\{{\bf j}(t + h)\right\} \\
1448 >        \left\{{\bf j}(t + h)\right\} ,\\
1449   %
1450   P(t + h) &\leftarrow  \left\{{\bf r}(t + h)\right\},
1451 <        \left\{{\bf v}(t + h)\right\} \\
1451 >        \left\{{\bf v}(t + h)\right\}, \\
1452   %
1453   \chi\left(t + h \right) &\leftarrow \chi\left(t + h /
1454          2 \right) + \frac{h}{2 \tau_T^2} \left( \frac{T(t+h)}
1455 <        {T_{\mathrm{target}}} - 1 \right) \\
1455 >        {T_{\mathrm{target}}} - 1 \right), \\
1456   %
1457   \eta(t + h) &\leftarrow \eta(t + h / 2) +
1458          \frac{h \mathcal{V}(t + h)}{2 N k_B T(t + h)
1459 <        \tau_B^2} \left( P(t + h) - P_{\mathrm{target}} \right) \\
1459 >        \tau_B^2} \left( P(t + h) - P_{\mathrm{target}} \right), \\
1460   %
1461   {\bf v}\left(t + h \right)  &\leftarrow {\bf v}\left(t
1462          + h / 2 \right) + \frac{h}{2} \left(
1463          \frac{{\bf f}(t + h)}{m} - {\bf v}(t + h)
1464 <        (\chi(t + h) + \eta(t + h)) \right) \\
1464 >        (\chi(t + h) + \eta(t + h)) \right) ,\\
1465   %
1466   {\bf j}\left(t + h \right)  &\leftarrow {\bf j}\left(t
1467          + h / 2 \right) + \frac{h}{2} \left( {\bf
1468          \tau}^b(t + h) - {\bf j}(t + h)
1469 <        \chi(t + h) \right)
1469 >        \chi(t + h) \right) .
1470   \end{align*}
1471  
1472   Once again, since ${\bf v}(t + h)$ and ${\bf j}(t + h)$ are required
# Line 1512 | Line 1512 | the box shape.  The equations of motion for this metho
1512   extended variables ($\overleftrightarrow{\eta}$) to control changes to
1513   the box shape.  The equations of motion for this method are
1514   \begin{eqnarray}
1515 < \dot{{\bf r}} & = & {\bf v} + \overleftrightarrow{\eta} \cdot \left( {\bf r} - {\bf R}_0 \right) \\
1515 > \dot{{\bf r}} & = & {\bf v} + \overleftrightarrow{\eta} \cdot \left( {\bf r} - {\bf R}_0 \right), \\
1516   \dot{{\bf v}} & = & \frac{{\bf f}}{m} - (\overleftrightarrow{\eta} +
1517 < \chi \cdot \mathsf{1}) {\bf v} \\
1517 > \chi \cdot \mathsf{1}) {\bf v}, \\
1518   \dot{\mathsf{A}} & = & \mathsf{A} \cdot
1519 < \mbox{ skew}\left(\overleftrightarrow{I}^{-1} \cdot {\bf j}\right) \\
1519 > \mbox{ skew}\left(\overleftrightarrow{I}^{-1} \cdot {\bf j}\right) ,\\
1520   \dot{{\bf j}} & = & {\bf j} \times \left( \overleftrightarrow{I}^{-1}
1521   \cdot {\bf j} \right) - \mbox{ rot}\left(\mathsf{A}^{T} \cdot \frac{\partial
1522 < V}{\partial \mathsf{A}} \right) - \chi {\bf j} \\
1522 > V}{\partial \mathsf{A}} \right) - \chi {\bf j} ,\\
1523   \dot{\chi} & = & \frac{1}{\tau_{T}^2} \left(
1524 < \frac{T}{T_{\mathrm{target}}} - 1 \right) \\
1524 > \frac{T}{T_{\mathrm{target}}} - 1 \right) ,\\
1525   \dot{\overleftrightarrow{\eta}} & = & \frac{1}{\tau_{B}^2 f k_B
1526 < T_{\mathrm{target}}} V \left( \overleftrightarrow{\mathsf{P}} - P_{\mathrm{target}}\mathsf{1} \right) \\
1527 < \dot{\mathsf{H}} & = &  \overleftrightarrow{\eta} \cdot \mathsf{H}
1526 > T_{\mathrm{target}}} V \left( \overleftrightarrow{\mathsf{P}} - P_{\mathrm{target}}\mathsf{1} \right) ,\\
1527 > \dot{\mathsf{H}} & = &  \overleftrightarrow{\eta} \cdot \mathsf{H} .
1528   \label{eq:melchionna2}
1529   \end{eqnarray}
1530  
# Line 1537 | Line 1537 | NPTi integration:
1537  
1538   {\tt moveA:}
1539   \begin{align*}
1540 < T(t) &\leftarrow \left\{{\bf v}(t)\right\}, \left\{{\bf j}(t)\right\} \\
1540 > T(t) &\leftarrow \left\{{\bf v}(t)\right\}, \left\{{\bf j}(t)\right\} ,\\
1541   %
1542   \overleftrightarrow{\mathsf{P}}(t) &\leftarrow \left\{{\bf r}(t)\right\},
1543 <        \left\{{\bf v}(t)\right\} \\
1543 >        \left\{{\bf v}(t)\right\} ,\\
1544   %
1545   {\bf v}\left(t + h / 2\right)  &\leftarrow {\bf v}(t)
1546          + \frac{h}{2} \left( \frac{{\bf f}(t)}{m} -
1547          \left(\chi(t)\mathsf{1} + \overleftrightarrow{\eta}(t) \right) \cdot
1548 <        {\bf v}(t) \right) \\
1548 >        {\bf v}(t) \right), \\
1549   %
1550   {\bf j}\left(t + h / 2 \right)  &\leftarrow {\bf j}(t)
1551          + \frac{h}{2} \left( {\bf \tau}^b(t) - {\bf j}(t)
1552 <        \chi(t) \right) \\
1552 >        \chi(t) \right), \\
1553   %
1554   \mathsf{A}(t + h) &\leftarrow \mathrm{rotate}\left(h *
1555          {\bf j}(t + h / 2) \overleftrightarrow{\mathsf{I}}^{-1}
1556 <        \right) \\
1556 >        \right), \\
1557   %
1558   \chi\left(t + h / 2 \right) &\leftarrow \chi(t) +
1559          \frac{h}{2 \tau_T^2} \left( \frac{T(t)}{T_{\mathrm{target}}}
1560 <        - 1 \right) \\
1560 >        - 1 \right), \\
1561   %
1562   \overleftrightarrow{\eta}(t + h / 2) &\leftarrow
1563          \overleftrightarrow{\eta}(t) + \frac{h \mathcal{V}(t)}{2 N k_B
1564          T(t) \tau_B^2} \left( \overleftrightarrow{\mathsf{P}}(t)
1565 <        - P_{\mathrm{target}}\mathsf{1} \right) \\
1565 >        - P_{\mathrm{target}}\mathsf{1} \right), \\
1566   %
1567   {\bf r}(t + h) &\leftarrow {\bf r}(t) + h \left\{ {\bf v}
1568          \left(t + h / 2 \right) + \overleftrightarrow{\eta}(t +
1569          h / 2) \cdot \left[ {\bf r}(t + h)
1570 <        - {\bf R}_0 \right] \right\} \\
1570 >        - {\bf R}_0 \right] \right\}, \\
1571   %
1572   \mathsf{H}(t + h) &\leftarrow \mathsf{H}(t) \cdot e^{-h
1573 <        \overleftrightarrow{\eta}(t + h / 2)}
1573 >        \overleftrightarrow{\eta}(t + h / 2)} .
1574   \end{align*}
1575   {\sc oopse} uses a power series expansion truncated at second order
1576   for the exponential operation which scales the simulation box.
# Line 1581 | Line 1581 | T(t + h) &\leftarrow \left\{{\bf v}(t + h)\right\},
1581   {\tt moveB:}
1582   \begin{align*}
1583   T(t + h) &\leftarrow \left\{{\bf v}(t + h)\right\},
1584 <        \left\{{\bf j}(t + h)\right\} \\
1584 >        \left\{{\bf j}(t + h)\right\}, \\
1585   %
1586   \overleftrightarrow{\mathsf{P}}(t + h) &\leftarrow \left\{{\bf r}
1587          (t + h)\right\}, \left\{{\bf v}(t
1588 <        + h)\right\}, \left\{{\bf f}(t + h)\right\} \\
1588 >        + h)\right\}, \left\{{\bf f}(t + h)\right\} ,\\
1589   %
1590   \chi\left(t + h \right) &\leftarrow \chi\left(t + h /
1591          2 \right) + \frac{h}{2 \tau_T^2} \left( \frac{T(t+
1592 <        h)}{T_{\mathrm{target}}} - 1 \right) \\
1592 >        h)}{T_{\mathrm{target}}} - 1 \right), \\
1593   %
1594   \overleftrightarrow{\eta}(t + h) &\leftarrow
1595          \overleftrightarrow{\eta}(t + h / 2) +
1596          \frac{h \mathcal{V}(t + h)}{2 N k_B T(t + h)
1597          \tau_B^2} \left( \overleftrightarrow{P}(t + h)
1598 <        - P_{\mathrm{target}}\mathsf{1} \right) \\
1598 >        - P_{\mathrm{target}}\mathsf{1} \right) ,\\
1599   %
1600   {\bf v}\left(t + h \right)  &\leftarrow {\bf v}\left(t
1601          + h / 2 \right) + \frac{h}{2} \left(
1602          \frac{{\bf f}(t + h)}{m} -
1603          (\chi(t + h)\mathsf{1} + \overleftrightarrow{\eta}(t
1604 <        + h)) \right) \cdot {\bf v}(t + h) \\
1604 >        + h)) \right) \cdot {\bf v}(t + h), \\
1605   %
1606   {\bf j}\left(t + h \right)  &\leftarrow {\bf j}\left(t
1607          + h / 2 \right) + \frac{h}{2} \left( {\bf \tau}^b(t
1608 <        + h) - {\bf j}(t + h) \chi(t + h) \right)
1608 >        + h) - {\bf j}(t + h) \chi(t + h) \right) .
1609   \end{align*}
1610  
1611   The iterative schemes for both {\tt moveA} and {\tt moveB} are
# Line 1671 | Line 1671 | The Lagrange formulation of the equations of motion ca
1671   \delta\int_{t_1}^{t_2}L\, dt =
1672          \int_{t_1}^{t_2} \sum_i \biggl [ \frac{\partial L}{\partial q_i}
1673          - \frac{d}{dt}\biggl(\frac{\partial L}{\partial \dot{q}_i}
1674 <        \biggr ) \biggr] \delta q_i \, dt = 0
1674 >        \biggr ) \biggr] \delta q_i \, dt = 0.
1675   \label{oopseEq:lm2}
1676   \end{equation}
1677   Here, $\delta q_i$ is not independent for each $q$, as $q_1$ and $q_2$
# Line 1679 | Line 1679 | instant of time, giving:
1679   instant of time, giving:
1680   \begin{align}
1681   \delta\sigma &= \biggl( \frac{\partial\sigma}{\partial q_1} \delta q_1 %
1682 <        + \frac{\partial\sigma}{\partial q_2} \delta q_2 \biggr) = 0 \\
1682 >        + \frac{\partial\sigma}{\partial q_2} \delta q_2 \biggr) = 0 ,\\
1683   %
1684   \frac{\partial\sigma}{\partial q_1} \delta q_1 &= %
1685 <        - \frac{\partial\sigma}{\partial q_2} \delta q_2 \\
1685 >        - \frac{\partial\sigma}{\partial q_2} \delta q_2, \\
1686   %
1687   \delta q_2 &= - \biggl(\frac{\partial\sigma}{\partial q_1} \bigg / %
1688 <        \frac{\partial\sigma}{\partial q_2} \biggr) \delta q_1
1688 >        \frac{\partial\sigma}{\partial q_2} \biggr) \delta q_1.
1689   \end{align}
1690   Substituted back into Eq.~\ref{oopseEq:lm2},
1691   \begin{equation}
# Line 1695 | Line 1695 | Substituted back into Eq.~\ref{oopseEq:lm2},
1695          - \biggl( \frac{\partial L}{\partial q_1}
1696          - \frac{d}{dt}\,\frac{\partial L}{\partial \dot{q}_1}
1697          \biggr) \biggl(\frac{\partial\sigma}{\partial q_1} \bigg / %
1698 <        \frac{\partial\sigma}{\partial q_2} \biggr)\biggr] \delta q_1 \, dt = 0
1698 >        \frac{\partial\sigma}{\partial q_2} \biggr)\biggr] \delta q_1 \, dt = 0.
1699   \label{oopseEq:lm3}
1700   \end{equation}
1701   Leading to,
# Line 1705 | Line 1705 | Leading to,
1705          \biggr)}{\frac{\partial\sigma}{\partial q_1}} =
1706   \frac{\biggl(\frac{\partial L}{\partial q_2}
1707          - \frac{d}{dt}\,\frac{\partial L}{\partial \dot{q}_2}
1708 <        \biggr)}{\frac{\partial\sigma}{\partial q_2}}
1708 >        \biggr)}{\frac{\partial\sigma}{\partial q_2}}.
1709   \label{oopseEq:lm4}
1710   \end{equation}
1711   This relation can only be statisfied, if both are equal to a single
# Line 1713 | Line 1713 | function $-\lambda(t)$,
1713   \begin{align}
1714   \frac{\biggl(\frac{\partial L}{\partial q_1}
1715          - \frac{d}{dt}\,\frac{\partial L}{\partial \dot{q}_1}
1716 <        \biggr)}{\frac{\partial\sigma}{\partial q_1}} &= -\lambda(t) \\
1716 >        \biggr)}{\frac{\partial\sigma}{\partial q_1}} &= -\lambda(t), \\
1717   %
1718   \frac{\partial L}{\partial q_1}
1719          - \frac{d}{dt}\,\frac{\partial L}{\partial \dot{q}_1} &=
1720 <         -\lambda(t)\,\frac{\partial\sigma}{\partial q_1} \\
1720 >         -\lambda(t)\,\frac{\partial\sigma}{\partial q_1} ,\\
1721   %
1722   \frac{\partial L}{\partial q_1}
1723          - \frac{d}{dt}\,\frac{\partial L}{\partial \dot{q}_1}
1724 <         + \mathcal{G}_i &= 0
1724 >         + \mathcal{G}_i &= 0,
1725   \end{align}
1726 < Where $\mathcal{G}_i$, the force of constraint on $i$, is:
1726 > where $\mathcal{G}_i$, the force of constraint on $i$, is:
1727   \begin{equation}
1728 < \mathcal{G}_i = \lambda(t)\,\frac{\partial\sigma}{\partial q_1}
1728 > \mathcal{G}_i = \lambda(t)\,\frac{\partial\sigma}{\partial q_1}.
1729   \label{oopseEq:lm5}
1730   \end{equation}
1731  
# Line 1751 | Line 1751 | following two constraints:
1751   \begin{align}
1752   \sigma_{ij}[\mathbf{r}(t)] \equiv
1753          [ \mathbf{r}_i(t) - \mathbf{r}_j(t)]^2  - d_{ij}^2 &= 0 %
1754 <        \label{oopseEq:c1} \\
1754 >        \label{oopseEq:c1}, \\
1755   %
1756   [\mathbf{\dot{r}}_i(t) - \mathbf{\dot{r}}_j(t)] \cdot
1757 <        [\mathbf{r}_i(t) - \mathbf{r}_j(t)] &= 0 \label{oopseEq:c2}
1757 >        [\mathbf{r}_i(t) - \mathbf{r}_j(t)] &= 0 .\label{oopseEq:c2}
1758   \end{align}
1759   Eq.~\ref{oopseEq:c1} is the set of bond constraints, where $d_{ij}$ is
1760   the constrained distance between atom $i$ and
# Line 1762 | Line 1762 | nor shrink. The constrained dynamics equations become:
1762   be perpendicular to the bond vector, so that the bond can neither grow
1763   nor shrink. The constrained dynamics equations become:
1764   \begin{equation}
1765 < m_i \mathbf{\ddot{r}}_i = \mathbf{F}_i + \mathbf{\mathcal{G}}_i
1765 > m_i \mathbf{\ddot{r}}_i = \mathbf{F}_i + \mathbf{\mathcal{G}}_i,
1766   \label{oopseEq:r1}
1767   \end{equation}
1768 < Where,$\mathbf{\mathcal{G}}_i$ are the forces of constraint on $i$,
1768 > where,$\mathbf{\mathcal{G}}_i$ are the forces of constraint on $i$,
1769   and are defined:
1770   \begin{equation}
1771 < \mathbf{\mathcal{G}}_i = - \sum_j \lambda_{ij}(t)\,\nabla \sigma_{ij}
1771 > \mathbf{\mathcal{G}}_i = - \sum_j \lambda_{ij}(t)\,\nabla \sigma_{ij}.
1772   \label{oopseEq:r2}
1773   \end{equation}
1774  
# Line 1777 | Line 1777 | In Velocity Verlet, if $\Delta t = h$, the propagation
1777   \mathbf{r}_i(t+h) &=
1778          \mathbf{r}_i(t) + h\mathbf{\dot{r}}(t) +
1779          \frac{h^2}{2m_i}\,\Bigl[ \mathbf{F}_i(t) +
1780 <        \mathbf{\mathcal{G}}_{Ri}(t) \Bigr] \label{oopseEq:vv1} \\
1780 >        \mathbf{\mathcal{G}}_{Ri}(t) \Bigr] \label{oopseEq:vv1}, \\
1781   %
1782   \mathbf{\dot{r}}_i(t+h) &=
1783          \mathbf{\dot{r}}_i(t) + \frac{h}{2m_i}
1784          \Bigl[ \mathbf{F}_i(t) + \mathbf{\mathcal{G}}_{Ri}(t) +
1785 <        \mathbf{F}_i(t+h) + \mathbf{\mathcal{G}}_{Vi}(t+h) \Bigr] %
1785 >        \mathbf{F}_i(t+h) + \mathbf{\mathcal{G}}_{Vi}(t+h) \Bigr] ,%
1786          \label{oopseEq:vv2}
1787   \end{align}
1788 < Where:
1788 > where:
1789   \begin{align}
1790   \mathbf{\mathcal{G}}_{Ri}(t) &=
1791 <        -2 \sum_j \lambda_{Rij}(t) \mathbf{r}_{ij}(t) \\
1791 >        -2 \sum_j \lambda_{Rij}(t) \mathbf{r}_{ij}(t) ,\\
1792   %
1793   \mathbf{\mathcal{G}}_{Vi}(t+h) &=
1794 <        -2 \sum_j \lambda_{Vij}(t+h) \mathbf{r}(t+h)
1794 >        -2 \sum_j \lambda_{Vij}(t+h) \mathbf{r}(t+h).
1795   \end{align}
1796   Next, define:
1797   \begin{align}
1798 < g_{ij} &= h \lambda_{Rij}(t) \\
1799 < k_{ij} &= h \lambda_{Vij}(t+h) \\
1798 > g_{ij} &= h \lambda_{Rij}(t) ,\\
1799 > k_{ij} &= h \lambda_{Vij}(t+h), \\
1800   \mathbf{q}_i &= \mathbf{\dot{r}}_i(t) + \frac{h}{2m_i} \mathbf{F}_i(t)
1801 <        - \frac{1}{m_i}\sum_j g_{ij}\mathbf{r}_{ij}(t)
1801 >        - \frac{1}{m_i}\sum_j g_{ij}\mathbf{r}_{ij}(t).
1802   \end{align}
1803   Using these definitions, Eq.~\ref{oopseEq:vv1} and \ref{oopseEq:vv2}
1804   can be rewritten as,
1805   \begin{align}
1806 < \mathbf{r}_i(t+h) &= \mathbf{r}_i(t) + h \mathbf{q}_i \\
1806 > \mathbf{r}_i(t+h) &= \mathbf{r}_i(t) + h \mathbf{q}_i ,\\
1807   %
1808   \mathbf{\dot{r}}(t+h) &= \mathbf{q}_i + \frac{h}{2m_i}\mathbf{F}_i(t+h)
1809 <        -\frac{1}{m_i}\sum_j k_{ij} \mathbf{r}_{ij}(t+h)
1809 >        -\frac{1}{m_i}\sum_j k_{ij} \mathbf{r}_{ij}(t+h).
1810   \end{align}
1811  
1812   To integrate the equations of motion, the {\sc rattle} algorithm first
1813   solves for $\mathbf{r}(t+h)$. Let,
1814   \begin{equation}
1815 < \mathbf{q}_i = \mathbf{\dot{r}}(t) + \frac{h}{2m_i}\mathbf{F}_i(t)
1815 > \mathbf{q}_i = \mathbf{\dot{r}}(t) + \frac{h}{2m_i}\mathbf{F}_i(t).
1816   \end{equation}
1817   Here $\mathbf{q}_i$ corresponds to an initial unconstrained move. Next
1818   pick a constraint $j$, and let,
1819   \begin{equation}
1820   \mathbf{s} = \mathbf{r}_i(t) + h\mathbf{q}_i(t)
1821 <        - \mathbf{r}_j(t) + h\mathbf{q}_j(t)
1821 >        - \mathbf{r}_j(t) + h\mathbf{q}_j(t).
1822   \label{oopseEq:ra1}
1823   \end{equation}
1824   If
# Line 1829 | Line 1829 | positions. First we define a test corrected configurat
1829   positions. First we define a test corrected configuration as,
1830   \begin{align}
1831   \mathbf{r}_i^T(t+h) = \mathbf{r}_i(t) + h\biggl[\mathbf{q}_i -
1832 <        g_{ij}\,\frac{\mathbf{r}_{ij}(t)}{m_i} \biggr] \\
1832 >        g_{ij}\,\frac{\mathbf{r}_{ij}(t)}{m_i} \biggr] ,\\
1833   %
1834   \mathbf{r}_j^T(t+h) = \mathbf{r}_j(t) + h\biggl[\mathbf{q}_j +
1835 <        g_{ij}\,\frac{\mathbf{r}_{ij}(t)}{m_j} \biggr]
1835 >        g_{ij}\,\frac{\mathbf{r}_{ij}(t)}{m_j} \biggr].
1836   \end{align}
1837   And we chose $g_{ij}$ such that, $|\mathbf{r}_i^T - \mathbf{r}_j^T|^2
1838   = d_{ij}^2$. Solving the quadratic for $g_{ij}$ we obtain the
1839   approximation,
1840   \begin{equation}
1841   g_{ij} = \frac{(s^2 - d^2)}{2h[\mathbf{s}\cdot\mathbf{r}_{ij}(t)]
1842 <        (\frac{1}{m_i} + \frac{1}{m_j})}
1842 >        (\frac{1}{m_i} + \frac{1}{m_j})}.
1843   \end{equation}
1844   Although not an exact solution for $g_{ij}$, as this is an iterative
1845   scheme overall, the eventual solution will converge. With a trial
1846   $g_{ij}$, the new $\mathbf{q}$'s become,
1847   \begin{align}
1848   \mathbf{q}_i &= \mathbf{q}^{\text{old}}_i - g_{ij}\,
1849 <        \frac{\mathbf{r}_{ij}(t)}{m_i} \\
1849 >        \frac{\mathbf{r}_{ij}(t)}{m_i} ,\\
1850   %
1851   \mathbf{q}_j &= \mathbf{q}^{\text{old}}_j + g_{ij}\,
1852 <        \frac{\mathbf{r}_{ij}(t)}{m_j}
1852 >        \frac{\mathbf{r}_{ij}(t)}{m_j} .
1853   \end{align}
1854   The whole algorithm is then repeated from Eq.~\ref{oopseEq:ra1} until
1855   all constraints are satisfied.
# Line 1857 | Line 1857 | step starts with,
1857   The second step of {\sc rattle}, is to then update the velocities. The
1858   step starts with,
1859   \begin{equation}
1860 < \mathbf{\dot{r}}_i(t+h) = \mathbf{q}_i + \frac{h}{2m_i}\mathbf{F}_i(t+h)
1860 > \mathbf{\dot{r}}_i(t+h) = \mathbf{q}_i + \frac{h}{2m_i}\mathbf{F}_i(t+h).
1861   \end{equation}
1862   Next we pick a constraint $j$, and calculate the dot product $\ell$.
1863   \begin{equation}
1864 < \ell = \mathbf{r}_{ij}(t+h) \cdot \mathbf{\dot{r}}_{ij}(t+h)
1864 > \ell = \mathbf{r}_{ij}(t+h) \cdot \mathbf{\dot{r}}_{ij}(t+h).
1865   \label{oopseEq:rv1}
1866   \end{equation}
1867   Here if constraint Eq.~\ref{oopseEq:c2} holds, $\ell$ should be
# Line 1869 | Line 1869 | corrections are made to the $i$ and $j$ velocities.
1869   corrections are made to the $i$ and $j$ velocities.
1870   \begin{align}
1871   \mathbf{\dot{r}}_i^T &= \mathbf{\dot{r}}_i(t+h) - k_{ij}
1872 <        \frac{\mathbf{\dot{r}}_{ij}(t+h)}{m_i} \\
1872 >        \frac{\mathbf{\dot{r}}_{ij}(t+h)}{m_i}, \\
1873   %
1874   \mathbf{\dot{r}}_j^T &= \mathbf{\dot{r}}_j(t+h) + k_{ij}
1875 <        \frac{\mathbf{\dot{r}}_{ij}(t+h)}{m_j}
1875 >        \frac{\mathbf{\dot{r}}_{ij}(t+h)}{m_j}.
1876   \end{align}
1877   Like in the previous step, we select a value for $k_{ij}$ such that
1878   $\ell$ is zero.
1879   \begin{equation}
1880 < k_{ij} = \frac{\ell}{d^2_{ij}(\frac{1}{m_i} + \frac{1}{m_j})}
1880 > k_{ij} = \frac{\ell}{d^2_{ij}(\frac{1}{m_i} + \frac{1}{m_j})}.
1881   \end{equation}
1882   The test velocities, $\mathbf{\dot{r}}^T_i$ and
1883   $\mathbf{\dot{r}}^T_j$, then replace their respective velocities, and
# Line 1893 | Line 1893 | force from its mean force.
1893   coefficient can be calculated from the deviation of the instantaneous
1894   force from its mean force.
1895   \begin{equation}
1896 < \xi(z,t)=\langle\delta F(z,t)\delta F(z,0)\rangle/k_{B}T
1896 > \xi(z,t)=\langle\delta F(z,t)\delta F(z,0)\rangle/k_{B}T,
1897   \end{equation}
1898   where%
1899   \begin{equation}
1900 < \delta F(z,t)=F(z,t)-\langle F(z,t)\rangle
1900 > \delta F(z,t)=F(z,t)-\langle F(z,t)\rangle.
1901   \end{equation}
1902  
1903  
1904   If the time-dependent friction decays rapidly, the static friction
1905   coefficient can be approximated by
1906   \begin{equation}
1907 < \xi_{\text{static}}(z)=\int_{0}^{\infty}\langle\delta F(z,t)\delta F(z,0)\rangle dt
1907 > \xi_{\text{static}}(z)=\int_{0}^{\infty}\langle\delta F(z,t)\delta F(z,0)\rangle dt.
1908   \end{equation}
1909   Allowing diffusion constant to then be calculated through the
1910   Einstein relation:\cite{Marrink94}
1911   \begin{equation}
1912   D(z)=\frac{k_{B}T}{\xi_{\text{static}}(z)}=\frac{(k_{B}T)^{2}}{\int_{0}^{\infty
1913 < }\langle\delta F(z,t)\delta F(z,0)\rangle dt}%
1913 > }\langle\delta F(z,t)\delta F(z,0)\rangle dt}.%
1914   \end{equation}
1915  
1916   The Z-Constraint method, which fixes the z coordinates of the
# Line 1925 | Line 1925 | After the force calculation, define $G_\alpha$ as
1925  
1926   After the force calculation, define $G_\alpha$ as
1927   \begin{equation}
1928 < G_{\alpha} = \sum_i F_{\alpha i}
1928 > G_{\alpha} = \sum_i F_{\alpha i},
1929   \label{oopseEq:zc1}
1930   \end{equation}
1931 < Where $F_{\alpha i}$ is the force in the z direction of atom $i$ in
1931 > where $F_{\alpha i}$ is the force in the z direction of atom $i$ in
1932   z-constrained molecule $\alpha$. The forces of the z constrained
1933   molecule are then set to:
1934   \begin{equation}
1935   F_{\alpha i} = F_{\alpha i} -
1936 <        \frac{m_{\alpha i} G_{\alpha}}{\sum_i m_{\alpha i}}
1936 >        \frac{m_{\alpha i} G_{\alpha}}{\sum_i m_{\alpha i}}.
1937   \end{equation}
1938   Here, $m_{\alpha i}$ is the mass of atom $i$ in the z-constrained
1939   molecule. Having rescaled the forces, the velocities must also be
# Line 1941 | Line 1941 | v_{\alpha i} = v_{\alpha i} -
1941   direction.
1942   \begin{equation}
1943   v_{\alpha i} = v_{\alpha i} -
1944 <        \frac{\sum_i m_{\alpha i} v_{\alpha i}}{\sum_i m_{\alpha i}}
1944 >        \frac{\sum_i m_{\alpha i} v_{\alpha i}}{\sum_i m_{\alpha i}},
1945   \end{equation}
1946 < Where $v_{\alpha i}$ is the velocity of atom $i$ in the z direction.
1946 > where $v_{\alpha i}$ is the velocity of atom $i$ in the z direction.
1947   Lastly, all of the accumulated z constrained forces must be subtracted
1948   from the system to keep the system center of mass from drifting.
1949   \begin{equation}
1950   F_{\beta i} = F_{\beta i} - \frac{m_{\beta i} \sum_{\alpha} G_{\alpha}}
1951 <        {\sum_{\beta}\sum_i m_{\beta i}}
1951 >        {\sum_{\beta}\sum_i m_{\beta i}},
1952   \end{equation}
1953 < Where $\beta$ are all of the unconstrained molecules in the
1953 > where $\beta$ are all of the unconstrained molecules in the
1954   system. Similarly, the velocities of the unconstrained molecules must
1955   also be scaled.
1956   \begin{equation}
1957   v_{\beta i} = v_{\beta i} + \sum_{\alpha}
1958 <        \frac{\sum_i m_{\alpha i} v_{\alpha i}}{\sum_i m_{\alpha i}}
1958 >        \frac{\sum_i m_{\alpha i} v_{\alpha i}}{\sum_i m_{\alpha i}}.
1959   \end{equation}
1960  
1961   At the very beginning of the simulation, the molecules may not be at their
1962   constrained positions. To move a z-constrained molecule to its specified
1963   position, a simple harmonic potential is used
1964   \begin{equation}
1965 < U(t)=\frac{1}{2}k_{\text{Harmonic}}(z(t)-z_{\text{cons}})^{2}%
1965 > U(t)=\frac{1}{2}k_{\text{Harmonic}}(z(t)-z_{\text{cons}})^{2},%
1966   \end{equation}
1967   where $k_{\text{Harmonic}}$ is the harmonic force constant, $z(t)$ is the
1968   current $z$ coordinate of the center of mass of the constrained molecule, and
# Line 1970 | Line 1970 | F_{z_{\text{Harmonic}}}(t)=-\frac{\partial U(t)}{\part
1970   on the z-constrained molecule at time $t$ can be calculated by
1971   \begin{equation}
1972   F_{z_{\text{Harmonic}}}(t)=-\frac{\partial U(t)}{\partial z(t)}=
1973 <        -k_{\text{Harmonic}}(z(t)-z_{\text{cons}})
1973 >        -k_{\text{Harmonic}}(z(t)-z_{\text{cons}}).
1974   \end{equation}
1975  
1976   \section{\label{oopseSec:props}Trajectory Analysis}
# Line 1984 | Line 1984 | can be found in Table~\ref{oopseTb:gofrs}
1984   can be found in Table~\ref{oopseTb:gofrs}
1985  
1986   \begin{table}
1987 < \caption[The list of pair correlations in \texttt{staticProps}]{THE DIFFERENT PAIR CORRELATIONS IN \texttt{staticProps}}
1987 > \caption{THE DIFFERENT PAIR CORRELATIONS IN \texttt{staticProps}}
1988   \label{oopseTb:gofrs}
1989   \begin{center}
1990   \begin{tabular}{|l|c|c|}
# Line 2009 | Line 2009 | g_{\text{AB}}(r) = \frac{V}{N_{\text{A}}N_{\text{B}}}\
2009   \begin{equation}
2010   g_{\text{AB}}(r) = \frac{V}{N_{\text{A}}N_{\text{B}}}\langle %%
2011          \sum_{i \in \text{A}} \sum_{j \in \text{B}} %%
2012 <        \delta( r - |\mathbf{r}_{ij}|) \rangle \label{eq:gofr}
2012 >        \delta( r - |\mathbf{r}_{ij}|) \rangle, \label{eq:gofr}
2013   \end{equation}
2014 < Where $\mathbf{r}_{ij}$ is the vector
2014 > where $\mathbf{r}_{ij}$ is the vector
2015   \begin{equation*}
2016 < \mathbf{r}_{ij} = \mathbf{r}_j - \mathbf{r}_i \notag
2016 > \mathbf{r}_{ij} = \mathbf{r}_j - \mathbf{r}_i, \notag
2017   \end{equation*}
2018   and $\frac{V}{N_{\text{A}}N_{\text{B}}}$ normalizes the average over
2019   the expected pair density at a given $r$.
# Line 2030 | Line 2030 | g_{\text{AB}}(r, \cos \theta) = \frac{V}{N_{\text{A}}N
2030   g_{\text{AB}}(r, \cos \theta) = \frac{V}{N_{\text{A}}N_{\text{B}}}\langle  
2031   \sum_{i \in \text{A}} \sum_{j \in \text{B}}  
2032   \delta( \cos \theta - \cos \theta_{ij})
2033 < \delta( r - |\mathbf{r}_{ij}|) \rangle
2033 > \delta( r - |\mathbf{r}_{ij}|) \rangle.
2034   \label{eq:gofrCosTheta}
2035   \end{equation}
2036 < Where
2036 > Here
2037   \begin{equation*}
2038 < \cos \theta_{ij} = \mathbf{\hat{i}} \cdot \mathbf{\hat{r}}_{ij}
2038 > \cos \theta_{ij} = \mathbf{\hat{i}} \cdot \mathbf{\hat{r}}_{ij},
2039   \end{equation*}
2040 < Here $\mathbf{\hat{i}}$ is the unit directional vector of species $i$
2040 > where $\mathbf{\hat{i}}$ is the unit directional vector of species $i$
2041   and $\mathbf{\hat{r}}_{ij}$ is the unit vector associated with vector
2042   $\mathbf{r}_{ij}$.
2043  
# Line 2047 | Line 2047 | g_{\text{AB}}(r, \cos \omega) =
2047          \frac{V}{N_{\text{A}}N_{\text{B}}}\langle
2048          \sum_{i \in \text{A}} \sum_{j \in \text{B}}
2049          \delta( \cos \omega - \cos \omega_{ij})
2050 <        \delta( r - |\mathbf{r}_{ij}|) \rangle \label{eq:gofrCosOmega}
2050 >        \delta( r - |\mathbf{r}_{ij}|) \rangle. \label{eq:gofrCosOmega}
2051   \end{equation}
2052   Here
2053   \begin{equation*}
2054 < \cos \omega_{ij} = \mathbf{\hat{i}} \cdot \mathbf{\hat{j}}
2054 > \cos \omega_{ij} = \mathbf{\hat{i}} \cdot \mathbf{\hat{j}}.
2055   \end{equation*}
2056   Again, $\mathbf{\hat{i}}$ and $\mathbf{\hat{j}}$ are the unit
2057   directional vectors of species $i$ and $j$.
# Line 2064 | Line 2064 | g_{\text{AB}}(x, y, z) =
2064          \sum_{i \in \text{A}} \sum_{j \in \text{B}}
2065          \delta( x - x_{ij})
2066          \delta( y - y_{ij})
2067 <        \delta( z - z_{ij}) \rangle
2067 >        \delta( z - z_{ij}) \rangle,
2068   \end{equation}
2069 < Where $x_{ij}$, $y_{ij}$, and $z_{ij}$ are the $x$, $y$, and $z$
2069 > where $x_{ij}$, $y_{ij}$, and $z_{ij}$ are the $x$, $y$, and $z$
2070   components respectively of vector $\mathbf{r}_{ij}$.
2071  
2072   The final pair correlation is similar to
# Line 2075 | Line 2075 | Eq.~\ref{eq:gofrCosOmega}. $\langle \cos \omega
2075   \begin{equation}\label{eq:cosOmegaOfR}
2076   \langle \cos \omega \rangle_{\text{AB}}(r)  =
2077          \langle \sum_{i \in \text{A}} \sum_{j \in \text{B}}
2078 <        (\cos \omega_{ij}) \delta( r - |\mathbf{r}_{ij}|) \rangle
2078 >        (\cos \omega_{ij}) \delta( r - |\mathbf{r}_{ij}|) \rangle.
2079   \end{equation}
2080   Here $\cos \omega_{ij}$ is defined in the same way as in
2081   Eq.~\ref{eq:gofrCosOmega}. This equation is a single dimensional pair
# Line 2087 | Line 2087 | The dynamic properties of a trajectory are calculated
2087   The dynamic properties of a trajectory are calculated with the program
2088   \texttt{dynamicProps}. The program calculates the following properties:
2089   \begin{gather}
2090 < \langle | \mathbf{r}(t) - \mathbf{r}(0) |^2 \rangle \label{eq:rms}\\
2091 < \langle \mathbf{v}(t) \cdot \mathbf{v}(0) \rangle \label{eq:velCorr} \\
2092 < \langle \mathbf{j}(t) \cdot \mathbf{j}(0) \rangle \label{eq:angularVelCorr}
2090 > \langle | \mathbf{r}(t) - \mathbf{r}(0) |^2 \rangle, \label{eq:rms}\\
2091 > \langle \mathbf{v}(t) \cdot \mathbf{v}(0) \rangle, \label{eq:velCorr} \\
2092 > \langle \mathbf{j}(t) \cdot \mathbf{j}(0) \rangle. \label{eq:angularVelCorr}
2093   \end{gather}
2094  
2095   Eq.~\ref{eq:rms} is the root mean square displacement function. Which
# Line 2098 | Line 2098 | times.\cite{allen87:csl}
2098   coefficients because of the Einstein Relation, which is valid at long
2099   times.\cite{allen87:csl}
2100   \begin{equation}
2101 < 2tD = \langle | \mathbf{r}(t) - \mathbf{r}(0) |^2 \rangle
2101 > 2tD = \langle | \mathbf{r}(t) - \mathbf{r}(0) |^2 \rangle.
2102   \label{oopseEq:einstein}
2103   \end{equation}
2104  

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines