ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/mattDisertation/oopse.tex
(Generate patch)

Comparing trunk/mattDisertation/oopse.tex (file contents):
Revision 1083 by mmeineke, Fri Mar 5 00:07:19 2004 UTC vs.
Revision 1114 by mmeineke, Thu Apr 15 16:42:53 2004 UTC

# Line 18 | Line 18 | In this chapter, I present and detail the capabilities
18   \section{\label{oopseSec:foreword}Foreword}
19  
20   In this chapter, I present and detail the capabilities of the open
21 < source simulation package {\sc oopse}. It is important to note, that a
22 < simulation package of this size and scope would not have been possible
21 > source simulation program {\sc oopse}. It is important to note that a
22 > simulation program of this size and scope would not have been possible
23   without the collaborative efforts of my colleagues: Charles
24   F.~Vardeman II, Teng Lin, Christopher J.~Fennell and J.~Daniel
25   Gezelter. Although my contributions to {\sc oopse} are major,
26   consideration of my work apart from the others would not give a
27 < complete description to the package's capabilities. As such, all
27 > complete description to the program's capabilities. As such, all
28   contributions to {\sc oopse} to date are presented in this chapter.
29  
30   Charles Vardeman is responsible for the parallelization of the long
# Line 70 | Line 70 | researchers try to develop techniques or energetic mod
70  
71   Despite their utility, problems with these packages arise when
72   researchers try to develop techniques or energetic models that the
73 < code was not originally designed to simulate. Examples of uncommonly
74 < implemented techniques and energetics include; dipole-dipole
75 < interactions, rigid body dynamics, and metallic embedded
76 < potentials. When faced with these obstacles, a researcher must either
77 < develop their own code or license and extend one of the commercial
78 < packages. What we have elected to do, is develop a package of
79 < simulation code capable of implementing the types of models upon which
80 < our research is based.
73 > code was not originally designed to simulate. Examples of techniques
74 > and energetics not commonly implemented include; dipole-dipole
75 > interactions, rigid body dynamics, and metallic potentials. When faced
76 > with these obstacles, a researcher must either develop their own code
77 > or license and extend one of the commercial packages. What we have
78 > elected to do is develop a body of simulation code capable of
79 > implementing the types of models upon which our research is based.
80  
81   In developing {\sc oopse}, we have adhered to the precepts of Open
82   Source development, and are releasing our source code with a
# Line 161 | Line 160 | the rigid body. The torque on rigid body $i$ is
160   \begin{equation}
161   \boldsymbol{\tau}_i=
162          \sum_{a}\biggl[(\mathbf{r}_{ia}-\mathbf{r}_i)\times \mathbf{f}_{ia}
163 <        + \boldsymbol{\tau}_{ia}\biggr]
163 >        + \boldsymbol{\tau}_{ia}\biggr],
164   \label{eq:torqueAccumulate}
165   \end{equation}
166   where $\boldsymbol{\tau}_i$ and $\mathbf{r}_i$ are the torque on and
# Line 173 | Line 172 | maintained for each rigid body. At a minimum, the rota
172   each rigid body. In order to move between the space fixed and body
173   fixed coordinate axes, parameters describing the orientation must be
174   maintained for each rigid body. At a minimum, the rotation matrix
175 < (\textbf{A}) can be described by the three Euler angles ($\phi,
176 < \theta,$ and $\psi$), where the elements of \textbf{A} are composed of
175 > ($\mathsf{A}$) can be described by the three Euler angles ($\phi,
176 > \theta,$ and $\psi$), where the elements of $\mathsf{A}$ are composed of
177   trigonometric operations involving $\phi, \theta,$ and
178   $\psi$.\cite{Goldstein01} In order to avoid numerical instabilities
179   inherent in using the Euler angles, the four parameter ``quaternion''
180 < scheme is often used. The elements of \textbf{A} can be expressed as
180 > scheme is often used. The elements of $\mathsf{A}$ can be expressed as
181   arithmetic operations involving the four quaternions ($q_0, q_1, q_2,$
182   and $q_3$).\cite{allen87:csl} Use of quaternions also leads to
183   performance enhancements, particularly for very small
# Line 194 | Line 193 | molecule{
193  
194   \begin{lstlisting}[float,caption={[Defining rigid bodies]A sample definition of a rigid body},label={sch:rigidBody}]
195   molecule{
196 <  name = "TIP3P_water";
196 >  name = "TIP3P";
197 >  nAtoms = 3;
198 >  atom[0]{
199 >    type = "O_TIP3P";
200 >    position( 0.0, 0.0, -0.06556 );
201 >  }
202 >  atom[1]{
203 >    type = "H_TIP3P";
204 >    position( 0.0, 0.75695, 0.52032 );
205 >  }
206 >  atom[2]{
207 >    type = "H_TIP3P";
208 >    position( 0.0, -0.75695, 0.52032 );
209 >  }
210 >
211    nRigidBodies = 1;
212 <  rigidBody[0]{
213 <    nAtoms = 3;
214 <    atom[0]{
202 <      type = "O_TIP3P";
203 <      position( 0.0, 0.0, -0.06556 );    
204 <    }                                    
205 <    atom[1]{
206 <      type = "H_TIP3P";
207 <      position( 0.0, 0.75695, 0.52032 );
208 <    }
209 <    atom[2]{
210 <      type = "H_TIP3P";
211 <      position( 0.0, -0.75695, 0.52032 );
212 <    }
213 <    position( 0.0, 0.0, 0.0 );
214 <    orientation( 0.0, 0.0, 1.0 );
212 >  rigidBody[0]{
213 >    nMembers = 3;
214 >    members(0, 1, 2);
215    }
216   }
217   \end{lstlisting}
# Line 227 | Line 227 | V_{\text{LJ}}(r_{ij}) =
227          4\epsilon_{ij} \biggl[
228          \biggl(\frac{\sigma_{ij}}{r_{ij}}\biggr)^{12}
229          - \biggl(\frac{\sigma_{ij}}{r_{ij}}\biggr)^{6}
230 <        \biggr]
230 >        \biggr],
231   \label{eq:lennardJonesPot}
232   \end{equation}
233 < Where $r_{ij}$ is the distance between particles $i$ and $j$,
233 > where $r_{ij}$ is the distance between particles $i$ and $j$,
234   $\sigma_{ij}$ scales the length of the interaction, and
235   $\epsilon_{ij}$ scales the well depth of the potential. Scheme
236 < \ref{sch:LJFF} gives and example \texttt{.bass} file that
236 > \ref{sch:LJFF} gives an example \texttt{.bass} file that
237   sets up a system of 108 Ar particles to be simulated using the
238   Lennard-Jones force field.
239  
# Line 264 | Line 264 | cut-off radius, and preserves conservation of energy i
264   the energy value at $r_{\text{cut}}$ is subtracted from the
265   potential. This causes the potential to go to zero smoothly at the
266   cut-off radius, and preserves conservation of energy in integrating
267 < the equations of motion.
267 > the equations of motion. There still remains a discontinuity in the derivative (the forces), however, this does not significantly affect the dynamics.
268  
269   Interactions between dissimilar particles requires the generation of
270   cross term parameters for $\sigma$ and $\epsilon$. These are
271   calculated through the Lorentz-Berthelot mixing
272   rules:\cite{allen87:csl}
273   \begin{equation}
274 < \sigma_{ij} = \frac{1}{2}[\sigma_{ii} + \sigma_{jj}]
274 > \sigma_{ij} = \frac{1}{2}[\sigma_{ii} + \sigma_{jj}],
275   \label{eq:sigmaMix}
276   \end{equation}
277   and
278   \begin{equation}
279 < \epsilon_{ij} = \sqrt{\epsilon_{ii} \epsilon_{jj}}
279 > \epsilon_{ij} = \sqrt{\epsilon_{ii} \epsilon_{jj}}.
280   \label{eq:epsilonMix}
281   \end{equation}
282  
# Line 299 | Line 299 | As an example, lipid head-groups in {\sc duff} are rep
299   include a reaction field to mimic larger range interactions.
300  
301   As an example, lipid head-groups in {\sc duff} are represented as
302 < point dipole interaction sites. By placing a dipole at the head group
303 < center of mass, our model mimics the charge separation found in common
304 < phospholipids such as phosphatidylcholine.\cite{Cevc87} Additionally,
305 < a large Lennard-Jones site is located at the pseudoatom's center of
306 < mass. The model is illustrated by the red atom in
307 < Fig.~\ref{oopseFig:lipidModel}. The water model we use to complement
308 < the dipoles of the lipids is our reparameterization of the soft sticky
309 < dipole (SSD) model of Ichiye
302 > point dipole interaction sites. By placing a dipole at the head
303 > group's center of mass, our model mimics the charge separation found
304 > in common phospholipid head groups such as
305 > phosphatidylcholine.\cite{Cevc87} Additionally, a large Lennard-Jones
306 > site is located at the pseudoatom's center of mass. The model is
307 > illustrated by the red atom in Fig.~\ref{oopseFig:lipidModel}. The
308 > water model we use to complement the dipoles of the lipids is our
309 > reparameterization of the soft sticky dipole (SSD) model of Ichiye
310   \emph{et al.}\cite{liu96:new_model}
311  
312   \begin{figure}
313   \centering
314 < \includegraphics[width=\linewidth]{lipidModel.eps}
314 > \includegraphics[width=\linewidth]{twoChainFig.eps}
315   \caption[A representation of a lipid model in {\sc duff}]{A representation of the lipid model. $\phi$ is the torsion angle, $\theta$ %
316 < is the bend angle, $\mu$ is the dipole moment of the head group, and n
317 < is the chain length.}
316 > is the bend angle, and $\mu$ is the dipole moment of the head group.}
317   \label{oopseFig:lipidModel}
318   \end{figure}
319  
# Line 338 | Line 337 | illustrated in Scheme \ref{sch:DUFF}.
337   integrating the equations of motion. A simulation using {\sc duff} is
338   illustrated in Scheme \ref{sch:DUFF}.
339  
340 < \begin{lstlisting}[float,caption={[Invocation of {\sc duff}]Sample \texttt{.bass} file showing a simulation utilizing {\sc duff}},label={sch:DUFF}]
340 > \begin{lstlisting}[float,caption={[Invocation of {\sc duff}]A portion of a \texttt{.bass} file showing a simulation utilizing {\sc duff}},label={sch:DUFF}]
341  
342   #include "water.mdl"
343   #include "lipid.mdl"
# Line 365 | Line 364 | V = \sum^{N}_{I=1} V^{I}_{\text{Internal}}
364   The total potential energy function in {\sc duff} is
365   \begin{equation}
366   V = \sum^{N}_{I=1} V^{I}_{\text{Internal}}
367 <        + \sum^{N-1}_{I=1} \sum_{J>I} V^{IJ}_{\text{Cross}}
367 >        + \sum^{N-1}_{I=1} \sum_{J>I} V^{IJ}_{\text{Cross}},
368   \label{eq:totalPotential}
369   \end{equation}
370 < Where $V^{I}_{\text{Internal}}$ is the internal potential of molecule $I$:
370 > where $V^{I}_{\text{Internal}}$ is the internal potential of molecule $I$:
371   \begin{equation}
372   V^{I}_{\text{Internal}} =
373          \sum_{\theta_{ijk} \in I} V_{\text{bend}}(\theta_{ijk})
# Line 376 | Line 375 | Where $V^{I}_{\text{Internal}}$ is the internal potent
375          + \sum_{i \in I} \sum_{(j>i+4) \in I}
376          \biggl[ V_{\text{LJ}}(r_{ij}) +  V_{\text{dipole}}
377          (\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})
378 <        \biggr]
378 >        \biggr].
379   \label{eq:internalPotential}
380   \end{equation}
381   Here $V_{\text{bend}}$ is the bend potential for all 1, 3 bonded pairs
382   within the molecule $I$, and $V_{\text{torsion}}$ is the torsion potential
383   for all 1, 4 bonded pairs. The pairwise portions of the internal
384 < potential are excluded for pairs that are closer than three bonds,
386 < i.e.~atom pairs farther away than a torsion are included in the
387 < pair-wise loop.
384 > potential are excluded for atom pairs that are involved in the same bond, bend, or torsion. All other atom pairs within the molecule are subject to the LJ pair potential.
385  
386  
387   The bend potential of a molecule is represented by the following function:
388   \begin{equation}
389 < V_{\text{bend}}(\theta_{ijk}) = k_{\theta}( \theta_{ijk} - \theta_0 )^2 \label{eq:bendPot}
389 > V_{\text{bend}}(\theta_{ijk}) = k_{\theta}( \theta_{ijk} - \theta_0 )^2, \label{eq:bendPot}
390   \end{equation}
391 < Where $\theta_{ijk}$ is the angle defined by atoms $i$, $j$, and $k$
391 > where $\theta_{ijk}$ is the angle defined by atoms $i$, $j$, and $k$
392   (see Fig.~\ref{oopseFig:lipidModel}), $\theta_0$ is the equilibrium
393   bond angle, and $k_{\theta}$ is the force constant which determines the
394   strength of the harmonic bend. The parameters for $k_{\theta}$ and
# Line 402 | Line 399 | V_{\text{torsion}}(\phi) = c_1[1 + \cos \phi]
399   \begin{equation}
400   V_{\text{torsion}}(\phi) = c_1[1 + \cos \phi]
401          + c_2[1 + \cos(2\phi)]
402 <        + c_3[1 + \cos(3\phi)]
402 >        + c_3[1 + \cos(3\phi)],
403   \label{eq:origTorsionPot}
404   \end{equation}
405 < Where:
405 > where:
406   \begin{equation}
407   \cos\phi = (\hat{\mathbf{r}}_{ij} \times \hat{\mathbf{r}}_{jk}) \cdot
408 <        (\hat{\mathbf{r}}_{jk} \times \hat{\mathbf{r}}_{kl})
408 >        (\hat{\mathbf{r}}_{jk} \times \hat{\mathbf{r}}_{kl}).
409   \label{eq:torsPhi}
410   \end{equation}
411   Here, $\hat{\mathbf{r}}_{\alpha\beta}$ are the set of unit bond
# Line 418 | Line 415 | V_{\text{torsion}}(\phi) =  
415   a power series of the form:
416   \begin{equation}
417   V_{\text{torsion}}(\phi) =  
418 <        k_3 \cos^3 \phi + k_2 \cos^2 \phi + k_1 \cos \phi + k_0
418 >        k_3 \cos^3 \phi + k_2 \cos^2 \phi + k_1 \cos \phi + k_0,
419   \label{eq:torsionPot}
420   \end{equation}
421 < Where:
421 > where:
422   \begin{align*}
423 < k_0 &= c_1 + c_3 \\
424 < k_1 &= c_1 - 3c_3 \\
425 < k_2 &= 2 c_2 \\
426 < k_3 &= 4c_3
423 > k_0 &= c_1 + c_3, \\
424 > k_1 &= c_1 - 3c_3, \\
425 > k_2 &= 2 c_2, \\
426 > k_3 &= 4c_3.
427   \end{align*}
428   By recasting the potential as a power series, repeated trigonometric
429   evaluations are avoided during the calculation of the potential energy.
# Line 441 | Line 438 | V^{IJ}_{\text{Cross}} =
438          (\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})
439          + V_{\text{sticky}}
440          (\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})
441 <        \biggr]
441 >        \biggr],
442   \label{eq:crossPotentail}
443   \end{equation}
444 < Where $V_{\text{LJ}}$ is the Lennard Jones potential,
444 > where $V_{\text{LJ}}$ is the Lennard Jones potential,
445   $V_{\text{dipole}}$ is the dipole dipole potential, and
446   $V_{\text{sticky}}$ is the sticky potential defined by the SSD model
447   (Sec.~\ref{oopseSec:SSD}). Note that not all atom types include all
# Line 457 | Line 454 | V_{\text{dipole}}(\mathbf{r}_{ij},\boldsymbol{\Omega}_
454          \boldsymbol{\hat{u}}_{i} \cdot \boldsymbol{\hat{u}}_{j}
455          -
456          3(\boldsymbol{\hat{u}}_i \cdot \hat{\mathbf{r}}_{ij}) %
457 <                (\boldsymbol{\hat{u}}_j \cdot \hat{\mathbf{r}}_{ij}) \biggr]
457 >                (\boldsymbol{\hat{u}}_j \cdot \hat{\mathbf{r}}_{ij}) \biggr].
458   \label{eq:dipolePot}
459   \end{equation}
460   Here $\mathbf{r}_{ij}$ is the vector starting at atom $i$ pointing
# Line 574 | Line 571 | is recommended that the parameters be modified to thos
571   exhibits improved liquid structure and transport behavior. If the use
572   of a reaction field long-range interaction correction is desired, it
573   is recommended that the parameters be modified to those of the SSD/RF
574 < model. Solvent parameters can be easily modified in an accompanying
574 > model (an SSD variant  parameterized for reaction field). Solvent parameters can be easily modified in an accompanying
575   \texttt{.bass} file as illustrated in the scheme below. A table of the
576   parameter values and the drawbacks and benefits of the different
577   density corrected SSD models can be found in
578   reference~\cite{Gezelter04}.
579  
580 < \begin{lstlisting}[float,caption={[A simulation of {\sc ssd} water]An example file showing a simulation including {\sc ssd} water.},label={sch:ssd}]
580 > \begin{lstlisting}[float,caption={[A simulation of {\sc ssd} water]A portion of a \texttt{.bass} file showing a simulation including {\sc ssd} water.},label={sch:ssd}]
581  
582   #include "water.mdl"
583  
# Line 628 | Line 625 | V & = & \sum_{i} F_{i}\left[\rho_{i}\right] + \sum_{i}
625   The {\sc eam} potential has the form:
626   \begin{eqnarray}
627   V & = & \sum_{i} F_{i}\left[\rho_{i}\right] + \sum_{i} \sum_{j \neq i}
628 < \phi_{ij}({\bf r}_{ij})  \\
629 < \rho_{i}  & = & \sum_{j \neq i} f_{j}({\bf r}_{ij})
628 > \phi_{ij}({\bf r}_{ij}),  \\
629 > \rho_{i}  & = & \sum_{j \neq i} f_{j}({\bf r}_{ij}),
630   \end{eqnarray}
631   where $F_{i} $ is the embedding function that equates the energy
632   required to embed a positively-charged core ion $i$ into a linear
# Line 644 | Line 641 | metals Cu, Ag, Au, Ni, Pd, Pt and alloys of these meta
641   surrounding atom $i$ for both the density $\rho$ and pairwise $\phi$
642   interactions. Foiles \emph{et al}.~fit {\sc eam} potentials for the fcc
643   metals Cu, Ag, Au, Ni, Pd, Pt and alloys of these metals.\cite{FBD86}
644 < These fits, are included in {\sc oopse}.
644 > These fits are included in {\sc oopse}.
645  
646   \subsection{\label{oopseSec:pbc}Periodic Boundary Conditions}
647  
# Line 662 | Line 659 | size of the simulation box. $\mathsf{H}$ is defined:
659   use a $3 \times 3$ matrix, $\mathsf{H}$, to describe the shape and
660   size of the simulation box. $\mathsf{H}$ is defined:
661   \begin{equation}
662 < \mathsf{H} = ( \mathbf{h}_x, \mathbf{h}_y, \mathbf{h}_z )
662 > \mathsf{H} = ( \mathbf{h}_x, \mathbf{h}_y, \mathbf{h}_z ),
663   \end{equation}
664 < Where $\mathbf{h}_j$ is the column vector of the $j$th axis of the
664 > where $\mathbf{h}_{\alpha}$ is the column vector of the $\alpha$ axis of the
665   box.  During the course of the simulation both the size and shape of
666   the box can be changed to allow volume fluctuations when constraining
667   the pressure.
# Line 672 | Line 669 | vector, $\mathbf{s}$, and back through the following t
669   A real space vector, $\mathbf{r}$ can be transformed in to a box space
670   vector, $\mathbf{s}$, and back through the following transformations:
671   \begin{align}
672 < \mathbf{s} &= \mathsf{H}^{-1} \mathbf{r} \\
673 < \mathbf{r} &= \mathsf{H} \mathbf{s}
672 > \mathbf{s} &= \mathsf{H}^{-1} \mathbf{r}, \\
673 > \mathbf{r} &= \mathsf{H} \mathbf{s}.
674   \end{align}
675   The vector $\mathbf{s}$ is now a vector expressed as the number of box
676   lengths in the $\mathbf{h}_x$, $\mathbf{h}_y$, and $\mathbf{h}_z$
677   directions. To find the minimum image of a vector $\mathbf{r}$, we
678   first convert it to its corresponding vector in box space, and then,
679 < cast each element to lie on the in the range $[-0.5,0.5]$:
679 > cast each element to lie in the range $[-0.5,0.5]$:
680   \begin{equation}
681 < s_{i}^{\prime}=s_{i}-\roundme(s_{i})
681 > s_{i}^{\prime}=s_{i}-\roundme(s_{i}),
682   \end{equation}
683 < Where $s_i$ is the $i$th element of $\mathbf{s}$, and
684 < $\roundme(s_i)$is given by
683 > where $s_i$ is the $i$th element of $\mathbf{s}$, and
684 > $\roundme(s_i)$ is given by
685   \begin{equation}
686   \roundme(x) =
687          \begin{cases}
688 <        \lfloor x+0.5 \rfloor & \text{if $x \ge 0$} \\
689 <        \lceil x-0.5 \rceil & \text{if $x < 0$ }
688 >        \lfloor x+0.5 \rfloor & \text{if $x \ge 0$,} \\
689 >        \lceil x-0.5 \rceil & \text{if $x < 0$.}
690          \end{cases}
691   \end{equation}
692   Here $\lfloor x \rfloor$ is the floor operator, and gives the largest
# Line 701 | Line 698 | transforming back to real space,
698   Finally, we obtain the minimum image coordinates $\mathbf{r}^{\prime}$ by
699   transforming back to real space,
700   \begin{equation}
701 < \mathbf{r}^{\prime}=\mathsf{H}^{-1}\mathbf{s}^{\prime}%
701 > \mathbf{r}^{\prime}=\mathsf{H}^{-1}\mathbf{s}^{\prime}.%
702   \end{equation}
703   In this way, particles are allowed to diffuse freely in $\mathbf{r}$,
704   but their minimum images, $\mathbf{r}^{\prime}$ are used to compute
# Line 811 | Line 808 | output files.
808   entities are written out using quanternions, to save space in the
809   output files.
810  
811 < \begin{lstlisting}[float,caption={[The format of the coordinate files]Shows the format of the coordinate files. The fist line is the number of atoms. The second line begins with the time stamp followed by the three $\mathsf{H}$ column vectors. It is important to note, that for extended system ensembles, additional information pertinent to the integrators may be stored on this line as well.. The next lines are the atomic coordinates for all atoms in the system. First is the name followed by position, velocity, quanternions, and lastly angular velocities.},label=sch:dumpFormat]
811 > \begin{lstlisting}[float,caption={[The format of the coordinate files]Shows the format of the coordinate files. The fist line is the number of atoms. The second line begins with the time stamp followed by the three $\mathsf{H}$ column vectors. It is important to note, that for extended system ensembles, additional information pertinent to the integrators may be stored on this line as well. The next lines are the atomic coordinates for all atoms in the system. First is the name followed by position, velocity, quanternions, and lastly angular velocities.},label=sch:dumpFormat]
812  
813   nAtoms
814   time; Hxx Hyx Hzx; Hxy Hyy Hzy; Hxz Hyz Hzz;
# Line 867 | Line 864 | statistics file is denoted with the \texttt{.stat} fil
864  
865   \section{\label{oopseSec:mechanics}Mechanics}
866  
867 < \subsection{\label{oopseSec:integrate}Integrating the Equations of Motion: the Symplectic Step Integrator}
867 > \subsection{\label{oopseSec:integrate}Integrating the Equations of Motion: the
868 > DLM method}
869  
870 < Integration of the equations of motion was carried out using the
871 < symplectic splitting method proposed by Dullweber \emph{et
872 < al.}.\cite{Dullweber1997} The reason for the selection of this
873 < integrator, is the poor energy conservation of rigid body systems
874 < using quaternion dynamics. While quaternions work well for
875 < orientational motion in alternate ensembles, the microcanonical
876 < ensemble has a constant energy requirement that is quite sensitive to
879 < errors in the equations of motion. The original implementation of {\sc
880 < oopse} utilized quaternions for rotational motion propagation;
881 < however, a detailed investigation showed that they resulted in a
882 < steady drift in the total energy, something that has been observed by
883 < others.\cite{Laird97}
870 > The default method for integrating the equations of motion in {\sc
871 > oopse} is a velocity-Verlet version of the symplectic splitting method
872 > proposed by Dullweber, Leimkuhler and McLachlan
873 > (DLM).\cite{Dullweber1997} When there are no directional atoms or
874 > rigid bodies present in the simulation, this integrator becomes the
875 > standard velocity-Verlet integrator which is known to sample the
876 > microcanonical (NVE) ensemble.\cite{Frenkel1996}
877  
878 + Previous integration methods for orientational motion have problems
879 + that are avoided in the DLM method.  Direct propagation of the Euler
880 + angles has a known $1/\sin\theta$ divergence in the equations of
881 + motion for $\phi$ and $\psi$,\cite{allen87:csl} leading to
882 + numerical instabilities any time one of the directional atoms or rigid
883 + bodies has an orientation near $\theta=0$ or $\theta=\pi$.  More
884 + modern quaternion-based integration methods have relatively poor
885 + energy conservation.  While quaternions work well for orientational
886 + motion in other ensembles, the microcanonical ensemble has a
887 + constant energy requirement that is quite sensitive to errors in the
888 + equations of motion.  An earlier implementation of {\sc oopse}
889 + utilized quaternions for propagation of rotational motion; however, a
890 + detailed investigation showed that they resulted in a steady drift in
891 + the total energy, something that has been observed by
892 + Laird {\it et al.}\cite{Laird97}      
893 +
894   The key difference in the integration method proposed by Dullweber
895 < \emph{et al}.~({\sc dlm}) is that the entire rotation matrix is propagated from
896 < one time step to the next. In the past, this would not have been a
897 < feasible option, since the rotation matrix for a single body is nine
898 < elements long as opposed to three or four elements for Euler angles
899 < and quaternions respectively. System memory has become much less of an
900 < issue in recent times, and the {\sc dlm} method has used memory in
901 < exchange for substantial benefits in energy conservation.
895 > \emph{et al.} is that the entire $3 \times 3$ rotation matrix is
896 > propagated from one time step to the next. In the past, this would not
897 > have been feasible, since the rotation matrix for a single body has
898 > nine elements compared with the more memory-efficient methods (using
899 > three Euler angles or 4 quaternions).  Computer memory has become much
900 > less costly in recent years, and this can be translated into
901 > substantial benefits in energy conservation.
902  
903 < The {\sc dlm} method allows for Verlet style integration of both
904 < linear and angular motion of rigid bodies. In the integration method,
905 < the orientational propagation involves a sequence of matrix
906 < evaluations to update the rotation matrix.\cite{Dullweber1997} These
907 < matrix rotations are more costly computationally than the simpler
908 < arithmetic quaternion propagation. With the same time step, a 1000 SSD
909 < particle simulation shows an average 7\% increase in computation time
910 < using the {\sc dlm} method in place of quaternions. This cost is more
911 < than justified when comparing the energy conservation of the two
912 < methods as illustrated in Fig.~\ref{timestep}.
903 > The basic equations of motion being integrated are derived from the
904 > Hamiltonian for conservative systems containing rigid bodies,
905 > \begin{equation}
906 > H = \sum_{i} \left( \frac{1}{2} m_i {\bf v}_i^T \cdot {\bf v}_i +
907 > \frac{1}{2} {\bf j}_i^T \cdot \overleftrightarrow{\mathsf{I}}_i^{-1} \cdot
908 > {\bf j}_i \right) +
909 > V\left(\left\{{\bf r}\right\}, \left\{\mathsf{A}\right\}\right),
910 > \end{equation}
911 > where ${\bf r}_i$ and ${\bf v}_i$ are the cartesian position vector
912 > and velocity of the center of mass of particle $i$, and ${\bf j}_i$,
913 > $\overleftrightarrow{\mathsf{I}}_i$ are the body-fixed angular
914 > momentum and moment of inertia tensor respectively, and the
915 > superscript $T$ denotes the transpose of the vector.  $\mathsf{A}_i$
916 > is the $3 \times 3$ rotation matrix describing the instantaneous
917 > orientation of the particle.  $V$ is the potential energy function
918 > which may depend on both the positions $\left\{{\bf r}\right\}$ and
919 > orientations $\left\{\mathsf{A}\right\}$ of all particles.  The
920 > equations of motion for the particle centers of mass are derived from
921 > Hamilton's equations and are quite simple,
922 > \begin{eqnarray}
923 > \dot{{\bf r}} & = & {\bf v}, \\
924 > \dot{{\bf v}} & = & \frac{{\bf f}}{m},
925 > \end{eqnarray}
926 > where ${\bf f}$ is the instantaneous force on the center of mass
927 > of the particle,
928 > \begin{equation}
929 > {\bf f} = - \frac{\partial}{\partial
930 > {\bf r}} V(\left\{{\bf r}(t)\right\}, \left\{\mathsf{A}(t)\right\}).
931 > \end{equation}
932  
933 + The equations of motion for the orientational degrees of freedom are
934 + \begin{eqnarray}
935 + \dot{\mathsf{A}} & = & \mathsf{A} \cdot
936 + \mbox{ skew}\left(\overleftrightarrow{\mathsf{I}}^{-1} \cdot {\bf j}\right),\\
937 + \dot{{\bf j}} & = & {\bf j} \times \left( \overleftrightarrow{\mathsf{I}}^{-1}
938 + \cdot {\bf j} \right) - \mbox{ rot}\left(\mathsf{A}^{T} \cdot \frac{\partial
939 + V}{\partial \mathsf{A}} \right).
940 + \end{eqnarray}
941 + In these equations of motion, the $\mbox{skew}$ matrix of a vector
942 + ${\bf v} = \left( v_1, v_2, v_3 \right)$ is defined:
943 + \begin{equation}
944 + \mbox{skew}\left( {\bf v} \right) := \left(
945 + \begin{array}{ccc}
946 + 0 & v_3 & - v_2 \\
947 + -v_3 & 0 & v_1 \\
948 + v_2 & -v_1 & 0
949 + \end{array}
950 + \right).
951 + \end{equation}
952 + The $\mbox{rot}$ notation refers to the mapping of the $3 \times 3$
953 + rotation matrix to a vector of orientations by first computing the
954 + skew-symmetric part $\left(\mathsf{A} - \mathsf{A}^{T}\right)$ and
955 + then associating this with a length 3 vector by inverting the
956 + $\mbox{skew}$ function above:
957 + \begin{equation}
958 + \mbox{rot}\left(\mathsf{A}\right) := \mbox{ skew}^{-1}\left(\mathsf{A}
959 + - \mathsf{A}^{T} \right).
960 + \end{equation}
961 + Written this way, the $\mbox{rot}$ operation creates a set of
962 + conjugate angle coordinates to the body-fixed angular momenta
963 + represented by ${\bf j}$.  This equation of motion for angular momenta
964 + is equivalent to the more familiar body-fixed forms,
965 + \begin{eqnarray}
966 + \dot{j_{x}} & = & \tau^b_x(t)  +
967 + \left(\overleftrightarrow{\mathsf{I}}_{yy} - \overleftrightarrow{\mathsf{I}}_{zz} \right) j_y j_z, \\
968 + \dot{j_{y}} & = & \tau^b_y(t) +
969 + \left(\overleftrightarrow{\mathsf{I}}_{zz} - \overleftrightarrow{\mathsf{I}}_{xx} \right) j_z j_x,\\
970 + \dot{j_{z}} & = & \tau^b_z(t) +
971 + \left(\overleftrightarrow{\mathsf{I}}_{xx} - \overleftrightarrow{\mathsf{I}}_{yy} \right) j_x j_y,
972 + \end{eqnarray}
973 + which utilize the body-fixed torques, ${\bf \tau}^b$. Torques are
974 + most easily derived in the space-fixed frame,
975 + \begin{equation}
976 + {\bf \tau}^b(t) = \mathsf{A}(t) \cdot {\bf \tau}^s(t),
977 + \end{equation}
978 + where the torques are either derived from the forces on the
979 + constituent atoms of the rigid body, or for directional atoms,
980 + directly from derivatives of the potential energy,
981 + \begin{equation}
982 + {\bf \tau}^s(t) = - \hat{\bf u}(t) \times \left( \frac{\partial}
983 + {\partial \hat{\bf u}} V\left(\left\{ {\bf r}(t) \right\}, \left\{
984 + \mathsf{A}(t) \right\}\right) \right).
985 + \end{equation}
986 + Here $\hat{\bf u}$ is a unit vector pointing along the principal axis
987 + of the particle in the space-fixed frame.
988 +
989 + The DLM method uses a Trotter factorization of the orientational
990 + propagator.  This has three effects:
991 + \begin{enumerate}
992 + \item the integrator is area-preserving in phase space (i.e. it is
993 + {\it symplectic}),
994 + \item the integrator is time-{\it reversible}, making it suitable for Hybrid
995 + Monte Carlo applications, and
996 + \item the error for a single time step is of order $\mathcal{O}\left(h^4\right)$
997 + for timesteps of length $h$.
998 + \end{enumerate}
999 +
1000 + The integration of the equations of motion is carried out in a
1001 + velocity-Verlet style 2-part algorithm, where $h= \delta t$:
1002 +
1003 + {\tt moveA:}
1004 + \begin{align*}
1005 + {\bf v}\left(t + h / 2\right)  &\leftarrow  {\bf v}(t)
1006 +        + \frac{h}{2} \left( {\bf f}(t) / m \right), \\
1007 + %
1008 + {\bf r}(t + h) &\leftarrow {\bf r}(t)
1009 +        + h  {\bf v}\left(t + h / 2 \right), \\
1010 + %
1011 + {\bf j}\left(t + h / 2 \right)  &\leftarrow {\bf j}(t)
1012 +        + \frac{h}{2} {\bf \tau}^b(t), \\
1013 + %
1014 + \mathsf{A}(t + h) &\leftarrow \mathrm{rotate}\left( h {\bf j}
1015 +        (t + h / 2) \cdot \overleftrightarrow{\mathsf{I}}^{-1} \right).
1016 + \end{align*}
1017 +
1018 + In this context, the $\mathrm{rotate}$ function is the reversible product
1019 + of the three body-fixed rotations,
1020 + \begin{equation}
1021 + \mathrm{rotate}({\bf a}) = \mathsf{G}_x(a_x / 2) \cdot
1022 + \mathsf{G}_y(a_y / 2) \cdot \mathsf{G}_z(a_z) \cdot \mathsf{G}_y(a_y /
1023 + 2) \cdot \mathsf{G}_x(a_x /2),
1024 + \end{equation}
1025 + where each rotational propagator, $\mathsf{G}_\alpha(\theta)$, rotates
1026 + both the rotation matrix ($\mathsf{A}$) and the body-fixed angular
1027 + momentum (${\bf j}$) by an angle $\theta$ around body-fixed axis
1028 + $\alpha$,
1029 + \begin{equation}
1030 + \mathsf{G}_\alpha( \theta ) = \left\{
1031 + \begin{array}{lcl}
1032 + \mathsf{A}(t) & \leftarrow & \mathsf{A}(0) \cdot \mathsf{R}_\alpha(\theta)^T, \\
1033 + {\bf j}(t) & \leftarrow & \mathsf{R}_\alpha(\theta) \cdot {\bf j}(0).
1034 + \end{array}
1035 + \right.
1036 + \end{equation}
1037 + $\mathsf{R}_\alpha$ is a quadratic approximation to
1038 + the single-axis rotation matrix.  For example, in the small-angle
1039 + limit, the rotation matrix around the body-fixed x-axis can be
1040 + approximated as
1041 + \begin{equation}
1042 + \mathsf{R}_x(\theta) \approx \left(
1043 + \begin{array}{ccc}
1044 + 1 & 0 & 0 \\
1045 + 0 & \frac{1-\theta^2 / 4}{1 + \theta^2 / 4}  & -\frac{\theta}{1+
1046 + \theta^2 / 4} \\
1047 + 0 & \frac{\theta}{1+
1048 + \theta^2 / 4} & \frac{1-\theta^2 / 4}{1 + \theta^2 / 4}
1049 + \end{array}
1050 + \right).
1051 + \end{equation}
1052 + All other rotations follow in a straightforward manner.
1053 +
1054 + After the first part of the propagation, the forces and body-fixed
1055 + torques are calculated at the new positions and orientations
1056 +
1057 + {\tt doForces:}
1058 + \begin{align*}
1059 + {\bf f}(t + h) &\leftarrow  
1060 +        - \left(\frac{\partial V}{\partial {\bf r}}\right)_{{\bf r}(t + h)}, \\
1061 + %
1062 + {\bf \tau}^{s}(t + h) &\leftarrow {\bf u}(t + h)
1063 +        \times \frac{\partial V}{\partial {\bf u}}, \\
1064 + %
1065 + {\bf \tau}^{b}(t + h) &\leftarrow \mathsf{A}(t + h)
1066 +        \cdot {\bf \tau}^s(t + h).
1067 + \end{align*}
1068 +
1069 + {\sc oopse} automatically updates ${\bf u}$ when the rotation matrix
1070 + $\mathsf{A}$ is calculated in {\tt moveA}.  Once the forces and
1071 + torques have been obtained at the new time step, the velocities can be
1072 + advanced to the same time value.
1073 +
1074 + {\tt moveB:}
1075 + \begin{align*}
1076 + {\bf v}\left(t + h \right)  &\leftarrow  {\bf v}\left(t + h / 2 \right)
1077 +        + \frac{h}{2} \left( {\bf f}(t + h) / m \right), \\
1078 + %
1079 + {\bf j}\left(t + h \right)  &\leftarrow {\bf j}\left(t + h / 2 \right)
1080 +        + \frac{h}{2} {\bf \tau}^b(t + h) .
1081 + \end{align*}
1082 +
1083 + The matrix rotations used in the DLM method end up being more costly
1084 + computationally than the simpler arithmetic quaternion
1085 + propagation. With the same time step, a 1000-molecule water simulation
1086 + shows an average 7\% increase in computation time using the DLM method
1087 + in place of quaternions. This cost is more than justified when
1088 + comparing the energy conservation of the two methods as illustrated in
1089 + Fig.~\ref{timestep}.
1090 +
1091   \begin{figure}
1092   \centering
1093   \includegraphics[width=\linewidth]{timeStep.eps}
1094 < \caption[Energy conservation for quaternion versus {\sc dlm} dynamics]{Energy conservation using quaternion based integration versus
1095 < the {\sc dlm} method with
1096 < increasing time step. For each time step, the dotted line is total
1097 < energy using the {\sc dlm} integrator, and the solid line comes
1098 < from the quaternion integrator. The larger time step plots are shifted
1099 < up from the true energy baseline for clarity.}
1094 > \caption[Energy conservation for quaternion versus DLM dynamics]{Energy conservation using quaternion based integration versus
1095 > the method proposed by Dullweber \emph{et al.} with increasing time
1096 > step. For each time step, the dotted line is total energy using the
1097 > DLM integrator, and the solid line comes from the quaternion
1098 > integrator. The larger time step plots are shifted up from the true
1099 > energy baseline for clarity.}
1100   \label{timestep}
1101   \end{figure}
1102  
1103   In Fig.~\ref{timestep}, the resulting energy drift at various time
1104 < steps for both the {\sc dlm} and quaternion integration schemes
1105 < is compared. All of the 1000 SSD particle simulations started with the
1104 > steps for both the DLM and quaternion integration schemes is
1105 > compared. All of the 1000 molecule water simulations started with the
1106   same configuration, and the only difference was the method for
1107   handling rotational motion. At time steps of 0.1 and 0.5 fs, both
1108 < methods for propagating particle rotation conserve energy fairly well,
1108 > methods for propagating molecule rotation conserve energy fairly well,
1109   with the quaternion method showing a slight energy drift over time in
1110   the 0.5 fs time step simulation. At time steps of 1 and 2 fs, the
1111 < energy conservation benefits of the {\sc dlm} method are clearly
1111 > energy conservation benefits of the DLM method are clearly
1112   demonstrated. Thus, while maintaining the same degree of energy
1113   conservation, one can take considerably longer time steps, leading to
1114   an overall reduction in computation time.
1115  
1116 < Energy drift in these SSD particle simulations was unnoticeable for
1117 < time steps up to three femtoseconds. A slight energy drift on the
932 < order of 0.012 kcal/mol per nanosecond was observed at a time step of
933 < four femtoseconds, and as expected, this drift increases dramatically
934 < with increasing time step.
1116 > There is only one specific keyword relevant to the default integrator,
1117 > and that is the time step for integrating the equations of motion.
1118  
1119 + \begin{center}
1120 + \begin{tabular}{llll}
1121 + {\bf variable} & {\bf {\tt .bass} keyword} & {\bf units} & {\bf
1122 + default value} \\  
1123 + $h$ & {\tt dt = 2.0;} & fs & none
1124 + \end{tabular}
1125 + \end{center}
1126  
1127   \subsection{\label{sec:extended}Extended Systems for other Ensembles}
1128  
1129 + {\sc oopse} implements a number of extended system integrators for
1130 + sampling from other ensembles relevant to chemical physics.  The
1131 + integrator can selected with the {\tt ensemble} keyword in the
1132 + {\tt .bass} file:
1133  
1134 < {\sc oopse} implements a
1134 > \begin{center}
1135 > \begin{tabular}{lll}
1136 > {\bf Integrator} & {\bf Ensemble} & {\bf {\tt .bass} line} \\
1137 > NVE & microcanonical & {\tt ensemble = NVE; } \\
1138 > NVT & canonical & {\tt ensemble = NVT; } \\
1139 > NPTi & isobaric-isothermal & {\tt ensemble = NPTi;} \\
1140 >  &  (with isotropic volume changes) & \\
1141 > NPTf & isobaric-isothermal & {\tt ensemble = NPTf;} \\
1142 >  & (with changes to box shape) & \\
1143 > NPTxyz & approximate isobaric-isothermal & {\tt ensemble = NPTxyz;} \\
1144 > &  (with separate barostats on each box dimension) & \\
1145 > \end{tabular}
1146 > \end{center}
1147  
1148 + The relatively well-known Nos\'e-Hoover thermostat\cite{Hoover85} is
1149 + implemented in {\sc oopse}'s NVT integrator.  This method couples an
1150 + extra degree of freedom (the thermostat) to the kinetic energy of the
1151 + system, and has been shown to sample the canonical distribution in the
1152 + system degrees of freedom while conserving a quantity that is, to
1153 + within a constant, the Helmholtz free energy.\cite{melchionna93}
1154  
1155 < \subsection{\label{oopseSec:noseHooverThermo}Nose-Hoover Thermostatting}
1155 > NPT algorithms attempt to maintain constant pressure in the system by
1156 > coupling the volume of the system to a barostat.  {\sc oopse} contains
1157 > three different constant pressure algorithms.  The first two, NPTi and
1158 > NPTf have been shown to conserve a quantity that is, to within a
1159 > constant, the Gibbs free energy.\cite{melchionna93} The Melchionna
1160 > modification to the Hoover barostat is implemented in both NPTi and
1161 > NPTf.  NPTi allows only isotropic changes in the simulation box, while
1162 > box {\it shape} variations are allowed in NPTf.  The NPTxyz integrator
1163 > has {\it not} been shown to sample from the isobaric-isothermal
1164 > ensemble.  It is useful, however, in that it maintains orthogonality
1165 > for the axes of the simulation box while attempting to equalize
1166 > pressure along the three perpendicular directions in the box.
1167  
1168 < To mimic the effects of being in a constant temperature ({\sc nvt})
1169 < ensemble, {\sc oopse} uses the Nose-Hoover extended system
1170 < approach.\cite{Hoover85} In this method, the equations of motion for
1171 < the particle positions and velocities are
1168 > Each of the extended system integrators requires additional keywords
1169 > to set target values for the thermodynamic state variables that are
1170 > being held constant.  Keywords are also required to set the
1171 > characteristic decay times for the dynamics of the extended
1172 > variables.
1173 >
1174 > \begin{center}
1175 > \begin{tabular}{llll}
1176 > {\bf variable} & {\bf {\tt .bass} keyword} & {\bf units} & {\bf
1177 > default value} \\  
1178 > $T_{\mathrm{target}}$ & {\tt targetTemperature = 300;} &  K & none \\
1179 > $P_{\mathrm{target}}$ & {\tt targetPressure = 1;} & atm & none \\
1180 > $\tau_T$ & {\tt tauThermostat = 1e3;} & fs & none \\
1181 > $\tau_B$ & {\tt tauBarostat = 5e3;} & fs  & none \\
1182 >         & {\tt resetTime = 200;} & fs & none \\
1183 >         & {\tt useInitialExtendedSystemState = true;} & logical &
1184 > true
1185 > \end{tabular}
1186 > \end{center}
1187 >
1188 > Two additional keywords can be used to either clear the extended
1189 > system variables periodically ({\tt resetTime}), or to maintain the
1190 > state of the extended system variables between simulations ({\tt
1191 > useInitialExtendedSystemState}).  More details on these variables
1192 > and their use in the integrators follows below.
1193 >
1194 > \subsection{\label{oopseSec:noseHooverThermo}Nos\'{e}-Hoover Thermostatting}
1195 >
1196 > The Nos\'e-Hoover equations of motion are given by\cite{Hoover85}
1197   \begin{eqnarray}
1198 < \dot{{\bf r}} & = & {\bf v} \\
1199 < \dot{{\bf v}} & = & \frac{{\bf f}}{m} - \chi {\bf v}
1198 > \dot{{\bf r}} & = & {\bf v}, \\
1199 > \dot{{\bf v}} & = & \frac{{\bf f}}{m} - \chi {\bf v} ,\\
1200 > \dot{\mathsf{A}} & = & \mathsf{A} \cdot
1201 > \mbox{ skew}\left(\overleftrightarrow{\mathsf{I}}^{-1} \cdot {\bf j}\right), \\
1202 > \dot{{\bf j}} & = & {\bf j} \times \left( \overleftrightarrow{\mathsf{I}}^{-1}
1203 > \cdot {\bf j} \right) - \mbox{ rot}\left(\mathsf{A}^{T} \cdot \frac{\partial
1204 > V}{\partial \mathsf{A}} \right) - \chi {\bf j}.
1205   \label{eq:nosehoovereom}
1206   \end{eqnarray}
1207  
1208   $\chi$ is an ``extra'' variable included in the extended system, and
1209   it is propagated using the first order equation of motion
1210   \begin{equation}
1211 < \dot{\chi} = \frac{1}{\tau_{T}} \left( \frac{T}{T_{target}} - 1 \right)
1211 > \dot{\chi} = \frac{1}{\tau_{T}^2} \left( \frac{T}{T_{\mathrm{target}}} - 1 \right).
1212   \label{eq:nosehooverext}
1213   \end{equation}
961 where $T_{target}$ is the target temperature for the simulation, and
962 $\tau_{T}$ is a time constant for the thermostat.  
1214  
1215 < To select the Nose-Hoover {\sc nvt} ensemble, the {\tt ensemble = NVT;}
1216 < command would be used in the simulation's {\sc bass} file.  There is
1217 < some subtlety in choosing values for $\tau_{T}$, and it is usually set
1218 < to values of a few ps.  Within a {\sc bass} file, $\tau_{T}$ could be
1219 < set to 1 ps using the {\tt tauThermostat = 1000; } command.
1215 > The instantaneous temperature $T$ is proportional to the total kinetic
1216 > energy (both translational and orientational) and is given by
1217 > \begin{equation}
1218 > T = \frac{2 K}{f k_B}
1219 > \end{equation}
1220 > Here, $f$ is the total number of degrees of freedom in the system,
1221 > \begin{equation}
1222 > f = 3 N + 3 N_{\mathrm{orient}} - N_{\mathrm{constraints}},
1223 > \end{equation}
1224 > and $K$ is the total kinetic energy,
1225 > \begin{equation}
1226 > K = \sum_{i=1}^{N} \frac{1}{2} m_i {\bf v}_i^T \cdot {\bf v}_i +
1227 > \sum_{i=1}^{N_{\mathrm{orient}}}  \frac{1}{2} {\bf j}_i^T \cdot
1228 > \overleftrightarrow{\mathsf{I}}_i^{-1} \cdot {\bf j}_i.
1229 > \end{equation}
1230 >
1231 > In eq.(\ref{eq:nosehooverext}), $\tau_T$ is the time constant for
1232 > relaxation of the temperature to the target value.  To set values for
1233 > $\tau_T$ or $T_{\mathrm{target}}$ in a simulation, one would use the
1234 > {\tt tauThermostat} and {\tt targetTemperature} keywords in the {\tt
1235 > .bass} file.  The units for {\tt tauThermostat} are fs, and the units
1236 > for the {\tt targetTemperature} are degrees K.   The integration of
1237 > the equations of motion is carried out in a velocity-Verlet style 2
1238 > part algorithm:
1239 >
1240 > {\tt moveA:}
1241 > \begin{align*}
1242 > T(t) &\leftarrow \left\{{\bf v}(t)\right\}, \left\{{\bf j}(t)\right\} ,\\
1243 > %
1244 > {\bf v}\left(t + h / 2\right)  &\leftarrow {\bf v}(t)
1245 >        + \frac{h}{2} \left( \frac{{\bf f}(t)}{m} - {\bf v}(t)
1246 >        \chi(t)\right), \\
1247 > %
1248 > {\bf r}(t + h) &\leftarrow {\bf r}(t)
1249 >        + h {\bf v}\left(t + h / 2 \right) ,\\
1250 > %
1251 > {\bf j}\left(t + h / 2 \right)  &\leftarrow {\bf j}(t)
1252 >        + \frac{h}{2} \left( {\bf \tau}^b(t) - {\bf j}(t)
1253 >        \chi(t) \right) ,\\
1254 > %
1255 > \mathsf{A}(t + h) &\leftarrow \mathrm{rotate}
1256 >        \left(h * {\bf j}(t + h / 2)
1257 >        \overleftrightarrow{\mathsf{I}}^{-1} \right) ,\\
1258 > %
1259 > \chi\left(t + h / 2 \right) &\leftarrow \chi(t)
1260 >        + \frac{h}{2 \tau_T^2} \left( \frac{T(t)}
1261 >        {T_{\mathrm{target}}} - 1 \right) .
1262 > \end{align*}
1263 >
1264 > Here $\mathrm{rotate}(h * {\bf j}
1265 > \overleftrightarrow{\mathsf{I}}^{-1})$ is the same symplectic Trotter
1266 > factorization of the three rotation operations that was discussed in
1267 > the section on the DLM integrator.  Note that this operation modifies
1268 > both the rotation matrix $\mathsf{A}$ and the angular momentum ${\bf
1269 > j}$.  {\tt moveA} propagates velocities by a half time step, and
1270 > positional degrees of freedom by a full time step.  The new positions
1271 > (and orientations) are then used to calculate a new set of forces and
1272 > torques in exactly the same way they are calculated in the {\tt
1273 > doForces} portion of the DLM integrator.
1274 >
1275 > Once the forces and torques have been obtained at the new time step,
1276 > the temperature, velocities, and the extended system variable can be
1277 > advanced to the same time value.
1278 >
1279 > {\tt moveB:}
1280 > \begin{align*}
1281 > T(t + h) &\leftarrow \left\{{\bf v}(t + h)\right\},
1282 >        \left\{{\bf j}(t + h)\right\}, \\
1283 > %
1284 > \chi\left(t + h \right) &\leftarrow \chi\left(t + h /
1285 >        2 \right) + \frac{h}{2 \tau_T^2} \left( \frac{T(t+h)}
1286 >        {T_{\mathrm{target}}} - 1 \right), \\
1287 > %
1288 > {\bf v}\left(t + h \right)  &\leftarrow {\bf v}\left(t
1289 >        + h / 2 \right) + \frac{h}{2} \left(
1290 >        \frac{{\bf f}(t + h)}{m} - {\bf v}(t + h)
1291 >        \chi(t h)\right) ,\\
1292 > %
1293 > {\bf j}\left(t + h \right) &\leftarrow {\bf j}\left(t
1294 >        + h / 2 \right) + \frac{h}{2}
1295 >        \left( {\bf \tau}^b(t + h) - {\bf j}(t + h)
1296 >        \chi(t + h) \right) .
1297 > \end{align*}
1298 >
1299 > Since ${\bf v}(t + h)$ and ${\bf j}(t + h)$ are required to caclculate
1300 > $T(t + h)$ as well as $\chi(t + h)$, they indirectly depend on their
1301 > own values at time $t + h$.  {\tt moveB} is therefore done in an
1302 > iterative fashion until $\chi(t + h)$ becomes self-consistent.  The
1303 > relative tolerance for the self-consistency check defaults to a value
1304 > of $\mbox{10}^{-6}$, but {\sc oopse} will terminate the iteration
1305 > after 4 loops even if the consistency check has not been satisfied.
1306 >
1307 > The Nos\'e-Hoover algorithm is known to conserve a Hamiltonian for the
1308 > extended system that is, to within a constant, identical to the
1309 > Helmholtz free energy,\cite{melchionna93}
1310 > \begin{equation}
1311 > H_{\mathrm{NVT}} = V + K + f k_B T_{\mathrm{target}} \left(
1312 > \frac{\tau_{T}^2 \chi^2(t)}{2} + \int_{0}^{t} \chi(t^\prime) dt^\prime
1313 > \right).
1314 > \end{equation}
1315 > Poor choices of $h$ or $\tau_T$ can result in non-conservation
1316 > of $H_{\mathrm{NVT}}$, so the conserved quantity is maintained in the
1317 > last column of the {\tt .stat} file to allow checks on the quality of
1318 > the integration.
1319 >
1320 > Bond constraints are applied at the end of both the {\tt moveA} and
1321 > {\tt moveB} portions of the algorithm.  Details on the constraint
1322 > algorithms are given in section \ref{oopseSec:rattle}.
1323 >
1324 > \subsection{\label{sec:NPTi}Constant-pressure integration with
1325 > isotropic box deformations (NPTi)}
1326 >
1327 > To carry out isobaric-isothermal ensemble calculations {\sc oopse}
1328 > implements the Melchionna modifications to the Nos\'e-Hoover-Andersen
1329 > equations of motion,\cite{melchionna93}
1330 >
1331 > \begin{eqnarray}
1332 > \dot{{\bf r}} & = & {\bf v} + \eta \left( {\bf r} - {\bf R}_0 \right), \\
1333 > \dot{{\bf v}} & = & \frac{{\bf f}}{m} - (\eta + \chi) {\bf v}, \\
1334 > \dot{\mathsf{A}} & = & \mathsf{A} \cdot
1335 > \mbox{ skew}\left(\overleftrightarrow{I}^{-1} \cdot {\bf j}\right),\\
1336 > \dot{{\bf j}} & = & {\bf j} \times \left( \overleftrightarrow{I}^{-1}
1337 > \cdot {\bf j} \right) - \mbox{ rot}\left(\mathsf{A}^{T} \cdot \frac{\partial
1338 > V}{\partial \mathsf{A}} \right) - \chi {\bf j}, \\
1339 > \dot{\chi} & = & \frac{1}{\tau_{T}^2} \left(
1340 > \frac{T}{T_{\mathrm{target}}} - 1 \right) ,\\
1341 > \dot{\eta} & = & \frac{1}{\tau_{B}^2 f k_B T_{\mathrm{target}}} V \left( P -
1342 > P_{\mathrm{target}} \right), \\
1343 > \dot{\mathcal{V}} & = & 3 \mathcal{V} \eta .
1344 > \label{eq:melchionna1}
1345 > \end{eqnarray}
1346 >
1347 > $\chi$ and $\eta$ are the ``extra'' degrees of freedom in the extended
1348 > system.  $\chi$ is a thermostat, and it has the same function as it
1349 > does in the Nos\'e-Hoover NVT integrator.  $\eta$ is a barostat which
1350 > controls changes to the volume of the simulation box.  ${\bf R}_0$ is
1351 > the location of the center of mass for the entire system, and
1352 > $\mathcal{V}$ is the volume of the simulation box.  At any time, the
1353 > volume can be calculated from the determinant of the matrix which
1354 > describes the box shape:
1355 > \begin{equation}
1356 > \mathcal{V} = \det(\mathsf{H}).
1357 > \end{equation}
1358 >
1359 > The NPTi integrator requires an instantaneous pressure. This quantity
1360 > is calculated via the pressure tensor,
1361 > \begin{equation}
1362 > \overleftrightarrow{\mathsf{P}}(t) = \frac{1}{\mathcal{V}(t)} \left(
1363 > \sum_{i=1}^{N} m_i {\bf v}_i(t) \otimes {\bf v}_i(t) \right) +
1364 > \overleftrightarrow{\mathsf{W}}(t).
1365 > \end{equation}
1366 > The kinetic contribution to the pressure tensor utilizes the {\it
1367 > outer} product of the velocities denoted by the $\otimes$ symbol.  The
1368 > stress tensor is calculated from another outer product of the
1369 > inter-atomic separation vectors (${\bf r}_{ij} = {\bf r}_j - {\bf
1370 > r}_i$) with the forces between the same two atoms,
1371 > \begin{equation}
1372 > \overleftrightarrow{\mathsf{W}}(t) = \sum_{i} \sum_{j>i} {\bf r}_{ij}(t)
1373 > \otimes {\bf f}_{ij}(t).
1374 > \end{equation}
1375 > The instantaneous pressure is then simply obtained from the trace of
1376 > the Pressure tensor,
1377 > \begin{equation}
1378 > P(t) = \frac{1}{3} \mathrm{Tr} \left( \overleftrightarrow{\mathsf{P}}(t).
1379 > \right)
1380 > \end{equation}
1381 >
1382 > In eq.(\ref{eq:melchionna1}), $\tau_B$ is the time constant for
1383 > relaxation of the pressure to the target value.  To set values for
1384 > $\tau_B$ or $P_{\mathrm{target}}$ in a simulation, one would use the
1385 > {\tt tauBarostat} and {\tt targetPressure} keywords in the {\tt .bass}
1386 > file.  The units for {\tt tauBarostat} are fs, and the units for the
1387 > {\tt targetPressure} are atmospheres.  Like in the NVT integrator, the
1388 > integration of the equations of motion is carried out in a
1389 > velocity-Verlet style 2 part algorithm:
1390 >
1391 > {\tt moveA:}
1392 > \begin{align*}
1393 > T(t) &\leftarrow \left\{{\bf v}(t)\right\}, \left\{{\bf j}(t)\right\} ,\\
1394 > %
1395 > P(t) &\leftarrow \left\{{\bf r}(t)\right\}, \left\{{\bf v}(t)\right\} ,\\
1396 > %
1397 > {\bf v}\left(t + h / 2\right)  &\leftarrow {\bf v}(t)
1398 >        + \frac{h}{2} \left( \frac{{\bf f}(t)}{m} - {\bf v}(t)
1399 >        \left(\chi(t) + \eta(t) \right) \right), \\
1400 > %
1401 > {\bf j}\left(t + h / 2 \right)  &\leftarrow {\bf j}(t)
1402 >        + \frac{h}{2} \left( {\bf \tau}^b(t) - {\bf j}(t)
1403 >        \chi(t) \right), \\
1404 > %
1405 > \mathsf{A}(t + h) &\leftarrow \mathrm{rotate}\left(h *
1406 >        {\bf j}(t + h / 2) \overleftrightarrow{\mathsf{I}}^{-1}
1407 >        \right) ,\\
1408 > %
1409 > \chi\left(t + h / 2 \right) &\leftarrow \chi(t) +
1410 >        \frac{h}{2 \tau_T^2} \left( \frac{T(t)}{T_{\mathrm{target}}} - 1
1411 >        \right) ,\\
1412 > %
1413 > \eta(t + h / 2) &\leftarrow \eta(t) + \frac{h
1414 >        \mathcal{V}(t)}{2 N k_B T(t) \tau_B^2} \left( P(t)
1415 >        - P_{\mathrm{target}} \right), \\
1416 > %
1417 > {\bf r}(t + h) &\leftarrow {\bf r}(t) + h
1418 >        \left\{ {\bf v}\left(t + h / 2 \right)
1419 >        + \eta(t + h / 2)\left[ {\bf r}(t + h)
1420 >        - {\bf R}_0 \right] \right\} ,\\
1421 > %
1422 > \mathsf{H}(t + h) &\leftarrow e^{-h \eta(t + h / 2)}
1423 >        \mathsf{H}(t).
1424 > \end{align*}
1425 >
1426 > Most of these equations are identical to their counterparts in the NVT
1427 > integrator, but the propagation of positions to time $t + h$
1428 > depends on the positions at the same time.  {\sc oopse} carries out
1429 > this step iteratively (with a limit of 5 passes through the iterative
1430 > loop).  Also, the simulation box $\mathsf{H}$ is scaled uniformly for
1431 > one full time step by an exponential factor that depends on the value
1432 > of $\eta$ at time $t +
1433 > h / 2$.  Reshaping the box uniformly also scales the volume of
1434 > the box by
1435 > \begin{equation}
1436 > \mathcal{V}(t + h) \leftarrow e^{ - 3 h \eta(t + h /2)}.
1437 > \mathcal{V}(t)
1438 > \end{equation}
1439 >
1440 > The {\tt doForces} step for the NPTi integrator is exactly the same as
1441 > in both the DLM and NVT integrators.  Once the forces and torques have
1442 > been obtained at the new time step, the velocities can be advanced to
1443 > the same time value.
1444 >
1445 > {\tt moveB:}
1446 > \begin{align*}
1447 > T(t + h) &\leftarrow \left\{{\bf v}(t + h)\right\},
1448 >        \left\{{\bf j}(t + h)\right\} ,\\
1449 > %
1450 > P(t + h) &\leftarrow  \left\{{\bf r}(t + h)\right\},
1451 >        \left\{{\bf v}(t + h)\right\}, \\
1452 > %
1453 > \chi\left(t + h \right) &\leftarrow \chi\left(t + h /
1454 >        2 \right) + \frac{h}{2 \tau_T^2} \left( \frac{T(t+h)}
1455 >        {T_{\mathrm{target}}} - 1 \right), \\
1456 > %
1457 > \eta(t + h) &\leftarrow \eta(t + h / 2) +
1458 >        \frac{h \mathcal{V}(t + h)}{2 N k_B T(t + h)
1459 >        \tau_B^2} \left( P(t + h) - P_{\mathrm{target}} \right), \\
1460 > %
1461 > {\bf v}\left(t + h \right)  &\leftarrow {\bf v}\left(t
1462 >        + h / 2 \right) + \frac{h}{2} \left(
1463 >        \frac{{\bf f}(t + h)}{m} - {\bf v}(t + h)
1464 >        (\chi(t + h) + \eta(t + h)) \right) ,\\
1465 > %
1466 > {\bf j}\left(t + h \right)  &\leftarrow {\bf j}\left(t
1467 >        + h / 2 \right) + \frac{h}{2} \left( {\bf
1468 >        \tau}^b(t + h) - {\bf j}(t + h)
1469 >        \chi(t + h) \right) .
1470 > \end{align*}
1471 >
1472 > Once again, since ${\bf v}(t + h)$ and ${\bf j}(t + h)$ are required
1473 > to caclculate $T(t + h)$, $P(t + h)$, $\chi(t + h)$, and $\eta(t +
1474 > h)$, they indirectly depend on their own values at time $t + h$.  {\tt
1475 > moveB} is therefore done in an iterative fashion until $\chi(t + h)$
1476 > and $\eta(t + h)$ become self-consistent.  The relative tolerance for
1477 > the self-consistency check defaults to a value of $\mbox{10}^{-6}$,
1478 > but {\sc oopse} will terminate the iteration after 4 loops even if the
1479 > consistency check has not been satisfied.
1480 >
1481 > The Melchionna modification of the Nos\'e-Hoover-Andersen algorithm is
1482 > known to conserve a Hamiltonian for the extended system that is, to
1483 > within a constant, identical to the Gibbs free energy,
1484 > \begin{equation}
1485 > H_{\mathrm{NPTi}} = V + K + f k_B T_{\mathrm{target}} \left(
1486 > \frac{\tau_{T}^2 \chi^2(t)}{2} + \int_{0}^{t} \chi(t^\prime) dt^\prime
1487 > \right) + P_{\mathrm{target}} \mathcal{V}(t).
1488 > \end{equation}
1489 > Poor choices of $\delta t$, $\tau_T$, or $\tau_B$ can result in
1490 > non-conservation of $H_{\mathrm{NPTi}}$, so the conserved quantity is
1491 > maintained in the last column of the {\tt .stat} file to allow checks
1492 > on the quality of the integration.  It is also known that this
1493 > algorithm samples the equilibrium distribution for the enthalpy
1494 > (including contributions for the thermostat and barostat),
1495 > \begin{equation}
1496 > H_{\mathrm{NPTi}} = V + K + \frac{f k_B T_{\mathrm{target}}}{2} \left(
1497 > \chi^2 \tau_T^2 + \eta^2 \tau_B^2 \right) +  P_{\mathrm{target}}
1498 > \mathcal{V}(t).
1499 > \end{equation}
1500 >
1501 > Bond constraints are applied at the end of both the {\tt moveA} and
1502 > {\tt moveB} portions of the algorithm.  Details on the constraint
1503 > algorithms are given in section \ref{oopseSec:rattle}.
1504 >
1505 > \subsection{\label{sec:NPTf}Constant-pressure integration with a
1506 > flexible box (NPTf)}
1507 >
1508 > There is a relatively simple generalization of the
1509 > Nos\'e-Hoover-Andersen method to include changes in the simulation box
1510 > {\it shape} as well as in the volume of the box.  This method utilizes
1511 > the full $3 \times 3$ pressure tensor and introduces a tensor of
1512 > extended variables ($\overleftrightarrow{\eta}$) to control changes to
1513 > the box shape.  The equations of motion for this method are
1514 > \begin{eqnarray}
1515 > \dot{{\bf r}} & = & {\bf v} + \overleftrightarrow{\eta} \cdot \left( {\bf r} - {\bf R}_0 \right), \\
1516 > \dot{{\bf v}} & = & \frac{{\bf f}}{m} - (\overleftrightarrow{\eta} +
1517 > \chi \cdot \mathsf{1}) {\bf v}, \\
1518 > \dot{\mathsf{A}} & = & \mathsf{A} \cdot
1519 > \mbox{ skew}\left(\overleftrightarrow{I}^{-1} \cdot {\bf j}\right) ,\\
1520 > \dot{{\bf j}} & = & {\bf j} \times \left( \overleftrightarrow{I}^{-1}
1521 > \cdot {\bf j} \right) - \mbox{ rot}\left(\mathsf{A}^{T} \cdot \frac{\partial
1522 > V}{\partial \mathsf{A}} \right) - \chi {\bf j} ,\\
1523 > \dot{\chi} & = & \frac{1}{\tau_{T}^2} \left(
1524 > \frac{T}{T_{\mathrm{target}}} - 1 \right) ,\\
1525 > \dot{\overleftrightarrow{\eta}} & = & \frac{1}{\tau_{B}^2 f k_B
1526 > T_{\mathrm{target}}} V \left( \overleftrightarrow{\mathsf{P}} - P_{\mathrm{target}}\mathsf{1} \right) ,\\
1527 > \dot{\mathsf{H}} & = &  \overleftrightarrow{\eta} \cdot \mathsf{H} .
1528 > \label{eq:melchionna2}
1529 > \end{eqnarray}
1530 >
1531 > Here, $\mathsf{1}$ is the unit matrix and $\overleftrightarrow{\mathsf{P}}$
1532 > is the pressure tensor.  Again, the volume, $\mathcal{V} = \det
1533 > \mathsf{H}$.
1534 >
1535 > The propagation of the equations of motion is nearly identical to the
1536 > NPTi integration:
1537 >
1538 > {\tt moveA:}
1539 > \begin{align*}
1540 > T(t) &\leftarrow \left\{{\bf v}(t)\right\}, \left\{{\bf j}(t)\right\} ,\\
1541 > %
1542 > \overleftrightarrow{\mathsf{P}}(t) &\leftarrow \left\{{\bf r}(t)\right\},
1543 >        \left\{{\bf v}(t)\right\} ,\\
1544 > %
1545 > {\bf v}\left(t + h / 2\right)  &\leftarrow {\bf v}(t)
1546 >        + \frac{h}{2} \left( \frac{{\bf f}(t)}{m} -
1547 >        \left(\chi(t)\mathsf{1} + \overleftrightarrow{\eta}(t) \right) \cdot
1548 >        {\bf v}(t) \right), \\
1549 > %
1550 > {\bf j}\left(t + h / 2 \right)  &\leftarrow {\bf j}(t)
1551 >        + \frac{h}{2} \left( {\bf \tau}^b(t) - {\bf j}(t)
1552 >        \chi(t) \right), \\
1553 > %
1554 > \mathsf{A}(t + h) &\leftarrow \mathrm{rotate}\left(h *
1555 >        {\bf j}(t + h / 2) \overleftrightarrow{\mathsf{I}}^{-1}
1556 >        \right), \\
1557 > %
1558 > \chi\left(t + h / 2 \right) &\leftarrow \chi(t) +
1559 >        \frac{h}{2 \tau_T^2} \left( \frac{T(t)}{T_{\mathrm{target}}}
1560 >        - 1 \right), \\
1561 > %
1562 > \overleftrightarrow{\eta}(t + h / 2) &\leftarrow
1563 >        \overleftrightarrow{\eta}(t) + \frac{h \mathcal{V}(t)}{2 N k_B
1564 >        T(t) \tau_B^2} \left( \overleftrightarrow{\mathsf{P}}(t)
1565 >        - P_{\mathrm{target}}\mathsf{1} \right), \\
1566 > %
1567 > {\bf r}(t + h) &\leftarrow {\bf r}(t) + h \left\{ {\bf v}
1568 >        \left(t + h / 2 \right) + \overleftrightarrow{\eta}(t +
1569 >        h / 2) \cdot \left[ {\bf r}(t + h)
1570 >        - {\bf R}_0 \right] \right\}, \\
1571 > %
1572 > \mathsf{H}(t + h) &\leftarrow \mathsf{H}(t) \cdot e^{-h
1573 >        \overleftrightarrow{\eta}(t + h / 2)} .
1574 > \end{align*}
1575 > {\sc oopse} uses a power series expansion truncated at second order
1576 > for the exponential operation which scales the simulation box.
1577 >
1578 > The {\tt moveB} portion of the algorithm is largely unchanged from the
1579 > NPTi integrator:
1580 >
1581 > {\tt moveB:}
1582 > \begin{align*}
1583 > T(t + h) &\leftarrow \left\{{\bf v}(t + h)\right\},
1584 >        \left\{{\bf j}(t + h)\right\}, \\
1585 > %
1586 > \overleftrightarrow{\mathsf{P}}(t + h) &\leftarrow \left\{{\bf r}
1587 >        (t + h)\right\}, \left\{{\bf v}(t
1588 >        + h)\right\}, \left\{{\bf f}(t + h)\right\} ,\\
1589 > %
1590 > \chi\left(t + h \right) &\leftarrow \chi\left(t + h /
1591 >        2 \right) + \frac{h}{2 \tau_T^2} \left( \frac{T(t+
1592 >        h)}{T_{\mathrm{target}}} - 1 \right), \\
1593 > %
1594 > \overleftrightarrow{\eta}(t + h) &\leftarrow
1595 >        \overleftrightarrow{\eta}(t + h / 2) +
1596 >        \frac{h \mathcal{V}(t + h)}{2 N k_B T(t + h)
1597 >        \tau_B^2} \left( \overleftrightarrow{P}(t + h)
1598 >        - P_{\mathrm{target}}\mathsf{1} \right) ,\\
1599 > %
1600 > {\bf v}\left(t + h \right)  &\leftarrow {\bf v}\left(t
1601 >        + h / 2 \right) + \frac{h}{2} \left(
1602 >        \frac{{\bf f}(t + h)}{m} -
1603 >        (\chi(t + h)\mathsf{1} + \overleftrightarrow{\eta}(t
1604 >        + h)) \right) \cdot {\bf v}(t + h), \\
1605 > %
1606 > {\bf j}\left(t + h \right)  &\leftarrow {\bf j}\left(t
1607 >        + h / 2 \right) + \frac{h}{2} \left( {\bf \tau}^b(t
1608 >        + h) - {\bf j}(t + h) \chi(t + h) \right) .
1609 > \end{align*}
1610  
1611 + The iterative schemes for both {\tt moveA} and {\tt moveB} are
1612 + identical to those described for the NPTi integrator.
1613 +
1614 + The NPTf integrator is known to conserve the following Hamiltonian:
1615 + \begin{equation}
1616 + H_{\mathrm{NPTf}} = V + K + f k_B T_{\mathrm{target}} \left(
1617 + \frac{\tau_{T}^2 \chi^2(t)}{2} + \int_{0}^{t} \chi(t^\prime) dt^\prime
1618 + \right) + P_{\mathrm{target}} \mathcal{V}(t) + \frac{f k_B
1619 + T_{\mathrm{target}}}{2}
1620 + \mathrm{Tr}\left[\overleftrightarrow{\eta}(t)\right]^2 \tau_B^2.
1621 + \end{equation}
1622 +
1623 + This integrator must be used with care, particularly in liquid
1624 + simulations.  Liquids have very small restoring forces in the
1625 + off-diagonal directions, and the simulation box can very quickly form
1626 + elongated and sheared geometries which become smaller than the
1627 + electrostatic or Lennard-Jones cutoff radii.  The NPTf integrator
1628 + finds most use in simulating crystals or liquid crystals which assume
1629 + non-orthorhombic geometries.
1630 +
1631 + \subsection{\label{nptxyz}Constant pressure in 3 axes (NPTxyz)}
1632 +
1633 + There is one additional extended system integrator which is somewhat
1634 + simpler than the NPTf method described above.  In this case, the three
1635 + axes have independent barostats which each attempt to preserve the
1636 + target pressure along the box walls perpendicular to that particular
1637 + axis.  The lengths of the box axes are allowed to fluctuate
1638 + independently, but the angle between the box axes does not change.
1639 + The equations of motion are identical to those described above, but
1640 + only the {\it diagonal} elements of $\overleftrightarrow{\eta}$ are
1641 + computed.  The off-diagonal elements are set to zero (even when the
1642 + pressure tensor has non-zero off-diagonal elements).
1643 +
1644 + It should be noted that the NPTxyz integrator is {\it not} known to
1645 + preserve any Hamiltonian of interest to the chemical physics
1646 + community.  The integrator is extremely useful, however, in generating
1647 + initial conditions for other integration methods.  It {\it is} suitable
1648 + for use with liquid simulations, or in cases where there is
1649 + orientational anisotropy in the system (i.e. in lipid bilayer
1650 + simulations).
1651 +
1652   \subsection{\label{oopseSec:rattle}The {\sc rattle} Method for Bond
1653          Constraints}
1654  
# Line 974 | Line 1656 | formulation of the {\sc shake} method\cite{ryckaert77}
1656   oopse}, we have implemented the {\sc rattle} algorithm of
1657   Andersen.\cite{andersen83} The algorithm is a velocity verlet
1658   formulation of the {\sc shake} method\cite{ryckaert77} of iteratively
1659 < solving the Lagrange multipliers of constraint. The system of lagrange
1659 > solving the Lagrange multipliers of constraint. The system of Lagrange
1660   multipliers allows one to reformulate the equations of motion with
1661   explicit constraint forces.\cite{fowles99:lagrange}
1662  
# Line 989 | Line 1671 | The Lagrange formulation of the equations of motion ca
1671   \delta\int_{t_1}^{t_2}L\, dt =
1672          \int_{t_1}^{t_2} \sum_i \biggl [ \frac{\partial L}{\partial q_i}
1673          - \frac{d}{dt}\biggl(\frac{\partial L}{\partial \dot{q}_i}
1674 <        \biggr ) \biggr] \delta q_i \, dt = 0
1674 >        \biggr ) \biggr] \delta q_i \, dt = 0.
1675   \label{oopseEq:lm2}
1676   \end{equation}
1677   Here, $\delta q_i$ is not independent for each $q$, as $q_1$ and $q_2$
# Line 997 | Line 1679 | instant of time, giving:
1679   instant of time, giving:
1680   \begin{align}
1681   \delta\sigma &= \biggl( \frac{\partial\sigma}{\partial q_1} \delta q_1 %
1682 <        + \frac{\partial\sigma}{\partial q_2} \delta q_2 \biggr) = 0 \\
1682 >        + \frac{\partial\sigma}{\partial q_2} \delta q_2 \biggr) = 0 ,\\
1683   %
1684   \frac{\partial\sigma}{\partial q_1} \delta q_1 &= %
1685 <        - \frac{\partial\sigma}{\partial q_2} \delta q_2 \\
1685 >        - \frac{\partial\sigma}{\partial q_2} \delta q_2, \\
1686   %
1687   \delta q_2 &= - \biggl(\frac{\partial\sigma}{\partial q_1} \bigg / %
1688 <        \frac{\partial\sigma}{\partial q_2} \biggr) \delta q_1
1688 >        \frac{\partial\sigma}{\partial q_2} \biggr) \delta q_1.
1689   \end{align}
1690   Substituted back into Eq.~\ref{oopseEq:lm2},
1691   \begin{equation}
# Line 1013 | Line 1695 | Substituted back into Eq.~\ref{oopseEq:lm2},
1695          - \biggl( \frac{\partial L}{\partial q_1}
1696          - \frac{d}{dt}\,\frac{\partial L}{\partial \dot{q}_1}
1697          \biggr) \biggl(\frac{\partial\sigma}{\partial q_1} \bigg / %
1698 <        \frac{\partial\sigma}{\partial q_2} \biggr)\biggr] \delta q_1 \, dt = 0
1698 >        \frac{\partial\sigma}{\partial q_2} \biggr)\biggr] \delta q_1 \, dt = 0.
1699   \label{oopseEq:lm3}
1700   \end{equation}
1701   Leading to,
# Line 1023 | Line 1705 | Leading to,
1705          \biggr)}{\frac{\partial\sigma}{\partial q_1}} =
1706   \frac{\biggl(\frac{\partial L}{\partial q_2}
1707          - \frac{d}{dt}\,\frac{\partial L}{\partial \dot{q}_2}
1708 <        \biggr)}{\frac{\partial\sigma}{\partial q_2}}
1708 >        \biggr)}{\frac{\partial\sigma}{\partial q_2}}.
1709   \label{oopseEq:lm4}
1710   \end{equation}
1711   This relation can only be statisfied, if both are equal to a single
# Line 1031 | Line 1713 | function $-\lambda(t)$,
1713   \begin{align}
1714   \frac{\biggl(\frac{\partial L}{\partial q_1}
1715          - \frac{d}{dt}\,\frac{\partial L}{\partial \dot{q}_1}
1716 <        \biggr)}{\frac{\partial\sigma}{\partial q_1}} &= -\lambda(t) \\
1716 >        \biggr)}{\frac{\partial\sigma}{\partial q_1}} &= -\lambda(t), \\
1717   %
1718   \frac{\partial L}{\partial q_1}
1719          - \frac{d}{dt}\,\frac{\partial L}{\partial \dot{q}_1} &=
1720 <         -\lambda(t)\,\frac{\partial\sigma}{\partial q_1} \\
1720 >         -\lambda(t)\,\frac{\partial\sigma}{\partial q_1} ,\\
1721   %
1722   \frac{\partial L}{\partial q_1}
1723          - \frac{d}{dt}\,\frac{\partial L}{\partial \dot{q}_1}
1724 <         + \mathcal{G}_i &= 0
1724 >         + \mathcal{G}_i &= 0,
1725   \end{align}
1726 < Where $\mathcal{G}_i$, the force of constraint on $i$, is:
1726 > where $\mathcal{G}_i$, the force of constraint on $i$, is:
1727   \begin{equation}
1728 < \mathcal{G}_i = \lambda(t)\,\frac{\partial\sigma}{\partial q_1}
1728 > \mathcal{G}_i = \lambda(t)\,\frac{\partial\sigma}{\partial q_1}.
1729   \label{oopseEq:lm5}
1730   \end{equation}
1731  
# Line 1069 | Line 1751 | following two constraints:
1751   \begin{align}
1752   \sigma_{ij}[\mathbf{r}(t)] \equiv
1753          [ \mathbf{r}_i(t) - \mathbf{r}_j(t)]^2  - d_{ij}^2 &= 0 %
1754 <        \label{oopseEq:c1} \\
1754 >        \label{oopseEq:c1}, \\
1755   %
1756   [\mathbf{\dot{r}}_i(t) - \mathbf{\dot{r}}_j(t)] \cdot
1757 <        [\mathbf{r}_i(t) - \mathbf{r}_j(t)] &= 0 \label{oopseEq:c2}
1757 >        [\mathbf{r}_i(t) - \mathbf{r}_j(t)] &= 0 .\label{oopseEq:c2}
1758   \end{align}
1759   Eq.~\ref{oopseEq:c1} is the set of bond constraints, where $d_{ij}$ is
1760   the constrained distance between atom $i$ and
# Line 1080 | Line 1762 | nor shrink. The constrained dynamics equations become:
1762   be perpendicular to the bond vector, so that the bond can neither grow
1763   nor shrink. The constrained dynamics equations become:
1764   \begin{equation}
1765 < m_i \mathbf{\ddot{r}}_i = \mathbf{F}_i + \mathbf{\mathcal{G}}_i
1765 > m_i \mathbf{\ddot{r}}_i = \mathbf{F}_i + \mathbf{\mathcal{G}}_i,
1766   \label{oopseEq:r1}
1767   \end{equation}
1768 < Where,$\mathbf{\mathcal{G}}_i$ are the forces of constraint on $i$,
1768 > where,$\mathbf{\mathcal{G}}_i$ are the forces of constraint on $i$,
1769   and are defined:
1770   \begin{equation}
1771 < \mathbf{\mathcal{G}}_i = - \sum_j \lambda_{ij}(t)\,\nabla \sigma_{ij}
1771 > \mathbf{\mathcal{G}}_i = - \sum_j \lambda_{ij}(t)\,\nabla \sigma_{ij}.
1772   \label{oopseEq:r2}
1773   \end{equation}
1774  
# Line 1095 | Line 1777 | In Velocity Verlet, if $\Delta t = h$, the propagation
1777   \mathbf{r}_i(t+h) &=
1778          \mathbf{r}_i(t) + h\mathbf{\dot{r}}(t) +
1779          \frac{h^2}{2m_i}\,\Bigl[ \mathbf{F}_i(t) +
1780 <        \mathbf{\mathcal{G}}_{Ri}(t) \Bigr] \label{oopseEq:vv1} \\
1780 >        \mathbf{\mathcal{G}}_{Ri}(t) \Bigr] \label{oopseEq:vv1}, \\
1781   %
1782   \mathbf{\dot{r}}_i(t+h) &=
1783          \mathbf{\dot{r}}_i(t) + \frac{h}{2m_i}
1784          \Bigl[ \mathbf{F}_i(t) + \mathbf{\mathcal{G}}_{Ri}(t) +
1785 <        \mathbf{F}_i(t+h) + \mathbf{\mathcal{G}}_{Vi}(t+h) \Bigr] %
1785 >        \mathbf{F}_i(t+h) + \mathbf{\mathcal{G}}_{Vi}(t+h) \Bigr] ,%
1786          \label{oopseEq:vv2}
1787   \end{align}
1788 < Where:
1788 > where:
1789   \begin{align}
1790   \mathbf{\mathcal{G}}_{Ri}(t) &=
1791 <        -2 \sum_j \lambda_{Rij}(t) \mathbf{r}_{ij}(t) \\
1791 >        -2 \sum_j \lambda_{Rij}(t) \mathbf{r}_{ij}(t) ,\\
1792   %
1793   \mathbf{\mathcal{G}}_{Vi}(t+h) &=
1794 <        -2 \sum_j \lambda_{Vij}(t+h) \mathbf{r}(t+h)
1794 >        -2 \sum_j \lambda_{Vij}(t+h) \mathbf{r}(t+h).
1795   \end{align}
1796   Next, define:
1797   \begin{align}
1798 < g_{ij} &= h \lambda_{Rij}(t) \\
1799 < k_{ij} &= h \lambda_{Vij}(t+h) \\
1798 > g_{ij} &= h \lambda_{Rij}(t) ,\\
1799 > k_{ij} &= h \lambda_{Vij}(t+h), \\
1800   \mathbf{q}_i &= \mathbf{\dot{r}}_i(t) + \frac{h}{2m_i} \mathbf{F}_i(t)
1801 <        - \frac{1}{m_i}\sum_j g_{ij}\mathbf{r}_{ij}(t)
1801 >        - \frac{1}{m_i}\sum_j g_{ij}\mathbf{r}_{ij}(t).
1802   \end{align}
1803   Using these definitions, Eq.~\ref{oopseEq:vv1} and \ref{oopseEq:vv2}
1804   can be rewritten as,
1805   \begin{align}
1806 < \mathbf{r}_i(t+h) &= \mathbf{r}_i(t) + h \mathbf{q}_i \\
1806 > \mathbf{r}_i(t+h) &= \mathbf{r}_i(t) + h \mathbf{q}_i ,\\
1807   %
1808   \mathbf{\dot{r}}(t+h) &= \mathbf{q}_i + \frac{h}{2m_i}\mathbf{F}_i(t+h)
1809 <        -\frac{1}{m_i}\sum_j k_{ij} \mathbf{r}_{ij}(t+h)
1809 >        -\frac{1}{m_i}\sum_j k_{ij} \mathbf{r}_{ij}(t+h).
1810   \end{align}
1811  
1812   To integrate the equations of motion, the {\sc rattle} algorithm first
1813   solves for $\mathbf{r}(t+h)$. Let,
1814   \begin{equation}
1815 < \mathbf{q}_i = \mathbf{\dot{r}}(t) + \frac{h}{2m_i}\mathbf{F}_i(t)
1815 > \mathbf{q}_i = \mathbf{\dot{r}}(t) + \frac{h}{2m_i}\mathbf{F}_i(t).
1816   \end{equation}
1817   Here $\mathbf{q}_i$ corresponds to an initial unconstrained move. Next
1818   pick a constraint $j$, and let,
1819   \begin{equation}
1820   \mathbf{s} = \mathbf{r}_i(t) + h\mathbf{q}_i(t)
1821 <        - \mathbf{r}_j(t) + h\mathbf{q}_j(t)
1821 >        - \mathbf{r}_j(t) + h\mathbf{q}_j(t).
1822   \label{oopseEq:ra1}
1823   \end{equation}
1824   If
# Line 1147 | Line 1829 | positions. First we define a test corrected configurat
1829   positions. First we define a test corrected configuration as,
1830   \begin{align}
1831   \mathbf{r}_i^T(t+h) = \mathbf{r}_i(t) + h\biggl[\mathbf{q}_i -
1832 <        g_{ij}\,\frac{\mathbf{r}_{ij}(t)}{m_i} \biggr] \\
1832 >        g_{ij}\,\frac{\mathbf{r}_{ij}(t)}{m_i} \biggr] ,\\
1833   %
1834   \mathbf{r}_j^T(t+h) = \mathbf{r}_j(t) + h\biggl[\mathbf{q}_j +
1835 <        g_{ij}\,\frac{\mathbf{r}_{ij}(t)}{m_j} \biggr]
1835 >        g_{ij}\,\frac{\mathbf{r}_{ij}(t)}{m_j} \biggr].
1836   \end{align}
1837   And we chose $g_{ij}$ such that, $|\mathbf{r}_i^T - \mathbf{r}_j^T|^2
1838   = d_{ij}^2$. Solving the quadratic for $g_{ij}$ we obtain the
1839   approximation,
1840   \begin{equation}
1841   g_{ij} = \frac{(s^2 - d^2)}{2h[\mathbf{s}\cdot\mathbf{r}_{ij}(t)]
1842 <        (\frac{1}{m_i} + \frac{1}{m_j})}
1842 >        (\frac{1}{m_i} + \frac{1}{m_j})}.
1843   \end{equation}
1844   Although not an exact solution for $g_{ij}$, as this is an iterative
1845   scheme overall, the eventual solution will converge. With a trial
1846   $g_{ij}$, the new $\mathbf{q}$'s become,
1847   \begin{align}
1848   \mathbf{q}_i &= \mathbf{q}^{\text{old}}_i - g_{ij}\,
1849 <        \frac{\mathbf{r}_{ij}(t)}{m_i} \\
1849 >        \frac{\mathbf{r}_{ij}(t)}{m_i} ,\\
1850   %
1851   \mathbf{q}_j &= \mathbf{q}^{\text{old}}_j + g_{ij}\,
1852 <        \frac{\mathbf{r}_{ij}(t)}{m_j}
1852 >        \frac{\mathbf{r}_{ij}(t)}{m_j} .
1853   \end{align}
1854   The whole algorithm is then repeated from Eq.~\ref{oopseEq:ra1} until
1855   all constraints are satisfied.
# Line 1175 | Line 1857 | step starts with,
1857   The second step of {\sc rattle}, is to then update the velocities. The
1858   step starts with,
1859   \begin{equation}
1860 < \mathbf{\dot{r}}_i(t+h) = \mathbf{q}_i + \frac{h}{2m_i}\mathbf{F}_i(t+h)
1860 > \mathbf{\dot{r}}_i(t+h) = \mathbf{q}_i + \frac{h}{2m_i}\mathbf{F}_i(t+h).
1861   \end{equation}
1862   Next we pick a constraint $j$, and calculate the dot product $\ell$.
1863   \begin{equation}
1864 < \ell = \mathbf{r}_{ij}(t+h) \cdot \mathbf{\dot{r}}_{ij}(t+h)
1864 > \ell = \mathbf{r}_{ij}(t+h) \cdot \mathbf{\dot{r}}_{ij}(t+h).
1865   \label{oopseEq:rv1}
1866   \end{equation}
1867   Here if constraint Eq.~\ref{oopseEq:c2} holds, $\ell$ should be
# Line 1187 | Line 1869 | corrections are made to the $i$ and $j$ velocities.
1869   corrections are made to the $i$ and $j$ velocities.
1870   \begin{align}
1871   \mathbf{\dot{r}}_i^T &= \mathbf{\dot{r}}_i(t+h) - k_{ij}
1872 <        \frac{\mathbf{\dot{r}}_{ij}(t+h)}{m_i} \\
1872 >        \frac{\mathbf{\dot{r}}_{ij}(t+h)}{m_i}, \\
1873   %
1874   \mathbf{\dot{r}}_j^T &= \mathbf{\dot{r}}_j(t+h) + k_{ij}
1875 <        \frac{\mathbf{\dot{r}}_{ij}(t+h)}{m_j}
1875 >        \frac{\mathbf{\dot{r}}_{ij}(t+h)}{m_j}.
1876   \end{align}
1877   Like in the previous step, we select a value for $k_{ij}$ such that
1878   $\ell$ is zero.
1879   \begin{equation}
1880 < k_{ij} = \frac{\ell}{d^2_{ij}(\frac{1}{m_i} + \frac{1}{m_j})}
1880 > k_{ij} = \frac{\ell}{d^2_{ij}(\frac{1}{m_i} + \frac{1}{m_j})}.
1881   \end{equation}
1882   The test velocities, $\mathbf{\dot{r}}^T_i$ and
1883   $\mathbf{\dot{r}}^T_j$, then replace their respective velocities, and
# Line 1211 | Line 1893 | force from its mean force.
1893   coefficient can be calculated from the deviation of the instantaneous
1894   force from its mean force.
1895   \begin{equation}
1896 < \xi(z,t)=\langle\delta F(z,t)\delta F(z,0)\rangle/k_{B}T
1896 > \xi(z,t)=\langle\delta F(z,t)\delta F(z,0)\rangle/k_{B}T,
1897   \end{equation}
1898   where%
1899   \begin{equation}
1900 < \delta F(z,t)=F(z,t)-\langle F(z,t)\rangle
1900 > \delta F(z,t)=F(z,t)-\langle F(z,t)\rangle.
1901   \end{equation}
1902  
1903  
1904   If the time-dependent friction decays rapidly, the static friction
1905   coefficient can be approximated by
1906   \begin{equation}
1907 < \xi^{static}(z)=\int_{0}^{\infty}\langle\delta F(z,t)\delta F(z,0)\rangle dt
1907 > \xi_{\text{static}}(z)=\int_{0}^{\infty}\langle\delta F(z,t)\delta F(z,0)\rangle dt.
1908   \end{equation}
1909 < Therefore, the diffusion constant can then be estimated by
1909 > Allowing diffusion constant to then be calculated through the
1910 > Einstein relation:\cite{Marrink94}
1911   \begin{equation}
1912 < D(z)=\frac{k_{B}T}{\xi^{static}(z)}=\frac{(k_{B}T)^{2}}{\int_{0}^{\infty
1913 < }\langle\delta F(z,t)\delta F(z,0)\rangle dt}%
1912 > D(z)=\frac{k_{B}T}{\xi_{\text{static}}(z)}=\frac{(k_{B}T)^{2}}{\int_{0}^{\infty
1913 > }\langle\delta F(z,t)\delta F(z,0)\rangle dt}.%
1914   \end{equation}
1915  
1916   The Z-Constraint method, which fixes the z coordinates of the
# Line 1236 | Line 1919 | avoid this problem, a new method was used in {\sc oops
1919   auto-correlation calculation.\cite{Marrink94} However, simply resetting the
1920   coordinate will move the center of the mass of the whole system. To
1921   avoid this problem, a new method was used in {\sc oopse}. Instead of
1922 < resetting the coordinate, we reset the forces of z-constraint
1922 > resetting the coordinate, we reset the forces of z-constrained
1923   molecules as well as subtract the total constraint forces from the
1924 < rest of the system after force calculation at each time step.
1242 < \begin{align}
1243 < F_{\alpha i}&=0\\
1244 < V_{\alpha i}&=V_{\alpha i}-\frac{\sum\limits_{i}M_{_{\alpha i}}V_{\alpha i}}{\sum\limits_{i}M_{_{\alpha i}}}\\
1245 < F_{\alpha i}&=F_{\alpha i}-\frac{M_{_{\alpha i}}}{\sum\limits_{\alpha}\sum\limits_{i}M_{_{\alpha i}}}\sum\limits_{\beta}F_{\beta}\\
1246 < V_{\alpha i}&=V_{\alpha i}-\frac{\sum\limits_{\alpha}\sum\limits_{i}M_{_{\alpha i}}V_{\alpha i}}{\sum\limits_{\alpha}\sum\limits_{i}M_{_{\alpha i}}}
1247 < \end{align}
1924 > rest of the system after the force calculation at each time step.
1925  
1926 + After the force calculation, define $G_\alpha$ as
1927 + \begin{equation}
1928 + G_{\alpha} = \sum_i F_{\alpha i},
1929 + \label{oopseEq:zc1}
1930 + \end{equation}
1931 + where $F_{\alpha i}$ is the force in the z direction of atom $i$ in
1932 + z-constrained molecule $\alpha$. The forces of the z constrained
1933 + molecule are then set to:
1934 + \begin{equation}
1935 + F_{\alpha i} = F_{\alpha i} -
1936 +        \frac{m_{\alpha i} G_{\alpha}}{\sum_i m_{\alpha i}}.
1937 + \end{equation}
1938 + Here, $m_{\alpha i}$ is the mass of atom $i$ in the z-constrained
1939 + molecule. Having rescaled the forces, the velocities must also be
1940 + rescaled to subtract out any center of mass velocity in the z
1941 + direction.
1942 + \begin{equation}
1943 + v_{\alpha i} = v_{\alpha i} -
1944 +        \frac{\sum_i m_{\alpha i} v_{\alpha i}}{\sum_i m_{\alpha i}},
1945 + \end{equation}
1946 + where $v_{\alpha i}$ is the velocity of atom $i$ in the z direction.
1947 + Lastly, all of the accumulated z constrained forces must be subtracted
1948 + from the system to keep the system center of mass from drifting.
1949 + \begin{equation}
1950 + F_{\beta i} = F_{\beta i} - \frac{m_{\beta i} \sum_{\alpha} G_{\alpha}}
1951 +        {\sum_{\beta}\sum_i m_{\beta i}},
1952 + \end{equation}
1953 + where $\beta$ are all of the unconstrained molecules in the
1954 + system. Similarly, the velocities of the unconstrained molecules must
1955 + also be scaled.
1956 + \begin{equation}
1957 + v_{\beta i} = v_{\beta i} + \sum_{\alpha}
1958 +        \frac{\sum_i m_{\alpha i} v_{\alpha i}}{\sum_i m_{\alpha i}}.
1959 + \end{equation}
1960 +
1961   At the very beginning of the simulation, the molecules may not be at their
1962   constrained positions. To move a z-constrained molecule to its specified
1963   position, a simple harmonic potential is used
1964   \begin{equation}
1965 < U(t)=\frac{1}{2}k_{\text{Harmonic}}(z(t)-z_{\text{cons}})^{2}%
1965 > U(t)=\frac{1}{2}k_{\text{Harmonic}}(z(t)-z_{\text{cons}})^{2},%
1966   \end{equation}
1967   where $k_{\text{Harmonic}}$ is the harmonic force constant, $z(t)$ is the
1968   current $z$ coordinate of the center of mass of the constrained molecule, and
# Line 1258 | Line 1970 | F_{z_{\text{Harmonic}}}(t)=-\frac{\partial U(t)}{\part
1970   on the z-constrained molecule at time $t$ can be calculated by
1971   \begin{equation}
1972   F_{z_{\text{Harmonic}}}(t)=-\frac{\partial U(t)}{\partial z(t)}=
1973 <        -k_{\text{Harmonic}}(z(t)-z_{\text{cons}})
1973 >        -k_{\text{Harmonic}}(z(t)-z_{\text{cons}}).
1974   \end{equation}
1975  
1976   \section{\label{oopseSec:props}Trajectory Analysis}
# Line 1272 | Line 1984 | can be found in Table~\ref{oopseTb:gofrs}
1984   can be found in Table~\ref{oopseTb:gofrs}
1985  
1986   \begin{table}
1987 < \caption[The list of pair correlations in \texttt{staticProps}]{The different pair correlations in \texttt{staticProps} along with whether atom A or B must be directional.}
1987 > \caption[The list of pair correlations in \texttt{staticProps}]{THE DIFFERENT PAIR CORRELATIONS IN \texttt{staticProps}}
1988   \label{oopseTb:gofrs}
1989   \begin{center}
1990   \begin{tabular}{|l|c|c|}
# Line 1285 | Line 1997 | $\langle \cos \omega \rangle_{\text{AB}}(r)$ & Eq.~\re
1997   $\langle \cos \omega \rangle_{\text{AB}}(r)$ & Eq.~\ref{eq:cosOmegaOfR} &%
1998          both \\ \hline
1999   \end{tabular}
2000 + \begin{minipage}{\linewidth}
2001 + \centering
2002 + \vspace{2mm}
2003 + The third column specifies which atom, if any, need be a directional entity.
2004 + \end{minipage}
2005   \end{center}
2006   \end{table}
2007  
# Line 1292 | Line 2009 | g_{\text{AB}}(r) = \frac{V}{N_{\text{A}}N_{\text{B}}}\
2009   \begin{equation}
2010   g_{\text{AB}}(r) = \frac{V}{N_{\text{A}}N_{\text{B}}}\langle %%
2011          \sum_{i \in \text{A}} \sum_{j \in \text{B}} %%
2012 <        \delta( r - |\mathbf{r}_{ij}|) \rangle \label{eq:gofr}
2012 >        \delta( r - |\mathbf{r}_{ij}|) \rangle, \label{eq:gofr}
2013   \end{equation}
2014 < Where $\mathbf{r}_{ij}$ is the vector
2014 > where $\mathbf{r}_{ij}$ is the vector
2015   \begin{equation*}
2016 < \mathbf{r}_{ij} = \mathbf{r}_j - \mathbf{r}_i \notag
2016 > \mathbf{r}_{ij} = \mathbf{r}_j - \mathbf{r}_i, \notag
2017   \end{equation*}
2018   and $\frac{V}{N_{\text{A}}N_{\text{B}}}$ normalizes the average over
2019   the expected pair density at a given $r$.
# Line 1313 | Line 2030 | g_{\text{AB}}(r, \cos \theta) = \frac{V}{N_{\text{A}}N
2030   g_{\text{AB}}(r, \cos \theta) = \frac{V}{N_{\text{A}}N_{\text{B}}}\langle  
2031   \sum_{i \in \text{A}} \sum_{j \in \text{B}}  
2032   \delta( \cos \theta - \cos \theta_{ij})
2033 < \delta( r - |\mathbf{r}_{ij}|) \rangle
2033 > \delta( r - |\mathbf{r}_{ij}|) \rangle.
2034   \label{eq:gofrCosTheta}
2035   \end{equation}
2036 < Where
2036 > Here
2037   \begin{equation*}
2038 < \cos \theta_{ij} = \mathbf{\hat{i}} \cdot \mathbf{\hat{r}}_{ij}
2038 > \cos \theta_{ij} = \mathbf{\hat{i}} \cdot \mathbf{\hat{r}}_{ij},
2039   \end{equation*}
2040 < Here $\mathbf{\hat{i}}$ is the unit directional vector of species $i$
2040 > where $\mathbf{\hat{i}}$ is the unit directional vector of species $i$
2041   and $\mathbf{\hat{r}}_{ij}$ is the unit vector associated with vector
2042   $\mathbf{r}_{ij}$.
2043  
# Line 1330 | Line 2047 | g_{\text{AB}}(r, \cos \omega) =
2047          \frac{V}{N_{\text{A}}N_{\text{B}}}\langle
2048          \sum_{i \in \text{A}} \sum_{j \in \text{B}}
2049          \delta( \cos \omega - \cos \omega_{ij})
2050 <        \delta( r - |\mathbf{r}_{ij}|) \rangle \label{eq:gofrCosOmega}
2050 >        \delta( r - |\mathbf{r}_{ij}|) \rangle. \label{eq:gofrCosOmega}
2051   \end{equation}
2052   Here
2053   \begin{equation*}
2054 < \cos \omega_{ij} = \mathbf{\hat{i}} \cdot \mathbf{\hat{j}}
2054 > \cos \omega_{ij} = \mathbf{\hat{i}} \cdot \mathbf{\hat{j}}.
2055   \end{equation*}
2056   Again, $\mathbf{\hat{i}}$ and $\mathbf{\hat{j}}$ are the unit
2057   directional vectors of species $i$ and $j$.
# Line 1347 | Line 2064 | g_{\text{AB}}(x, y, z) =
2064          \sum_{i \in \text{A}} \sum_{j \in \text{B}}
2065          \delta( x - x_{ij})
2066          \delta( y - y_{ij})
2067 <        \delta( z - z_{ij}) \rangle
2067 >        \delta( z - z_{ij}) \rangle,
2068   \end{equation}
2069 < Where $x_{ij}$, $y_{ij}$, and $z_{ij}$ are the $x$, $y$, and $z$
2069 > where $x_{ij}$, $y_{ij}$, and $z_{ij}$ are the $x$, $y$, and $z$
2070   components respectively of vector $\mathbf{r}_{ij}$.
2071  
2072   The final pair correlation is similar to
# Line 1358 | Line 2075 | Eq.~\ref{eq:gofrCosOmega}. $\langle \cos \omega
2075   \begin{equation}\label{eq:cosOmegaOfR}
2076   \langle \cos \omega \rangle_{\text{AB}}(r)  =
2077          \langle \sum_{i \in \text{A}} \sum_{j \in \text{B}}
2078 <        (\cos \omega_{ij}) \delta( r - |\mathbf{r}_{ij}|) \rangle
2078 >        (\cos \omega_{ij}) \delta( r - |\mathbf{r}_{ij}|) \rangle.
2079   \end{equation}
2080   Here $\cos \omega_{ij}$ is defined in the same way as in
2081   Eq.~\ref{eq:gofrCosOmega}. This equation is a single dimensional pair
# Line 1370 | Line 2087 | The dynamic properties of a trajectory are calculated
2087   The dynamic properties of a trajectory are calculated with the program
2088   \texttt{dynamicProps}. The program calculates the following properties:
2089   \begin{gather}
2090 < \langle | \mathbf{r}(t) - \mathbf{r}(0) |^2 \rangle \label{eq:rms}\\
2091 < \langle \mathbf{v}(t) \cdot \mathbf{v}(0) \rangle \label{eq:velCorr} \\
2092 < \langle \mathbf{j}(t) \cdot \mathbf{j}(0) \rangle \label{eq:angularVelCorr}
2090 > \langle | \mathbf{r}(t) - \mathbf{r}(0) |^2 \rangle, \label{eq:rms}\\
2091 > \langle \mathbf{v}(t) \cdot \mathbf{v}(0) \rangle, \label{eq:velCorr} \\
2092 > \langle \mathbf{j}(t) \cdot \mathbf{j}(0) \rangle. \label{eq:angularVelCorr}
2093   \end{gather}
2094  
2095   Eq.~\ref{eq:rms} is the root mean square displacement function. Which
# Line 1381 | Line 2098 | times.\cite{allen87:csl}
2098   coefficients because of the Einstein Relation, which is valid at long
2099   times.\cite{allen87:csl}
2100   \begin{equation}
2101 < 2tD = \langle | \mathbf{r}(t) - \mathbf{r}(0) |^2 \rangle
2101 > 2tD = \langle | \mathbf{r}(t) - \mathbf{r}(0) |^2 \rangle.
2102   \label{oopseEq:einstein}
2103   \end{equation}
2104  
# Line 1453 | Line 2170 | duration of the simulation. Computational cost scales
2170   Algorithmically simplest of the three methods is atomic decomposition
2171   where N particles in a simulation are split among P processors for the
2172   duration of the simulation. Computational cost scales as an optimal
2173 < $O(N/P)$ for atomic decomposition. Unfortunately all processors must
2174 < communicate positions and forces with all other processors at every
2175 < force evaluation, leading communication costs to scale as an
2176 < unfavorable $O(N)$, \emph{independent of the number of processors}. This
2177 < communication bottleneck led to the development of spatial and force
2178 < decomposition methods in which communication among processors scales
2179 < much more favorably. Spatial or domain decomposition divides the
2180 < physical spatial domain into 3D boxes in which each processor is
2181 < responsible for calculation of forces and positions of particles
2182 < located in its box. Particles are reassigned to different processors
2183 < as they move through simulation space. To calculate forces on a given
2184 < particle, a processor must know the positions of particles within some
2185 < cutoff radius located on nearby processors instead of the positions of
2186 < particles on all processors. Both communication between processors and
2187 < computation scale as $O(N/P)$ in the spatial method. However, spatial
2173 > $\mathcal{O}(N/P)$ for atomic decomposition. Unfortunately all
2174 > processors must communicate positions and forces with all other
2175 > processors at every force evaluation, leading communication costs to
2176 > scale as an unfavorable $\mathcal{O}(N)$, \emph{independent of the
2177 > number of processors}. This communication bottleneck led to the
2178 > development of spatial and force decomposition methods in which
2179 > communication among processors scales much more favorably. Spatial or
2180 > domain decomposition divides the physical spatial domain into 3D boxes
2181 > in which each processor is responsible for calculation of forces and
2182 > positions of particles located in its box. Particles are reassigned to
2183 > different processors as they move through simulation space. To
2184 > calculate forces on a given particle, a processor must know the
2185 > positions of particles within some cutoff radius located on nearby
2186 > processors instead of the positions of particles on all
2187 > processors. Both communication between processors and computation
2188 > scale as $\mathcal{O}(N/P)$ in the spatial method. However, spatial
2189   decomposition adds algorithmic complexity to the simulation code and
2190   is not very efficient for small N since the overall communication
2191 < scales as the surface to volume ratio $(N/P)^{2/3}$ in three
2192 < dimensions.
2191 > scales as the surface to volume ratio $\mathcal{O}(N/P)^{2/3}$ in
2192 > three dimensions.
2193  
2194   The parallelization method used in {\sc oopse} is the force
2195   decomposition method.  Force decomposition assigns particles to
# Line 1480 | Line 2198 | assignment. Force decomposition is less complex to imp
2198   and column processor groups. Forces are calculated on particles in a
2199   given row by particles located in that processors column
2200   assignment. Force decomposition is less complex to implement than the
2201 < spatial method but still scales computationally as $O(N/P)$ and scales
2202 < as $O(N/\sqrt{P})$ in communication cost. Plimpton has also found that
2203 < force decompositions scale more favorably than spatial decompositions
2204 < for systems up to 10,000 atoms and favorably compete with spatial
2205 < methods up to 100,000 atoms.\cite{plimpton95}
2201 > spatial method but still scales computationally as $\mathcal{O}(N/P)$
2202 > and scales as $\mathcal{O}(N/\sqrt{P})$ in communication
2203 > cost. Plimpton has also found that force decompositions scale more
2204 > favorably than spatial decompositions for systems up to 10,000 atoms
2205 > and favorably compete with spatial methods up to 100,000
2206 > atoms.\cite{plimpton95}
2207  
2208   \subsection{\label{oopseSec:memAlloc}Memory Issues in Trajectory Analysis}
2209  
# Line 1510 | Line 2229 | second block of the trajectory is read, and the cross
2229   \texttt{dynamicProps} will calculate all of the time correlation frame
2230   pairs within the block. After in-block correlations are complete, a
2231   second block of the trajectory is read, and the cross correlations are
2232 < calculated between the two blocks. this second block is then freed and
2232 > calculated between the two blocks. This second block is then freed and
2233   then incremented and the process repeated until the end of the
2234   trajectory. Once the end is reached, the first block is freed then
2235   incremented, and the again the internal time correlations are
# Line 1540 | Line 2259 | These features are all brought together in a single op
2259   z-constraint method.
2260  
2261   These features are all brought together in a single open-source
2262 < program. Allowing researchers to not only benefit from
2262 > program. This allows researchers to not only benefit from
2263   {\sc oopse}, but also contribute to {\sc oopse}'s development as
2264 < well.Documentation and source code for {\sc oopse} can be downloaded
1546 < from \texttt{http://www.openscience.org/oopse/}.
2264 > well.
2265  

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines