ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/mattDisertation/oopse.tex
(Generate patch)

Comparing trunk/mattDisertation/oopse.tex (file contents):
Revision 1068 by mmeineke, Wed Feb 25 21:48:44 2004 UTC vs.
Revision 1087 by mmeineke, Fri Mar 5 22:16:34 2004 UTC

# Line 279 | Line 279 | and
279   \epsilon_{ij} = \sqrt{\epsilon_{ii} \epsilon_{jj}}
280   \label{eq:epsilonMix}
281   \end{equation}
282
283
282  
283   \subsection{\label{oopseSec:DUFF}Dipolar Unified-Atom Force Field}
284  
# Line 314 | Line 312 | dipole (SSD) model of Ichiye
312   \begin{figure}
313   \centering
314   \includegraphics[width=\linewidth]{lipidModel.eps}
315 < \caption{A representation of the lipid model. $\phi$ is the torsion angle, $\theta$ %
315 > \caption[A representation of a lipid model in {\sc duff}]{A representation of the lipid model. $\phi$ is the torsion angle, $\theta$ %
316   is the bend angle, $\mu$ is the dipole moment of the head group, and n
317   is the chain length.}
318   \label{oopseFig:lipidModel}
# Line 633 | Line 631 | V & = & \sum_{i} F_{i}\left[\rho_{i}\right] + \sum_{i}
631   \phi_{ij}({\bf r}_{ij})  \\
632   \rho_{i}  & = & \sum_{j \neq i} f_{j}({\bf r}_{ij})
633   \end{eqnarray}
634 < where $F_{i} $ is the embedding function that equates the energy required to embed a
635 < positively-charged core ion $i$ into a linear superposition of
636 < spherically averaged atomic electron densities given by
637 < $\rho_{i}$.  $\phi_{ij}$ is a primarily repulsive pairwise interaction
638 < between atoms $i$ and $j$. In the original formulation of
639 < {\sc eam}\cite{Daw84}, $\phi_{ij}$ was an entirely repulsive term, however
640 < in later refinements to EAM have shown that non-uniqueness between $F$
641 < and $\phi$ allow for more general forms for $\phi$.\cite{Daw89}
642 < There is a cutoff distance, $r_{cut}$, which limits the
643 < summations in the {\sc eam} equation to the few dozen atoms
634 > where $F_{i} $ is the embedding function that equates the energy
635 > required to embed a positively-charged core ion $i$ into a linear
636 > superposition of spherically averaged atomic electron densities given
637 > by $\rho_{i}$.  $\phi_{ij}$ is a primarily repulsive pairwise
638 > interaction between atoms $i$ and $j$. In the original formulation of
639 > {\sc eam}\cite{Daw84}, $\phi_{ij}$ was an entirely repulsive term,
640 > however in later refinements to {\sc eam} have shown that non-uniqueness
641 > between $F$ and $\phi$ allow for more general forms for
642 > $\phi$.\cite{Daw89} There is a cutoff distance, $r_{cut}$, which
643 > limits the summations in the {\sc eam} equation to the few dozen atoms
644   surrounding atom $i$ for both the density $\rho$ and pairwise $\phi$
645 < interactions. Foiles et al. fit EAM potentials for fcc metals Cu, Ag, Au, Ni, Pd, Pt and alloys of these metals\cite{FBD86}. These potential fits are in the DYNAMO 86 format and are included with {\sc oopse}.
646 <
645 > interactions. Foiles \emph{et al}.~fit {\sc eam} potentials for the fcc
646 > metals Cu, Ag, Au, Ni, Pd, Pt and alloys of these metals.\cite{FBD86}
647 > These fits, are included in {\sc oopse}.
648  
649   \subsection{\label{oopseSec:pbc}Periodic Boundary Conditions}
650  
# Line 660 | Line 659 | periodic cells in OOPSE are cubic, orthorhombic and pa
659   simulation box is large enough to avoid ``feeling'' the symmetries of
660   the periodic lattice, surface effects can be ignored. The available
661   periodic cells in OOPSE are cubic, orthorhombic and parallelepiped. We
662 < use a $3 \times 3$ matrix, $\mathbf{H}$, to describe the shape and
663 < size of the simulation box. $\mathbf{H}$ is defined:
662 > use a $3 \times 3$ matrix, $\mathsf{H}$, to describe the shape and
663 > size of the simulation box. $\mathsf{H}$ is defined:
664   \begin{equation}
665 < \mathbf{H} = ( \mathbf{h}_x, \mathbf{h}_y, \mathbf{h}_z )
665 > \mathsf{H} = ( \mathbf{h}_x, \mathbf{h}_y, \mathbf{h}_z )
666   \end{equation}
667   Where $\mathbf{h}_j$ is the column vector of the $j$th axis of the
668   box.  During the course of the simulation both the size and shape of
669 < the box can be changed to allow volume fluctations when constraining
669 > the box can be changed to allow volume fluctuations when constraining
670   the pressure.
671  
672   A real space vector, $\mathbf{r}$ can be transformed in to a box space
673   vector, $\mathbf{s}$, and back through the following transformations:
674   \begin{align}
675 < \mathbf{s} &= \mathbf{H}^{-1} \mathbf{r} \\
676 < \mathbf{r} &= \mathbf{H} \mathbf{s}
675 > \mathbf{s} &= \mathsf{H}^{-1} \mathbf{r} \\
676 > \mathbf{r} &= \mathsf{H} \mathbf{s}
677   \end{align}
678   The vector $\mathbf{s}$ is now a vector expressed as the number of box
679   lengths in the $\mathbf{h}_x$, $\mathbf{h}_y$, and $\mathbf{h}_z$
# Line 702 | Line 701 | transforming back to real space,
701   Finally, we obtain the minimum image coordinates $\mathbf{r}^{\prime}$ by
702   transforming back to real space,
703   \begin{equation}
704 < \mathbf{r}^{\prime}=\mathbf{H}^{-1}\mathbf{s}^{\prime}%
704 > \mathbf{r}^{\prime}=\mathsf{H}^{-1}\mathbf{s}^{\prime}%
705   \end{equation}
706   In this way, particles are allowed to diffuse freely in $\mathbf{r}$,
707   but their minimum images, $\mathbf{r}^{\prime}$ are used to compute
708 < the interatomic forces.
708 > the inter-atomic forces.
709  
710  
711   \section{\label{oopseSec:IOfiles}Input and Output Files}
712  
713   \subsection{{\sc bass} and Model Files}
714  
715 < Every {\sc oopse} simulation begins with a {\sc bass} file. {\sc bass}
716 < (\underline{B}izarre \underline{A}tom \underline{S}imulation
717 < \underline{S}yntax) is a script syntax that is parsed by {\sc oopse} at
718 < runtime. The {\sc bass} file allows for the user to completely describe the
719 < system they are to simulate, as well as tailor {\sc oopse}'s behavior during
720 < the simulation. {\sc bass} files are denoted with the extension
721 < \texttt{.bass}, an example file is shown in
722 < Fig.~\ref{fig:bassExample}.
715 > Every {\sc oopse} simulation begins with a Bizarre Atom Simulation
716 > Syntax ({\sc bass}) file. {\sc bass} is a script syntax that is parsed
717 > by {\sc oopse} at runtime. The {\sc bass} file allows for the user to
718 > completely describe the system they wish to simulate, as well as tailor
719 > {\sc oopse}'s behavior during the simulation. {\sc bass} files are
720 > denoted with the extension
721 > \texttt{.bass}, an example file is shown in
722 > Scheme~\ref{sch:bassExample}.
723  
724 < \begin{figure}
726 < \centering
727 < \framebox[\linewidth]{\rule{0cm}{0.75\linewidth}I'm a {\sc bass} file!}
728 < \caption{Here is an example \texttt{.bass} file}
729 < \label{fig:bassExample}
730 < \end{figure}
724 > \begin{lstlisting}[float,caption={[An example of a complete {\sc bass} file] An example showing a complete {\sc bass} file.},label={sch:bassExample}]
725  
726 + molecule{
727 +  name = "Ar";
728 +  nAtoms = 1;
729 +  atom[0]{
730 +    type="Ar";
731 +    position( 0.0, 0.0, 0.0 );
732 +  }
733 + }
734 +
735 + nComponents = 1;
736 + component{
737 +  type = "Ar";
738 +  nMol = 108;
739 + }
740 +
741 + initialConfig = "./argon.init";
742 +
743 + forceField = "LJ";
744 + ensemble = "NVE"; // specify the simulation ensemble
745 + dt = 1.0;         // the time step for integration
746 + runTime = 1e3;    // the total simulation run time
747 + sampleTime = 100; // trajectory file frequency
748 + statusTime = 50;  // statistics file frequency
749 +
750 + \end{lstlisting}
751 +
752   Within the \texttt{.bass} file it is necessary to provide a complete
753   description of the molecule before it is actually placed in the
754 < simulation. The {\sc bass} syntax was originally developed with this goal in
755 < mind, and allows for the specification of all the atoms in a molecular
756 < prototype, as well as any bonds, bends, or torsions. These
754 > simulation. The {\sc bass} syntax was originally developed with this
755 > goal in mind, and allows for the specification of all the atoms in a
756 > molecular prototype, as well as any bonds, bends, or torsions. These
757   descriptions can become lengthy for complex molecules, and it would be
758 < inconvenient to duplicate the simulation at the beginning of each {\sc bass}
759 < script. Addressing this issue {\sc bass} allows for the inclusion of model
760 < files at the top of a \texttt{.bass} file. These model files, denoted
761 < with the \texttt{.mdl} extension, allow the user to describe a
762 < molecular prototype once, then simply include it into each simulation
763 < containing that molecule.
758 > inconvenient to duplicate the simulation at the beginning of each {\sc
759 > bass} script. Addressing this issue {\sc bass} allows for the
760 > inclusion of model files at the top of a \texttt{.bass} file. These
761 > model files, denoted with the \texttt{.mdl} extension, allow the user
762 > to describe a molecular prototype once, then simply include it into
763 > each simulation containing that molecule. Returning to the example in
764 > Scheme~\ref{sch:bassExample}, the \texttt{.mdl} file's contents would
765 > be Scheme~\ref{sch:mdlExample}, and the new \texttt{.bass} file would
766 > become Scheme~\ref{sch:bassExPrime}.
767  
768 + \begin{lstlisting}[float,caption={An example \texttt{.mdl} file.},label={sch:mdlExample}]
769 +
770 + molecule{
771 +  name = "Ar";
772 +  nAtoms = 1;
773 +  atom[0]{
774 +    type="Ar";
775 +    position( 0.0, 0.0, 0.0 );
776 +  }
777 + }
778 +
779 + \end{lstlisting}
780 +
781 + \begin{lstlisting}[float,caption={Revised {\sc bass} example.},label={sch:bassExPrime}]
782 +
783 + #include "argon.mdl"
784 +
785 + nComponents = 1;
786 + component{
787 +  type = "Ar";
788 +  nMol = 108;
789 + }
790 +
791 + initialConfig = "./argon.init";
792 +
793 + forceField = "LJ";
794 + ensemble = "NVE";
795 + dt = 1.0;
796 + runTime = 1e3;
797 + sampleTime = 100;
798 + statusTime = 50;
799 +
800 + \end{lstlisting}
801 +
802   \subsection{\label{oopseSec:coordFiles}Coordinate Files}
803  
804   The standard format for storage of a systems coordinates is a modified
805   xyz-file syntax, the exact details of which can be seen in
806 < App.~\ref{appCoordFormat}. As all bonding and molecular information is
807 < stored in the \texttt{.bass} and \texttt{.mdl} files, the coordinate
808 < files are simply the complete set of coordinates for each atom at a
809 < given simulation time.
806 > Scheme~\ref{sch:dumpFormat}. As all bonding and molecular information
807 > is stored in the \texttt{.bass} and \texttt{.mdl} files, the
808 > coordinate files are simply the complete set of coordinates for each
809 > atom at a given simulation time. One important note, although the
810 > simulation propagates the complete rotation matrix, directional
811 > entities are written out using quanternions, to save space in the
812 > output files.
813  
814 < There are three major files used by {\sc oopse} written in the coordinate
815 < format, they are as follows: the initialization file, the simulation
816 < trajectory file, and the final coordinates of the simulation. The
817 < initialization file is necessary for {\sc oopse} to start the simulation
818 < with the proper coordinates. It is typically denoted with the
819 < extension \texttt{.init}. The trajectory file is created at the
820 < beginning of the simulation, and is used to store snapshots of the
821 < simulation at regular intervals. The first frame is a duplication of
822 < the \texttt{.init} file, and each subsequent frame is appended to the
823 < file at an interval specified in the \texttt{.bass} file. The
824 < trajectory file is given the extension \texttt{.dump}. The final
825 < coordinate file is the end of run or \texttt{.eor} file. The
814 > \begin{lstlisting}[float,caption={[The format of the coordinate files]Shows the format of the coordinate files. The fist line is the number of atoms. The second line begins with the time stamp followed by the three $\mathsf{H}$ column vectors. It is important to note, that for extended system ensembles, additional information pertinent to the integrators may be stored on this line as well.. The next lines are the atomic coordinates for all atoms in the system. First is the name followed by position, velocity, quanternions, and lastly angular velocities.},label=sch:dumpFormat]
815 >
816 > nAtoms
817 > time; Hxx Hyx Hzx; Hxy Hyy Hzy; Hxz Hyz Hzz;
818 > Name1 x y z vx vy vz q0 q1 q2 q3 jx jy jz
819 > Name2 x y z vx vy vz q0 q1 q2 q3 jx jy jz
820 > etc...
821 >
822 > \end{lstlisting}
823 >
824 >
825 > There are three major files used by {\sc oopse} written in the
826 > coordinate format, they are as follows: the initialization file
827 > (\texttt{.init}), the simulation trajectory file (\texttt{.dump}), and
828 > the final coordinates of the simulation. The initialization file is
829 > necessary for {\sc oopse} to start the simulation with the proper
830 > coordinates, and is generated before the simulation run. The
831 > trajectory file is created at the beginning of the simulation, and is
832 > used to store snapshots of the simulation at regular intervals. The
833 > first frame is a duplication of the
834 > \texttt{.init} file, and each subsequent frame is appended to the file
835 > at an interval specified in the \texttt{.bass} file with the
836 > \texttt{sampleTime} flag. The final coordinate file is the end of run file. The
837   \texttt{.eor} file stores the final configuration of the system for a
838   given simulation. The file is updated at the same time as the
839 < \texttt{.dump} file. However, it only contains the most recent
839 > \texttt{.dump} file, however, it only contains the most recent
840   frame. In this way, an \texttt{.eor} file may be used as the
841 < initialization file to a second simulation in order to continue or
842 < recover the previous simulation.
841 > initialization file to a second simulation in order to continue a
842 > simulation or recover one from a processor that has crashed during the
843 > course of the run.
844  
845   \subsection{\label{oopseSec:initCoords}Generation of Initial Coordinates}
846  
847 < As was stated in Sec.~\ref{oopseSec:coordFiles}, an initialization file
848 < is needed to provide the starting coordinates for a simulation. The
849 < {\sc oopse} package provides a program called \texttt{sysBuilder} to aid in
850 < the creation of the \texttt{.init} file. \texttt{sysBuilder} is {\sc bass}
851 < aware, and will recognize arguments and parameters in the
852 < \texttt{.bass} file that would otherwise be ignored by the
853 < simulation. The program itself is under continual development, and is
782 < offered here as a helper tool only.
847 > As was stated in Sec.~\ref{oopseSec:coordFiles}, an initialization
848 > file is needed to provide the starting coordinates for a
849 > simulation. The {\sc oopse} package provides several system building
850 > programs to aid in the creation of the \texttt{.init}
851 > file. The programs use {\sc bass}, and will recognize
852 > arguments and parameters in the \texttt{.bass} file that would
853 > otherwise be ignored by the simulation.
854  
855   \subsection{The Statistics File}
856  
857 < The last output file generated by {\sc oopse} is the statistics file. This
858 < file records such statistical quantities as the instantaneous
859 < temperature, volume, pressure, etc. It is written out with the
860 < frequency specified in the \texttt{.bass} file. The file allows the
861 < user to observe the system variables as a function of simulation time
862 < while the simulation is in progress. One useful function the
863 < statistics file serves is to monitor the conserved quantity of a given
864 < simulation ensemble, this allows the user to observe the stability of
865 < the integrator. The statistics file is denoted with the \texttt{.stat}
866 < file extension.
857 > The last output file generated by {\sc oopse} is the statistics
858 > file. This file records such statistical quantities as the
859 > instantaneous temperature, volume, pressure, etc. It is written out
860 > with the frequency specified in the \texttt{.bass} file with the
861 > \texttt{statusTime} keyword. The file allows the user to observe the
862 > system variables as a function of simulation time while the simulation
863 > is in progress. One useful function the statistics file serves is to
864 > monitor the conserved quantity of a given simulation ensemble, this
865 > allows the user to observe the stability of the integrator. The
866 > statistics file is denoted with the \texttt{.stat} file extension.
867  
868   \section{\label{oopseSec:mechanics}Mechanics}
869  
799 \subsection{\label{oopseSec:integrate}Integrating the Equations of Motion: the Symplectic Step Integrator}
870  
871 < Integration of the equations of motion was carried out using the
802 < symplectic splitting method proposed by Dullweber \emph{et
803 < al.}.\cite{Dullweber1997} The reason for this integrator selection
804 < deals with poor energy conservation of rigid body systems using
805 < quaternions. While quaternions work well for orientational motion in
806 < alternate ensembles, the microcanonical ensemble has a constant energy
807 < requirement that is quite sensitive to errors in the equations of
808 < motion. The original implementation of this code utilized quaternions
809 < for rotational motion propagation; however, a detailed investigation
810 < showed that they resulted in a steady drift in the total energy,
811 < something that has been observed by others.\cite{Laird97}
871 > \section{\label{sec:mechanics}Mechanics}
872  
873 + \subsection{\label{oopseSec:integrate}Integrating the Equations of Motion: the
874 + DLM method}
875 +
876 + The default method for integrating the equations of motion in {\sc
877 + oopse} is a velocity-Verlet version of the symplectic splitting method
878 + proposed by Dullweber, Leimkuhler and McLachlan
879 + (DLM).\cite{Dullweber1997} When there are no directional atoms or
880 + rigid bodies present in the simulation, this integrator becomes the
881 + standard velocity-Verlet integrator which is known to sample the
882 + microcanonical (NVE) ensemble.\cite{}
883 +
884 + Previous integration methods for orientational motion have problems
885 + that are avoided in the DLM method.  Direct propagation of the Euler
886 + angles has a known $1/\sin\theta$ divergence in the equations of
887 + motion for $\phi$ and $\psi$,\cite{allen87:csl} leading to
888 + numerical instabilities any time one of the directional atoms or rigid
889 + bodies has an orientation near $\theta=0$ or $\theta=\pi$.  More
890 + modern quaternion-based integration methods have relatively poor
891 + energy conservation.  While quaternions work well for orientational
892 + motion in other ensembles, the microcanonical ensemble has a
893 + constant energy requirement that is quite sensitive to errors in the
894 + equations of motion.  An earlier implementation of {\sc oopse}
895 + utilized quaternions for propagation of rotational motion; however, a
896 + detailed investigation showed that they resulted in a steady drift in
897 + the total energy, something that has been observed by
898 + Laird {\it et al.}\cite{Laird97}      
899 +
900   The key difference in the integration method proposed by Dullweber
901 < \emph{et al.} is that the entire rotation matrix is propagated from
902 < one time step to the next. In the past, this would not have been as
903 < feasible a option, being that the rotation matrix for a single body is
904 < nine elements long as opposed to 3 or 4 elements for Euler angles and
905 < quaternions respectively. System memory has become much less of an
906 < issue in recent times, and this has resulted in substantial benefits
907 < in energy conservation. There is still the issue of 5 or 6 additional
821 < elements for describing the orientation of each particle, which will
822 < increase dump files substantially. Simply translating the rotation
823 < matrix into its component Euler angles or quaternions for storage
824 < purposes relieves this burden.
901 > \emph{et al.} is that the entire $3 \times 3$ rotation matrix is
902 > propagated from one time step to the next. In the past, this would not
903 > have been feasible, since the rotation matrix for a single body has
904 > nine elements compared with the more memory-efficient methods (using
905 > three Euler angles or 4 quaternions).  Computer memory has become much
906 > less costly in recent years, and this can be translated into
907 > substantial benefits in energy conservation.
908  
909 < The symplectic splitting method allows for Verlet style integration of
910 < both linear and angular motion of rigid bodies. In the integration
911 < method, the orientational propagation involves a sequence of matrix
912 < evaluations to update the rotation matrix.\cite{Dullweber1997} These
913 < matrix rotations end up being more costly computationally than the
914 < simpler arithmetic quaternion propagation. With the same time step, a
915 < 1000 SSD particle simulation shows an average 7\% increase in
916 < computation time using the symplectic step method in place of
917 < quaternions. This cost is more than justified when comparing the
918 < energy conservation of the two methods as illustrated in figure
919 < \ref{timestep}.
909 > The basic equations of motion being integrated are derived from the
910 > Hamiltonian for conservative systems containing rigid bodies,
911 > \begin{equation}
912 > H = \sum_{i} \left( \frac{1}{2} m_i {\bf v}_i^T \cdot {\bf v}_i +
913 > \frac{1}{2} {\bf j}_i^T \cdot \overleftrightarrow{\mathsf{I}}_i^{-1} \cdot
914 > {\bf j}_i \right) +
915 > V\left(\left\{{\bf r}\right\}, \left\{\mathsf{A}\right\}\right)
916 > \end{equation}
917 > where ${\bf r}_i$ and ${\bf v}_i$ are the cartesian position vector
918 > and velocity of the center of mass of particle $i$, and ${\bf j}_i$
919 > and $\overleftrightarrow{\mathsf{I}}_i$ are the body-fixed angular
920 > momentum and moment of inertia tensor, respectively.  $\mathsf{A}_i$
921 > is the $3 \times 3$ rotation matrix describing the instantaneous
922 > orientation of the particle.  $V$ is the potential energy function
923 > which may depend on both the positions $\left\{{\bf r}\right\}$ and
924 > orientations $\left\{\mathsf{A}\right\}$ of all particles.  The
925 > equations of motion for the particle centers of mass are derived from
926 > Hamilton's equations and are quite simple,
927 > \begin{eqnarray}
928 > \dot{{\bf r}} & = & {\bf v} \\
929 > \dot{{\bf v}} & = & \frac{{\bf f}}{m}
930 > \end{eqnarray}
931 > where ${\bf f}$ is the instantaneous force on the center of mass
932 > of the particle,
933 > \begin{equation}
934 > {\bf f} = - \frac{\partial}{\partial
935 > {\bf r}} V(\left\{{\bf r}(t)\right\}, \left\{\mathsf{A}(t)\right\}).
936 > \end{equation}
937  
938 + The equations of motion for the orientational degrees of freedom are
939 + \begin{eqnarray}
940 + \dot{\mathsf{A}} & = & \mathsf{A} \cdot
941 + \mbox{ skew}\left(\overleftrightarrow{\mathsf{I}}^{-1} \cdot {\bf j}\right) \\
942 + \dot{{\bf j}} & = & {\bf j} \times \left( \overleftrightarrow{\mathsf{I}}^{-1}
943 + \cdot {\bf j} \right) - \mbox{ rot}\left(\mathsf{A}^{T} \cdot \frac{\partial
944 + V}{\partial \mathsf{A}} \right)
945 + \end{eqnarray}
946 + In these equations of motion, the $\mbox{skew}$ matrix of a vector
947 + ${\bf v} = \left( v_1, v_2, v_3 \right)$ is defined:
948 + \begin{equation}
949 + \mbox{skew}\left( {\bf v} \right) := \left(
950 + \begin{array}{ccc}
951 + 0 & v_3 & - v_2 \\
952 + -v_3 & 0 & v_1 \\
953 + v_2 & -v_1 & 0
954 + \end{array}
955 + \right)
956 + \end{equation}
957 + The $\mbox{rot}$ notation refers to the mapping of the $3 \times 3$
958 + rotation matrix to a vector of orientations by first computing the
959 + skew-symmetric part $\left(\mathsf{A} - \mathsf{A}^{T}\right)$ and
960 + then associating this with a length 3 vector by inverting the
961 + $\mbox{skew}$ function above:
962 + \begin{equation}
963 + \mbox{rot}\left(\mathsf{A}\right) := \mbox{ skew}^{-1}\left(\mathsf{A}
964 + - \mathsf{A}^{T} \right)
965 + \end{equation}
966 + Written this way, the $\mbox{rot}$ operation creates a set of
967 + conjugate angle coordinates to the body-fixed angular momenta
968 + represented by ${\bf j}$.  This equation of motion for angular momenta
969 + is equivalent to the more familiar body-fixed forms,
970 + \begin{eqnarray}
971 + \dot{j_{x}} & = & \tau^b_x(t)  +
972 + \left(\overleftrightarrow{\mathsf{I}}_{yy} - \overleftrightarrow{\mathsf{I}}_{zz} \right) j_y j_z \\
973 + \dot{j_{y}} & = & \tau^b_y(t) +
974 + \left(\overleftrightarrow{\mathsf{I}}_{zz} - \overleftrightarrow{\mathsf{I}}_{xx} \right) j_z j_x \\
975 + \dot{j_{z}} & = & \tau^b_z(t) +
976 + \left(\overleftrightarrow{\mathsf{I}}_{xx} - \overleftrightarrow{\mathsf{I}}_{yy} \right) j_x j_y
977 + \end{eqnarray}
978 + which utilize the body-fixed torques, ${\bf \tau}^b$. Torques are
979 + most easily derived in the space-fixed frame,
980 + \begin{equation}
981 + {\bf \tau}^b(t) = \mathsf{A}(t) \cdot {\bf \tau}^s(t)
982 + \end{equation}
983 + where the torques are either derived from the forces on the
984 + constituent atoms of the rigid body, or for directional atoms,
985 + directly from derivatives of the potential energy,
986 + \begin{equation}
987 + {\bf \tau}^s(t) = - \hat{\bf u}(t) \times \left( \frac{\partial}
988 + {\partial \hat{\bf u}} V\left(\left\{ {\bf r}(t) \right\}, \left\{
989 + \mathsf{A}(t) \right\}\right) \right).
990 + \end{equation}
991 + Here $\hat{\bf u}$ is a unit vector pointing along the principal axis
992 + of the particle in the space-fixed frame.
993 +
994 + The DLM method uses a Trotter factorization of the orientational
995 + propagator.  This has three effects:
996 + \begin{enumerate}
997 + \item the integrator is area-preserving in phase space (i.e. it is
998 + {\it symplectic}),
999 + \item the integrator is time-{\it reversible}, making it suitable for Hybrid
1000 + Monte Carlo applications, and
1001 + \item the error for a single time step is of order $O\left(h^3\right)$
1002 + for timesteps of length $h$.
1003 + \end{enumerate}
1004 +
1005 + The integration of the equations of motion is carried out in a
1006 + velocity-Verlet style 2-part algorithm:
1007 +
1008 + {\tt moveA:}
1009 + \begin{eqnarray}
1010 + {\bf v}\left(t + \delta t / 2\right)  & \leftarrow & {\bf
1011 + v}(t) + \frac{\delta t}{2} \left( {\bf f}(t) / m \right) \\
1012 + {\bf r}(t + \delta t) & \leftarrow & {\bf r}(t) + \delta t  {\bf
1013 + v}\left(t + \delta t / 2 \right) \\
1014 + {\bf j}\left(t + \delta t / 2 \right)  & \leftarrow & {\bf
1015 + j}(t) + \frac{\delta t}{2} {\bf \tau}^b(t)  \\
1016 + \mathsf{A}(t + \delta t) & \leftarrow & \mathrm{rot}\left( \delta t
1017 + {\bf j}(t + \delta t / 2) \cdot \overleftrightarrow{\mathsf{I}}^{-1}
1018 + \right)
1019 + \end{eqnarray}
1020 +
1021 + In this context, the $\mathrm{rot}$ function is the reversible product
1022 + of the three body-fixed rotations,
1023 + \begin{equation}
1024 + \mathrm{rot}({\bf a}) = \mathsf{G}_x(a_x / 2) \cdot
1025 + \mathsf{G}_y(a_y / 2) \cdot \mathsf{G}_z(a_z) \cdot \mathsf{G}_y(a_y /
1026 + 2) \cdot \mathsf{G}_x(a_x /2)
1027 + \end{equation}
1028 + where each rotational propagator, $\mathsf{G}_\alpha(\theta)$, rotates
1029 + both the rotation matrix ($\mathsf{A}$) and the body-fixed angular
1030 + momentum (${\bf j}$) by an angle $\theta$ around body-fixed axis
1031 + $\alpha$,
1032 + \begin{equation}
1033 + \mathsf{G}_\alpha( \theta ) = \left\{
1034 + \begin{array}{lcl}
1035 + \mathsf{A}(t) & \leftarrow & \mathsf{A}(0) \cdot \mathsf{R}_\alpha(\theta)^T \\
1036 + {\bf j}(t) & \leftarrow & \mathsf{R}_\alpha(\theta) \cdot {\bf j}(0)
1037 + \end{array}
1038 + \right.
1039 + \end{equation}
1040 + $\mathsf{R}_\alpha$ is a quadratic approximation to
1041 + the single-axis rotation matrix.  For example, in the small-angle
1042 + limit, the rotation matrix around the body-fixed x-axis can be
1043 + approximated as
1044 + \begin{equation}
1045 + \mathsf{R}_x(\theta) \approx \left(
1046 + \begin{array}{ccc}
1047 + 1 & 0 & 0 \\
1048 + 0 & \frac{1-\theta^2 / 4}{1 + \theta^2 / 4}  & -\frac{\theta}{1+
1049 + \theta^2 / 4} \\
1050 + 0 & \frac{\theta}{1+
1051 + \theta^2 / 4} & \frac{1-\theta^2 / 4}{1 + \theta^2 / 4}
1052 + \end{array}
1053 + \right).
1054 + \end{equation}
1055 + All other rotations follow in a straightforward manner.
1056 +
1057 + After the first part of the propagation, the forces and body-fixed
1058 + torques are calculated at the new positions and orientations
1059 +
1060 + {\tt doForces:}
1061 + \begin{eqnarray}
1062 + {\bf f}(t + \delta t) & \leftarrow & - \left(\frac{\partial V}{\partial {\bf
1063 + r}}\right)_{{\bf r}(t + \delta t)} \\
1064 + {\bf \tau}^{s}(t + \delta t) & \leftarrow & {\bf u}(t + \delta t)
1065 + \times \frac{\partial V}{\partial {\bf u}} \\
1066 + {\bf \tau}^{b}(t + \delta t) & \leftarrow & \mathsf{A}(t + \delta t)
1067 + \cdot {\bf \tau}^s(t + \delta t)
1068 + \end{eqnarray}
1069 +
1070 + {\sc oopse} automatically updates ${\bf u}$ when the rotation matrix
1071 + $\mathsf{A}$ is calculated in {\tt moveA}.  Once the forces and
1072 + torques have been obtained at the new time step, the velocities can be
1073 + advanced to the same time value.
1074 +
1075 + {\tt moveB:}
1076 + \begin{eqnarray}
1077 + {\bf v}\left(t + \delta t \right)  & \leftarrow & {\bf
1078 + v}\left(t + \delta t / 2 \right) + \frac{\delta t}{2} \left(
1079 + {\bf f}(t + \delta t) / m \right) \\
1080 + {\bf j}\left(t + \delta t \right)  & \leftarrow & {\bf
1081 + j}\left(t + \delta t / 2 \right) + \frac{\delta t}{2} {\bf
1082 + \tau}^b(t + \delta t)  
1083 + \end{eqnarray}
1084 +
1085 + The matrix rotations used in the DLM method end up being more costly
1086 + computationally than the simpler arithmetic quaternion
1087 + propagation. With the same time step, a 1000-molecule water simulation
1088 + shows an average 7\% increase in computation time using the DLM method
1089 + in place of quaternions. This cost is more than justified when
1090 + comparing the energy conservation of the two methods as illustrated in
1091 + figure \ref{timestep}.
1092 +
1093   \begin{figure}
1094   \centering
1095   \includegraphics[width=\linewidth]{timeStep.eps}
1096 < \caption{Energy conservation using quaternion based integration versus
1097 < the symplectic step method proposed by Dullweber \emph{et al.} with
1098 < increasing time step. For each time step, the dotted line is total
1099 < energy using the symplectic step integrator, and the solid line comes
1100 < from the quaternion integrator. The larger time step plots are shifted
1101 < up from the true energy baseline for clarity.}
1096 > \caption[Energy conservation for quaternion versus DLM dynamics]{Energy conservation using quaternion based integration versus
1097 > the method proposed by Dullweber \emph{et al.} with increasing time
1098 > step. For each time step, the dotted line is total energy using the
1099 > DLM integrator, and the solid line comes from the quaternion
1100 > integrator. The larger time step plots are shifted up from the true
1101 > energy baseline for clarity.}
1102   \label{timestep}
1103   \end{figure}
1104  
1105   In figure \ref{timestep}, the resulting energy drift at various time
1106 < steps for both the symplectic step and quaternion integration schemes
1107 < is compared. All of the 1000 SSD particle simulations started with the
1106 > steps for both the DLM and quaternion integration schemes is
1107 > compared. All of the 1000 molecule water simulations started with the
1108   same configuration, and the only difference was the method for
1109   handling rotational motion. At time steps of 0.1 and 0.5 fs, both
1110 < methods for propagating particle rotation conserve energy fairly well,
1110 > methods for propagating molecule rotation conserve energy fairly well,
1111   with the quaternion method showing a slight energy drift over time in
1112   the 0.5 fs time step simulation. At time steps of 1 and 2 fs, the
1113 < energy conservation benefits of the symplectic step method are clearly
1113 > energy conservation benefits of the DLM method are clearly
1114   demonstrated. Thus, while maintaining the same degree of energy
1115   conservation, one can take considerably longer time steps, leading to
1116   an overall reduction in computation time.
1117  
1118 < Energy drift in these SSD particle simulations was unnoticeable for
1119 < time steps up to three femtoseconds. A slight energy drift on the
865 < order of 0.012 kcal/mol per nanosecond was observed at a time step of
866 < four femtoseconds, and as expected, this drift increases dramatically
867 < with increasing time step. To insure accuracy in the constant energy
868 < simulations, time steps were set at 2 fs and kept at this value for
869 < constant pressure simulations as well.
1118 > There is only one specific keyword relevant to the default integrator,
1119 > and that is the time step for integrating the equations of motion.
1120  
1121 + \begin{center}
1122 + \begin{tabular}{llll}
1123 + {\bf variable} & {\bf {\tt .bass} keyword} & {\bf units} & {\bf
1124 + default value} \\  
1125 + $\delta t$ & {\tt dt = 2.0;} & fs & none
1126 + \end{tabular}
1127 + \end{center}
1128  
1129   \subsection{\label{sec:extended}Extended Systems for other Ensembles}
1130  
1131 + {\sc oopse} implements a number of extended system integrators for
1132 + sampling from other ensembles relevant to chemical physics.  The
1133 + integrator can selected with the {\tt ensemble} keyword in the
1134 + {\tt .bass} file:
1135  
1136 < {\sc oopse} implements a
1136 > \begin{center}
1137 > \begin{tabular}{lll}
1138 > {\bf Integrator} & {\bf Ensemble} & {\bf {\tt .bass} line} \\
1139 > NVE & microcanonical & {\tt ensemble = ``NVE''; } \\
1140 > NVT & canonical & {\tt ensemble = ``NVT''; } \\
1141 > NPTi & isobaric-isothermal (with isotropic volume changes) & {\tt
1142 > ensemble = ``NPTi'';} \\
1143 > NPTf & isobaric-isothermal (with changes to box shape) & {\tt
1144 > ensemble = ``NPTf'';} \\
1145 > NPTxyz & approximate isobaric-isothermal & {\tt ensemble =
1146 > ``NPTxyz'';} \\
1147 > &  (with separate barostats on each box dimension) &
1148 > \end{tabular}
1149 > \end{center}
1150  
1151 + The relatively well-known Nos\'e-Hoover thermostat is implemented in
1152 + {\sc oopse}'s NVT integrator.  This method couples an extra degree of
1153 + freedom (the thermostat) to the kinetic energy of the system, and has
1154 + been shown to sample the canonical distribution in the system degrees
1155 + of freedom while conserving a quantity that is, to within a constant,
1156 + the Helmholtz free energy.
1157  
1158 < \subsubsection{\label{oopseSec:noseHooverThermo}Nose-Hoover Thermostatting}
1158 > NPT algorithms attempt to maintain constant pressure in the system by
1159 > coupling the volume of the system to a barostat.  {\sc oopse} contains
1160 > three different constant pressure algorithms.  The first two, NPTi and
1161 > NPTf have been shown to conserve a quantity that is, to within a
1162 > constant, the Gibbs free energy.  The Melchionna modification to the
1163 > Hoover barostat is implemented in both NPTi and NPTf.  NPTi allows
1164 > only isotropic changes in the simulation box, while box {\it shape}
1165 > variations are allowed in NPTf.  The NPTxyz integrator has {\it not}
1166 > been shown to sample from the isobaric-isothermal ensemble.  It is
1167 > useful, however, in that it maintains orthogonality for the axes of
1168 > the simulation box while attempting to equalize pressure along the
1169 > three perpendicular directions in the box.
1170  
1171 < To mimic the effects of being in a constant temperature ({\sc nvt})
1172 < ensemble, {\sc oopse} uses the Nose-Hoover extended system
1173 < approach.\cite{Hoover85} In this method, the equations of motion for
1174 < the particle positions and velocities are
1171 > Each of the extended system integrators requires additional keywords
1172 > to set target values for the thermodynamic state variables that are
1173 > being held constant.  Keywords are also required to set the
1174 > characteristic decay times for the dynamics of the extended
1175 > variables.
1176 >
1177 > \begin{tabular}{llll}
1178 > {\bf variable} & {\bf {\tt .bass} keyword} & {\bf units} & {\bf
1179 > default value} \\  
1180 > $T_{\mathrm{target}}$ & {\tt targetTemperature = 300;} &  K & none \\
1181 > $P_{\mathrm{target}}$ & {\tt targetPressure = 1;} & atm & none \\
1182 > $\tau_T$ & {\tt tauThermostat = 1e3;} & fs & none \\
1183 > $\tau_B$ & {\tt tauBarostat = 5e3;} & fs  & none \\
1184 >         & {\tt resetTime = 200;} & fs & none \\
1185 >         & {\tt useInitialExtendedSystemState = ``true'';} & logical &
1186 > false
1187 > \end{tabular}
1188 >
1189 > Two additional keywords can be used to either clear the extended
1190 > system variables periodically ({\tt resetTime}), or to maintain the
1191 > state of the extended system variables between simulations ({\tt
1192 > useInitialExtendedSystemState}).  More details on these variables
1193 > and their use in the integrators follows below.
1194 >
1195 > \subsubsection{\label{oopseSec:noseHooverThermo}Nos\'{e}-Hoover Thermostatting}
1196 >
1197 > The Nos\'e-Hoover equations of motion are given by\cite{Hoover85}
1198   \begin{eqnarray}
1199   \dot{{\bf r}} & = & {\bf v} \\
1200 < \dot{{\bf v}} & = & \frac{{\bf f}}{m} - \chi {\bf v}
1200 > \dot{{\bf v}} & = & \frac{{\bf f}}{m} - \chi {\bf v} \\
1201 > \dot{\mathsf{A}} & = & \mathsf{A} \cdot
1202 > \mbox{ skew}\left(\overleftrightarrow{\mathsf{I}}^{-1} \cdot {\bf j}\right) \\
1203 > \dot{{\bf j}} & = & {\bf j} \times \left( \overleftrightarrow{\mathsf{I}}^{-1}
1204 > \cdot {\bf j} \right) - \mbox{ rot}\left(\mathsf{A}^{T} \cdot \frac{\partial
1205 > V}{\partial \mathsf{A}} \right) - \chi {\bf j}
1206   \label{eq:nosehoovereom}
1207   \end{eqnarray}
1208  
1209   $\chi$ is an ``extra'' variable included in the extended system, and
1210   it is propagated using the first order equation of motion
1211   \begin{equation}
1212 < \dot{\chi} = \frac{1}{\tau_{T}} \left( \frac{T}{T_{target}} - 1 \right)
1212 > \dot{\chi} = \frac{1}{\tau_{T}^2} \left( \frac{T}{T_{\mathrm{target}}} - 1 \right).
1213   \label{eq:nosehooverext}
1214   \end{equation}
896 where $T_{target}$ is the target temperature for the simulation, and
897 $\tau_{T}$ is a time constant for the thermostat.  
1215  
1216 < To select the Nose-Hoover {\sc nvt} ensemble, the {\tt ensemble = NVT;}
1217 < command would be used in the simulation's {\sc bass} file.  There is
1218 < some subtlety in choosing values for $\tau_{T}$, and it is usually set
1219 < to values of a few ps.  Within a {\sc bass} file, $\tau_{T}$ could be
1220 < set to 1 ps using the {\tt tauThermostat = 1000; } command.
1216 > The instantaneous temperature $T$ is proportional to the total kinetic
1217 > energy (both translational and orientational) and is given by
1218 > \begin{equation}
1219 > T = \frac{2 K}{f k_B}
1220 > \end{equation}
1221 > Here, $f$ is the total number of degrees of freedom in the system,
1222 > \begin{equation}
1223 > f = 3 N + 3 N_{\mathrm{orient}} - N_{\mathrm{constraints}}
1224 > \end{equation}
1225 > and $K$ is the total kinetic energy,
1226 > \begin{equation}
1227 > K = \sum_{i=1}^{N} \frac{1}{2} m_i {\bf v}_i^T \cdot {\bf v}_i +
1228 > \sum_{i=1}^{N_{\mathrm{orient}}}  \frac{1}{2} {\bf j}_i^T \cdot
1229 > \overleftrightarrow{\mathsf{I}}_i^{-1} \cdot {\bf j}_i
1230 > \end{equation}
1231  
1232 + In eq.(\ref{eq:nosehooverext}), $\tau_T$ is the time constant for
1233 + relaxation of the temperature to the target value.  To set values for
1234 + $\tau_T$ or $T_{\mathrm{target}}$ in a simulation, one would use the
1235 + {\tt tauThermostat} and {\tt targetTemperature} keywords in the {\tt
1236 + .bass} file.  The units for {\tt tauThermostat} are fs, and the units
1237 + for the {\tt targetTemperature} are degrees K.   The integration of
1238 + the equations of motion is carried out in a velocity-Verlet style 2
1239 + part algorithm:
1240  
1241 < \subsection{\label{oopseSec:zcons}Z-Constraint Method}
1241 > {\tt moveA:}
1242 > \begin{eqnarray}
1243 > T(t) & \leftarrow & \left\{{\bf v}(t)\right\}, \left\{{\bf j}(t)\right\} \\
1244 > {\bf v}\left(t + \delta t / 2\right)  & \leftarrow & {\bf
1245 > v}(t) + \frac{\delta t}{2} \left( \frac{{\bf f}(t)}{m} - {\bf v}(t)
1246 > \chi(t)\right) \\
1247 > {\bf r}(t + \delta t) & \leftarrow & {\bf r}(t) + \delta t {\bf
1248 > v}\left(t + \delta t / 2 \right) \\
1249 > {\bf j}\left(t + \delta t / 2 \right)  & \leftarrow & {\bf
1250 > j}(t) + \frac{\delta t}{2} \left( {\bf \tau}^b(t) - {\bf j}(t)
1251 > \chi(t) \right) \\
1252 > \mathsf{A}(t + \delta t) & \leftarrow & \mathrm{rot}\left(\delta t *
1253 > {\bf j}(t + \delta t / 2) \overleftrightarrow{\mathsf{I}}^{-1} \right) \\
1254 > \chi\left(t + \delta t / 2 \right) & \leftarrow & \chi(t) +
1255 > \frac{\delta t}{2 \tau_T^2} \left( \frac{T(t)}{T_{\mathrm{target}}} - 1
1256 > \right)
1257 > \end{eqnarray}
1258  
1259 < Based on fluctuation-dissipation theorem,\bigskip\ force auto-correlation
1260 < method was developed to investigate the dynamics of ions inside the ion
1261 < channels.\cite{Roux91} Time-dependent friction coefficient can be calculated
1262 < from the deviation of the instantaneous force from its mean force.
1259 > Here $\mathrm{rot}(\delta t * {\bf j}
1260 > \overleftrightarrow{\mathsf{I}}^{-1})$ is the same symplectic Trotter
1261 > factorization of the three rotation operations that was discussed in
1262 > the section on the DLM integrator.  Note that this operation modifies
1263 > both the rotation matrix $\mathsf{A}$ and the angular momentum ${\bf
1264 > j}$.  {\tt moveA} propagates velocities by a half time step, and
1265 > positional degrees of freedom by a full time step.  The new positions
1266 > (and orientations) are then used to calculate a new set of forces and
1267 > torques in exactly the same way they are calculated in the {\tt
1268 > doForces} portion of the DLM integrator.
1269  
1270 < %
1270 > Once the forces and torques have been obtained at the new time step,
1271 > the temperature, velocities, and the extended system variable can be
1272 > advanced to the same time value.
1273  
1274 + {\tt moveB:}
1275 + \begin{eqnarray}
1276 + T(t + \delta t) & \leftarrow & \left\{{\bf v}(t + \delta t)\right\},
1277 + \left\{{\bf j}(t + \delta t)\right\} \\
1278 + \chi\left(t + \delta t \right) & \leftarrow & \chi\left(t + \delta t /
1279 + 2 \right) + \frac{\delta t}{2 \tau_T^2} \left( \frac{T(t+\delta
1280 + t)}{T_{\mathrm{target}}} - 1 \right) \\
1281 + {\bf v}\left(t + \delta t \right)  & \leftarrow & {\bf
1282 + v}\left(t + \delta t / 2 \right) + \frac{\delta t}{2} \left(
1283 + \frac{{\bf f}(t + \delta t)}{m} - {\bf v}(t + \delta t)
1284 + \chi(t \delta t)\right) \\
1285 + {\bf j}\left(t + \delta t \right)  & \leftarrow & {\bf
1286 + j}\left(t + \delta t / 2 \right) + \frac{\delta t}{2} \left( {\bf
1287 + \tau}^b(t + \delta t) - {\bf j}(t + \delta t)
1288 + \chi(t + \delta t) \right)
1289 + \end{eqnarray}
1290 +
1291 + Since ${\bf v}(t + \delta t)$ and ${\bf j}(t + \delta t)$ are required
1292 + to caclculate $T(t + \delta t)$ as well as $\chi(t + \delta t)$, they
1293 + indirectly depend on their own values at time $t + \delta t$.  {\tt
1294 + moveB} is therefore done in an iterative fashion until $\chi(t +
1295 + \delta t)$ becomes self-consistent.  The relative tolerance for the
1296 + self-consistency check defaults to a value of $\mbox{10}^{-6}$, but
1297 + {\sc oopse} will terminate the iteration after 4 loops even if the
1298 + consistency check has not been satisfied.
1299 +
1300 + The Nos\'e-Hoover algorithm is known to conserve a Hamiltonian for the
1301 + extended system that is, to within a constant, identical to the
1302 + Helmholtz free energy,
1303   \begin{equation}
1304 < \xi(z,t)=\langle\delta F(z,t)\delta F(z,0)\rangle/k_{B}T
1304 > H_{\mathrm{NVT}} = V + K + f k_B T_{\mathrm{target}} \left(
1305 > \frac{\tau_{T}^2 \chi^2(t)}{2} + \int_{0}^{t} \chi(t^\prime) dt^\prime
1306 > \right)
1307   \end{equation}
1308 < where%
1308 > Poor choices of $\delta t$ or $\tau_T$ can result in non-conservation
1309 > of $H_{\mathrm{NVT}}$, so the conserved quantity is maintained in the
1310 > last column of the {\tt .stat} file to allow checks on the quality of
1311 > the integration.
1312 >
1313 > Bond constraints are applied at the end of both the {\tt moveA} and
1314 > {\tt moveB} portions of the algorithm.  Details on the constraint
1315 > algorithms are given in section \ref{oopseSec:rattle}.
1316 >
1317 > \subsubsection{\label{sec:NPTi}Constant-pressure integration with
1318 > isotropic box deformations (NPTi)}
1319 >
1320 > To carry out isobaric-isothermal ensemble calculations {\sc oopse}
1321 > implements the Melchionna modifications to the Nos\'e-Hoover-Andersen
1322 > equations of motion,\cite{melchionna93}
1323 >
1324 > \begin{eqnarray}
1325 > \dot{{\bf r}} & = & {\bf v} + \eta \left( {\bf r} - {\bf R}_0 \right) \\
1326 > \dot{{\bf v}} & = & \frac{{\bf f}}{m} - (\eta + \chi) {\bf v} \\
1327 > \dot{\mathsf{A}} & = & \mathsf{A} \cdot
1328 > \mbox{ skew}\left(\overleftrightarrow{I}^{-1} \cdot {\bf j}\right) \\
1329 > \dot{{\bf j}} & = & {\bf j} \times \left( \overleftrightarrow{I}^{-1}
1330 > \cdot {\bf j} \right) - \mbox{ rot}\left(\mathsf{A}^{T} \cdot \frac{\partial
1331 > V}{\partial \mathsf{A}} \right) - \chi {\bf j} \\
1332 > \dot{\chi} & = & \frac{1}{\tau_{T}^2} \left(
1333 > \frac{T}{T_{\mathrm{target}}} - 1 \right) \\
1334 > \dot{\eta} & = & \frac{1}{\tau_{B}^2 f k_B T_{\mathrm{target}}} V \left( P -
1335 > P_{\mathrm{target}} \right) \\
1336 > \dot{\mathcal{V}} & = & 3 \mathcal{V} \eta
1337 > \label{eq:melchionna1}
1338 > \end{eqnarray}
1339 >
1340 > $\chi$ and $\eta$ are the ``extra'' degrees of freedom in the extended
1341 > system.  $\chi$ is a thermostat, and it has the same function as it
1342 > does in the Nos\'e-Hoover NVT integrator.  $\eta$ is a barostat which
1343 > controls changes to the volume of the simulation box.  ${\bf R}_0$ is
1344 > the location of the center of mass for the entire system, and
1345 > $\mathcal{V}$ is the volume of the simulation box.  At any time, the
1346 > volume can be calculated from the determinant of the matrix which
1347 > describes the box shape:
1348   \begin{equation}
1349 < \delta F(z,t)=F(z,t)-\langle F(z,t)\rangle
1349 > \mathcal{V} = \det(\mathsf{H})
1350   \end{equation}
1351  
1352 + The NPTi integrator requires an instantaneous pressure. This quantity
1353 + is calculated via the pressure tensor,
1354 + \begin{equation}
1355 + \overleftrightarrow{\mathsf{P}}(t) = \frac{1}{\mathcal{V}(t)} \left(
1356 + \sum_{i=1}^{N} m_i {\bf v}_i(t) \otimes {\bf v}_i(t) \right) +
1357 + \overleftrightarrow{\mathsf{W}}(t)
1358 + \end{equation}
1359 + The kinetic contribution to the pressure tensor utilizes the {\it
1360 + outer} product of the velocities denoted by the $\otimes$ symbol.  The
1361 + stress tensor is calculated from another outer product of the
1362 + inter-atomic separation vectors (${\bf r}_{ij} = {\bf r}_j - {\bf
1363 + r}_i$) with the forces between the same two atoms,
1364 + \begin{equation}
1365 + \overleftrightarrow{\mathsf{W}}(t) = \sum_{i} \sum_{j>i} {\bf r}_{ij}(t)
1366 + \otimes {\bf f}_{ij}(t)
1367 + \end{equation}
1368 + The instantaneous pressure is then simply obtained from the trace of
1369 + the Pressure tensor,
1370 + \begin{equation}
1371 + P(t) = \frac{1}{3} \mathrm{Tr} \left( \overleftrightarrow{\mathsf{P}}(t)
1372 + \right)
1373 + \end{equation}
1374  
1375 < If the time-dependent friction decay rapidly, static friction coefficient can
1376 < be approximated by%
1375 > In eq.(\ref{eq:melchionna1}), $\tau_B$ is the time constant for
1376 > relaxation of the pressure to the target value.  To set values for
1377 > $\tau_B$ or $P_{\mathrm{target}}$ in a simulation, one would use the
1378 > {\tt tauBarostat} and {\tt targetPressure} keywords in the {\tt .bass}
1379 > file.  The units for {\tt tauBarostat} are fs, and the units for the
1380 > {\tt targetPressure} are atmospheres.  Like in the NVT integrator, the
1381 > integration of the equations of motion is carried out in a
1382 > velocity-Verlet style 2 part algorithm:
1383  
1384 + {\tt moveA:}
1385 + \begin{eqnarray}
1386 + T(t) & \leftarrow & \left\{{\bf v}(t)\right\}, \left\{{\bf j}(t)\right\} \\
1387 + P(t) & \leftarrow & \left\{{\bf r}(t)\right\}, \left\{{\bf v}(t)\right\}, \left\{{\bf f}(t)\right\} \\
1388 + {\bf v}\left(t + \delta t / 2\right)  & \leftarrow & {\bf
1389 + v}(t) + \frac{\delta t}{2} \left( \frac{{\bf f}(t)}{m} - {\bf v}(t)
1390 + \left(\chi(t) + \eta(t) \right) \right) \\
1391 + {\bf j}\left(t + \delta t / 2 \right)  & \leftarrow & {\bf
1392 + j}(t) + \frac{\delta t}{2} \left( {\bf \tau}^b(t) - {\bf j}(t)
1393 + \chi(t) \right) \\
1394 + \mathsf{A}(t + \delta t) & \leftarrow & \mathrm{rot}\left(\delta t *
1395 + {\bf j}(t + \delta t / 2) \overleftrightarrow{\mathsf{I}}^{-1} \right) \\
1396 + \chi\left(t + \delta t / 2 \right) & \leftarrow & \chi(t) +
1397 + \frac{\delta t}{2 \tau_T^2} \left( \frac{T(t)}{T_{\mathrm{target}}} - 1
1398 + \right) \\
1399 + \eta(t + \delta t / 2) & \leftarrow & \eta(t) + \frac{\delta t \mathcal{V}(t)}{2 N k_B
1400 + T(t) \tau_B^2} \left( P(t) - P_{\mathrm{target}} \right) \\
1401 + {\bf r}(t + \delta t) & \leftarrow & {\bf r}(t) + \delta t \left\{ {\bf
1402 + v}\left(t + \delta t / 2 \right) + \eta(t + \delta t / 2)\left[ {\bf
1403 + r}(t + \delta t) - {\bf R}_0 \right] \right\} \\
1404 + \mathsf{H}(t + \delta t) & \leftarrow & e^{-\delta t \eta(t + \delta t
1405 + / 2)} \mathsf{H}(t)
1406 + \end{eqnarray}
1407 +
1408 + Most of these equations are identical to their counterparts in the NVT
1409 + integrator, but the propagation of positions to time $t + \delta t$
1410 + depends on the positions at the same time.  {\sc oopse} carries out
1411 + this step iteratively (with a limit of 5 passes through the iterative
1412 + loop).  Also, the simulation box $\mathsf{H}$ is scaled uniformly for
1413 + one full time step by an exponential factor that depends on the value
1414 + of $\eta$ at time $t +
1415 + \delta t / 2$.  Reshaping the box uniformly also scales the volume of
1416 + the box by
1417   \begin{equation}
1418 < \xi^{static}(z)=\int_{0}^{\infty}\langle\delta F(z,t)\delta F(z,0)\rangle dt
1418 > \mathcal{V}(t + \delta t) \leftarrow e^{ - 3 \delta t \eta(t + \delta t /2)}
1419 > \mathcal{V}(t)
1420   \end{equation}
1421  
1422 + The {\tt doForces} step for the NPTi integrator is exactly the same as
1423 + in both the DLM and NVT integrators.  Once the forces and torques have
1424 + been obtained at the new time step, the velocities can be advanced to
1425 + the same time value.
1426  
1427 < Hence, diffusion constant can be estimated by
1427 > {\tt moveB:}
1428 > \begin{eqnarray}
1429 > T(t + \delta t) & \leftarrow & \left\{{\bf v}(t + \delta t)\right\},
1430 > \left\{{\bf j}(t + \delta t)\right\} \\
1431 > P(t + \delta t) & \leftarrow & \left\{{\bf r}(t + \delta t)\right\},
1432 > \left\{{\bf v}(t + \delta t)\right\}, \left\{{\bf f}(t + \delta t)\right\} \\
1433 > \chi\left(t + \delta t \right) & \leftarrow & \chi\left(t + \delta t /
1434 > 2 \right) + \frac{\delta t}{2 \tau_T^2} \left( \frac{T(t+\delta
1435 > t)}{T_{\mathrm{target}}} - 1 \right) \\
1436 > \eta(t + \delta t) & \leftarrow & \eta(t + \delta t / 2) +
1437 > \frac{\delta t \mathcal{V}(t + \delta t)}{2 N k_B T(t + \delta t) \tau_B^2}
1438 > \left( P(t + \delta t) - P_{\mathrm{target}}
1439 > \right) \\
1440 > {\bf v}\left(t + \delta t \right)  & \leftarrow & {\bf
1441 > v}\left(t + \delta t / 2 \right) + \frac{\delta t}{2} \left(
1442 > \frac{{\bf f}(t + \delta t)}{m} - {\bf v}(t + \delta t)
1443 > (\chi(t + \delta t) + \eta(t + \delta t)) \right) \\
1444 > {\bf j}\left(t + \delta t \right)  & \leftarrow & {\bf
1445 > j}\left(t + \delta t / 2 \right) + \frac{\delta t}{2} \left( {\bf
1446 > \tau}^b(t + \delta t) - {\bf j}(t + \delta t)
1447 > \chi(t + \delta t) \right)
1448 > \end{eqnarray}
1449 >
1450 > Once again, since ${\bf v}(t + \delta t)$ and ${\bf j}(t + \delta t)$
1451 > are required to caclculate $T(t + \delta t)$, $P(t + \delta t)$, $\chi(t +
1452 > \delta t)$, and $\eta(t + \delta t)$, they indirectly depend on their
1453 > own values at time $t + \delta t$.  {\tt moveB} is therefore done in
1454 > an iterative fashion until $\chi(t + \delta t)$ and $\eta(t + \delta
1455 > t)$ become self-consistent.  The relative tolerance for the
1456 > self-consistency check defaults to a value of $\mbox{10}^{-6}$, but
1457 > {\sc oopse} will terminate the iteration after 4 loops even if the
1458 > consistency check has not been satisfied.
1459 >
1460 > The Melchionna modification of the Nos\'e-Hoover-Andersen algorithm is
1461 > known to conserve a Hamiltonian for the extended system that is, to
1462 > within a constant, identical to the Gibbs free energy,
1463   \begin{equation}
1464 < D(z)=\frac{k_{B}T}{\xi^{static}(z)}=\frac{(k_{B}T)^{2}}{\int_{0}^{\infty
1465 < }\langle\delta F(z,t)\delta F(z,0)\rangle dt}%
1464 > H_{\mathrm{NPTi}} = V + K + f k_B T_{\mathrm{target}} \left(
1465 > \frac{\tau_{T}^2 \chi^2(t)}{2} + \int_{0}^{t} \chi(t^\prime) dt^\prime
1466 > \right) + P_{\mathrm{target}} \mathcal{V}(t).
1467   \end{equation}
1468 + Poor choices of $\delta t$, $\tau_T$, or $\tau_B$ can result in
1469 + non-conservation of $H_{\mathrm{NPTi}}$, so the conserved quantity is
1470 + maintained in the last column of the {\tt .stat} file to allow checks
1471 + on the quality of the integration.  It is also known that this
1472 + algorithm samples the equilibrium distribution for the enthalpy
1473 + (including contributions for the thermostat and barostat),
1474 + \begin{equation}
1475 + H_{\mathrm{NPTi}} = V + K + \frac{f k_B T_{\mathrm{target}}}{2} \left(
1476 + \chi^2 \tau_T^2 + \eta^2 \tau_B^2 \right) +  P_{\mathrm{target}}
1477 + \mathcal{V}(t).
1478 + \end{equation}
1479  
1480 + Bond constraints are applied at the end of both the {\tt moveA} and
1481 + {\tt moveB} portions of the algorithm.  Details on the constraint
1482 + algorithms are given in section \ref{oopseSec:rattle}.
1483  
1484 < \bigskip Z-Constraint method, which fixed the z coordinates of the molecules
1485 < with respect to the center of the mass of the system, was proposed to obtain
1486 < the forces required in force auto-correlation method.\cite{Marrink94} However,
1487 < simply resetting the coordinate will move the center of the mass of the whole
1488 < system. To avoid this problem,  a new method was used at {\sc oopse}. Instead of
1489 < resetting the coordinate, we reset the forces of z-constraint molecules as
1490 < well as subtract the total constraint forces from the rest of the system after
1491 < force calculation at each time step.
1484 > \subsubsection{\label{sec:NPTf}Constant-pressure integration with a
1485 > flexible box (NPTf)}
1486 >
1487 > There is a relatively simple generalization of the
1488 > Nos\'e-Hoover-Andersen method to include changes in the simulation box
1489 > {\it shape} as well as in the volume of the box.  This method utilizes
1490 > the full $3 \times 3$ pressure tensor and introduces a tensor of
1491 > extended variables ($\overleftrightarrow{\eta}$) to control changes to
1492 > the box shape.  The equations of motion for this method are
1493 > \begin{eqnarray}
1494 > \dot{{\bf r}} & = & {\bf v} + \overleftrightarrow{\eta} \cdot \left( {\bf r} - {\bf R}_0 \right) \\
1495 > \dot{{\bf v}} & = & \frac{{\bf f}}{m} - (\overleftrightarrow{\eta} +
1496 > \chi \mathsf{1}) {\bf v} \\
1497 > \dot{\mathsf{A}} & = & \mathsf{A} \cdot
1498 > \mbox{ skew}\left(\overleftrightarrow{I}^{-1} \cdot {\bf j}\right) \\
1499 > \dot{{\bf j}} & = & {\bf j} \times \left( \overleftrightarrow{I}^{-1}
1500 > \cdot {\bf j} \right) - \mbox{ rot}\left(\mathsf{A}^{T} \cdot \frac{\partial
1501 > V}{\partial \mathsf{A}} \right) - \chi {\bf j} \\
1502 > \dot{\chi} & = & \frac{1}{\tau_{T}^2} \left(
1503 > \frac{T}{T_{\mathrm{target}}} - 1 \right) \\
1504 > \dot{\overleftrightarrow{eta}} & = & \frac{1}{\tau_{B}^2 f k_B
1505 > T_{\mathrm{target}}} V \left( \overleftrightarrow{\mathsf{P}} - P_{\mathrm{target}}\mathsf{1} \right) \\
1506 > \dot{\mathsf{H}} & = &  \overleftrightarrow{\eta} \cdot \mathsf{H}
1507 > \label{eq:melchionna2}
1508 > \end{eqnarray}
1509 >
1510 > Here, $\mathsf{1}$ is the unit matrix and $\overleftrightarrow{\mathsf{P}}$
1511 > is the pressure tensor.  Again, the volume, $\mathcal{V} = \det
1512 > \mathsf{H}$.
1513 >
1514 > The propagation of the equations of motion is nearly identical to the
1515 > NPTi integration:
1516 >
1517 > {\tt moveA:}
1518 > \begin{eqnarray}
1519 > T(t) & \leftarrow & \left\{{\bf v}(t)\right\}, \left\{{\bf j}(t)\right\} \\
1520 > \overleftrightarrow{\mathsf{P}}(t) & \leftarrow & \left\{{\bf r}(t)\right\}, \left\{{\bf v}(t)\right\}, \left\{{\bf f}(t)\right\} \\
1521 > {\bf v}\left(t + \delta t / 2\right)  & \leftarrow & {\bf
1522 > v}(t) + \frac{\delta t}{2} \left( \frac{{\bf f}(t)}{m} -
1523 > \left(\chi(t)\mathsf{1} + \overleftrightarrow{\eta}(t) \right) \cdot
1524 > {\bf v}(t) \right) \\
1525 > {\bf j}\left(t + \delta t / 2 \right)  & \leftarrow & {\bf
1526 > j}(t) + \frac{\delta t}{2} \left( {\bf \tau}^b(t) - {\bf j}(t)
1527 > \chi(t) \right) \\
1528 > \mathsf{A}(t + \delta t) & \leftarrow & \mathrm{rot}\left(\delta t *
1529 > {\bf j}(t + \delta t / 2) \overleftrightarrow{\mathsf{I}}^{-1} \right) \\
1530 > \chi\left(t + \delta t / 2 \right) & \leftarrow & \chi(t) +
1531 > \frac{\delta t}{2 \tau_T^2} \left( \frac{T(t)}{T_{\mathrm{target}}} - 1
1532 > \right) \\
1533 > \overleftrightarrow{\eta}(t + \delta t / 2) & \leftarrow & \overleftrightarrow{\eta}(t) + \frac{\delta t \mathcal{V}(t)}{2 N k_B
1534 > T(t) \tau_B^2} \left( \overleftrightarrow{\mathsf{P}}(t) - P_{\mathrm{target}}\mathsf{1} \right) \\
1535 > {\bf r}(t + \delta t) & \leftarrow & {\bf r}(t) + \delta t \left\{ {\bf
1536 > v}\left(t + \delta t / 2 \right) + \overleftrightarrow{\eta}(t +
1537 > \delta t / 2) \cdot \left[ {\bf
1538 > r}(t + \delta t) - {\bf R}_0 \right] \right\} \\
1539 > \mathsf{H}(t + \delta t) & \leftarrow & \mathsf{H}(t) \cdot e^{-\delta t
1540 > \overleftrightarrow{\eta}(t + \delta t / 2)}
1541 > \end{eqnarray}
1542 > {\sc oopse} uses a power series expansion truncated at second order
1543 > for the exponential operation which scales the simulation box.
1544 >
1545 > The {\tt moveB} portion of the algorithm is largely unchanged from the
1546 > NPTi integrator:
1547 >
1548 > {\tt moveB:}
1549 > \begin{eqnarray}
1550 > T(t + \delta t) & \leftarrow & \left\{{\bf v}(t + \delta t)\right\},
1551 > \left\{{\bf j}(t + \delta t)\right\} \\
1552 > \overleftrightarrow{\mathsf{P}}(t + \delta t) & \leftarrow & \left\{{\bf r}(t + \delta t)\right\},
1553 > \left\{{\bf v}(t + \delta t)\right\}, \left\{{\bf f}(t + \delta t)\right\} \\
1554 > \chi\left(t + \delta t \right) & \leftarrow & \chi\left(t + \delta t /
1555 > 2 \right) + \frac{\delta t}{2 \tau_T^2} \left( \frac{T(t+\delta
1556 > t)}{T_{\mathrm{target}}} - 1 \right) \\
1557 > \overleftrightarrow{\eta}(t + \delta t) & \leftarrow & \overleftrightarrow{\eta}(t + \delta t / 2) +
1558 > \frac{\delta t \mathcal{V}(t + \delta t)}{2 N k_B T(t + \delta t) \tau_B^2}
1559 > \left( \overleftrightarrow{P}(t + \delta t) - P_{\mathrm{target}}\mathsf{1}
1560 > \right) \\
1561 > {\bf v}\left(t + \delta t \right)  & \leftarrow & {\bf
1562 > v}\left(t + \delta t / 2 \right) + \frac{\delta t}{2} \left(
1563 > \frac{{\bf f}(t + \delta t)}{m} -
1564 > (\chi(t + \delta t)\mathsf{1} + \overleftrightarrow{\eta}(t + \delta
1565 > t)) \right) \cdot {\bf v}(t + \delta t) \\
1566 > {\bf j}\left(t + \delta t \right)  & \leftarrow & {\bf
1567 > j}\left(t + \delta t / 2 \right) + \frac{\delta t}{2} \left( {\bf
1568 > \tau}^b(t + \delta t) - {\bf j}(t + \delta t)
1569 > \chi(t + \delta t) \right)
1570 > \end{eqnarray}
1571 >
1572 > The iterative schemes for both {\tt moveA} and {\tt moveB} are
1573 > identical to those described for the NPTi integrator.
1574 >
1575 > The NPTf integrator is known to conserve the following Hamiltonian:
1576 > \begin{equation}
1577 > H_{\mathrm{NPTf}} = V + K + f k_B T_{\mathrm{target}} \left(
1578 > \frac{\tau_{T}^2 \chi^2(t)}{2} + \int_{0}^{t} \chi(t^\prime) dt^\prime
1579 > \right) + P_{\mathrm{target}} \mathcal{V}(t) + \frac{f k_B
1580 > T_{\mathrm{target}}}{2}
1581 > \mathrm{Tr}\left[\overleftrightarrow{\eta}(t)\right]^2 \tau_B^2.
1582 > \end{equation}
1583 >
1584 > This integrator must be used with care, particularly in liquid
1585 > simulations.  Liquids have very small restoring forces in the
1586 > off-diagonal directions, and the simulation box can very quickly form
1587 > elongated and sheared geometries which become smaller than the
1588 > electrostatic or Lennard-Jones cutoff radii.  It finds most use in
1589 > simulating crystals or liquid crystals which assume non-orthorhombic
1590 > geometries.
1591 >
1592 > \subsubsection{\label{nptxyz}Constant pressure in 3 axes (NPTxyz)}
1593 >
1594 > There is one additional extended system integrator which is somewhat
1595 > simpler than the NPTf method described above.  In this case, the three
1596 > axes have independent barostats which each attempt to preserve the
1597 > target pressure along the box walls perpendicular to that particular
1598 > axis.  The lengths of the box axes are allowed to fluctuate
1599 > independently, but the angle between the box axes does not change.
1600 > The equations of motion are identical to those described above, but
1601 > only the {\it diagonal} elements of $\overleftrightarrow{\eta}$ are
1602 > computed.  The off-diagonal elements are set to zero (even when the
1603 > pressure tensor has non-zero off-diagonal elements).
1604 >
1605 > It should be noted that the NPTxyz integrator is {\it not} known to
1606 > preserve any Hamiltonian of interest to the chemical physics
1607 > community.  The integrator is extremely useful, however, in generating
1608 > initial conditions for other integration methods.  It {\it is} suitable
1609 > for use with liquid simulations, or in cases where there is
1610 > orientational anisotropy in the system (i.e. in lipid bilayer
1611 > simulations).
1612 >
1613 > \subsection{\label{oopseSec:rattle}The {\sc rattle} Method for Bond
1614 >        Constraints}
1615 >
1616 > In order to satisfy the constraints of fixed bond lengths within {\sc
1617 > oopse}, we have implemented the {\sc rattle} algorithm of
1618 > Andersen.\cite{andersen83} The algorithm is a velocity verlet
1619 > formulation of the {\sc shake} method\cite{ryckaert77} of iteratively
1620 > solving the Lagrange multipliers of constraint. The system of lagrange
1621 > multipliers allows one to reformulate the equations of motion with
1622 > explicit constraint forces.\cite{fowles99:lagrange}
1623 >
1624 > Consider a system described by coordinates $q_1$ and $q_2$ subject to an
1625 > equation of constraint:
1626 > \begin{equation}
1627 > \sigma(q_1, q_2,t) = 0
1628 > \label{oopseEq:lm1}
1629 > \end{equation}
1630 > The Lagrange formulation of the equations of motion can be written:
1631 > \begin{equation}
1632 > \delta\int_{t_1}^{t_2}L\, dt =
1633 >        \int_{t_1}^{t_2} \sum_i \biggl [ \frac{\partial L}{\partial q_i}
1634 >        - \frac{d}{dt}\biggl(\frac{\partial L}{\partial \dot{q}_i}
1635 >        \biggr ) \biggr] \delta q_i \, dt = 0
1636 > \label{oopseEq:lm2}
1637 > \end{equation}
1638 > Here, $\delta q_i$ is not independent for each $q$, as $q_1$ and $q_2$
1639 > are linked by $\sigma$. However, $\sigma$ is fixed at any given
1640 > instant of time, giving:
1641   \begin{align}
1642 < F_{\alpha i}&=0\\
1643 < V_{\alpha i}&=V_{\alpha i}-\frac{\sum\limits_{i}M_{_{\alpha i}}V_{\alpha i}}{\sum\limits_{i}M_{_{\alpha i}}}\\
1644 < F_{\alpha i}&=F_{\alpha i}-\frac{M_{_{\alpha i}}}{\sum\limits_{\alpha}\sum\limits_{i}M_{_{\alpha i}}}\sum\limits_{\beta}F_{\beta}\\
1645 < V_{\alpha i}&=V_{\alpha i}-\frac{\sum\limits_{\alpha}\sum\limits_{i}M_{_{\alpha i}}V_{\alpha i}}{\sum\limits_{\alpha}\sum\limits_{i}M_{_{\alpha i}}}
1642 > \delta\sigma &= \biggl( \frac{\partial\sigma}{\partial q_1} \delta q_1 %
1643 >        + \frac{\partial\sigma}{\partial q_2} \delta q_2 \biggr) = 0 \\
1644 > %
1645 > \frac{\partial\sigma}{\partial q_1} \delta q_1 &= %
1646 >        - \frac{\partial\sigma}{\partial q_2} \delta q_2 \\
1647 > %
1648 > \delta q_2 &= - \biggl(\frac{\partial\sigma}{\partial q_1} \bigg / %
1649 >        \frac{\partial\sigma}{\partial q_2} \biggr) \delta q_1
1650   \end{align}
1651 + Substituted back into Eq.~\ref{oopseEq:lm2},
1652 + \begin{equation}
1653 + \int_{t_1}^{t_2}\biggl [ \biggl(\frac{\partial L}{\partial q_1}
1654 +        - \frac{d}{dt}\,\frac{\partial L}{\partial \dot{q}_1}
1655 +        \biggr)
1656 +        - \biggl( \frac{\partial L}{\partial q_1}
1657 +        - \frac{d}{dt}\,\frac{\partial L}{\partial \dot{q}_1}
1658 +        \biggr) \biggl(\frac{\partial\sigma}{\partial q_1} \bigg / %
1659 +        \frac{\partial\sigma}{\partial q_2} \biggr)\biggr] \delta q_1 \, dt = 0
1660 + \label{oopseEq:lm3}
1661 + \end{equation}
1662 + Leading to,
1663 + \begin{equation}
1664 + \frac{\biggl(\frac{\partial L}{\partial q_1}
1665 +        - \frac{d}{dt}\,\frac{\partial L}{\partial \dot{q}_1}
1666 +        \biggr)}{\frac{\partial\sigma}{\partial q_1}} =
1667 + \frac{\biggl(\frac{\partial L}{\partial q_2}
1668 +        - \frac{d}{dt}\,\frac{\partial L}{\partial \dot{q}_2}
1669 +        \biggr)}{\frac{\partial\sigma}{\partial q_2}}
1670 + \label{oopseEq:lm4}
1671 + \end{equation}
1672 + This relation can only be statisfied, if both are equal to a single
1673 + function $-\lambda(t)$,
1674 + \begin{align}
1675 + \frac{\biggl(\frac{\partial L}{\partial q_1}
1676 +        - \frac{d}{dt}\,\frac{\partial L}{\partial \dot{q}_1}
1677 +        \biggr)}{\frac{\partial\sigma}{\partial q_1}} &= -\lambda(t) \\
1678 + %
1679 + \frac{\partial L}{\partial q_1}
1680 +        - \frac{d}{dt}\,\frac{\partial L}{\partial \dot{q}_1} &=
1681 +         -\lambda(t)\,\frac{\partial\sigma}{\partial q_1} \\
1682 + %
1683 + \frac{\partial L}{\partial q_1}
1684 +        - \frac{d}{dt}\,\frac{\partial L}{\partial \dot{q}_1}
1685 +         + \mathcal{G}_i &= 0
1686 + \end{align}
1687 + Where $\mathcal{G}_i$, the force of constraint on $i$, is:
1688 + \begin{equation}
1689 + \mathcal{G}_i = \lambda(t)\,\frac{\partial\sigma}{\partial q_1}
1690 + \label{oopseEq:lm5}
1691 + \end{equation}
1692  
1693 < At the very beginning of the simulation, the molecules may not be at its
1694 < constraint position. To move the z-constraint molecule to the specified
1695 < position, a simple harmonic potential is used%
1693 > In a simulation, this would involve the solution of a set of $(m + n)$
1694 > number of equations. Where $m$ is the number of constraints, and $n$
1695 > is the number of constrained coordinates. In practice, this is not
1696 > done, as the matrix inversion necessary to solve the system of
1697 > equations would be very time consuming to solve. Additionally, the
1698 > numerical error in the solution of the set of $\lambda$'s would be
1699 > compounded by the error inherent in propagating by the Velocity Verlet
1700 > algorithm ($\Delta t^4$). The Verlet propagation error is negligible
1701 > in an unconstrained system, as one is interested in the statistics of
1702 > the run, and not that the run be numerically exact to the ``true''
1703 > integration. This relates back to the ergodic hypothesis that a time
1704 > integral of a valid trajectory will still give the correct ensemble
1705 > average. However, in the case of constraints, if the equations of
1706 > motion leave the ``true'' trajectory, they are departing from the
1707 > constrained surface. The method that is used, is to iteratively solve
1708 > for $\lambda(t)$ at each time step.
1709  
1710 + In {\sc rattle} the equations of motion are modified subject to the
1711 + following two constraints:
1712 + \begin{align}
1713 + \sigma_{ij}[\mathbf{r}(t)] \equiv
1714 +        [ \mathbf{r}_i(t) - \mathbf{r}_j(t)]^2  - d_{ij}^2 &= 0 %
1715 +        \label{oopseEq:c1} \\
1716 + %
1717 + [\mathbf{\dot{r}}_i(t) - \mathbf{\dot{r}}_j(t)] \cdot
1718 +        [\mathbf{r}_i(t) - \mathbf{r}_j(t)] &= 0 \label{oopseEq:c2}
1719 + \end{align}
1720 + Eq.~\ref{oopseEq:c1} is the set of bond constraints, where $d_{ij}$ is
1721 + the constrained distance between atom $i$ and
1722 + $j$. Eq.~\ref{oopseEq:c2} constrains the velocities of $i$ and $j$ to
1723 + be perpendicular to the bond vector, so that the bond can neither grow
1724 + nor shrink. The constrained dynamics equations become:
1725   \begin{equation}
1726 < U(t)=\frac{1}{2}k_{Harmonic}(z(t)-z_{cons})^{2}%
1726 > m_i \mathbf{\ddot{r}}_i = \mathbf{F}_i + \mathbf{\mathcal{G}}_i
1727 > \label{oopseEq:r1}
1728   \end{equation}
1729 < where $k_{Harmonic}$\bigskip\ is the harmonic force constant, $z(t)$ is
1730 < current z coordinate of the center of mass of the z-constraint molecule, and
963 < $z_{cons}$ is the restraint position. Therefore, the harmonic force operated
964 < on the z-constraint molecule at time $t$ can be calculated by%
1729 > Where,$\mathbf{\mathcal{G}}_i$ are the forces of constraint on $i$,
1730 > and are defined:
1731   \begin{equation}
1732 < F_{z_{Harmonic}}(t)=-\frac{\partial U(t)}{\partial z(t)}=-k_{Harmonic}%
1733 < (z(t)-z_{cons})
1732 > \mathbf{\mathcal{G}}_i = - \sum_j \lambda_{ij}(t)\,\nabla \sigma_{ij}
1733 > \label{oopseEq:r2}
1734   \end{equation}
969 Worthy of mention, other kinds of potential functions can also be used to
970 drive the z-constraint molecule.
1735  
1736 + In Velocity Verlet, if $\Delta t = h$, the propagation can be written:
1737 + \begin{align}
1738 + \mathbf{r}_i(t+h) &=
1739 +        \mathbf{r}_i(t) + h\mathbf{\dot{r}}(t) +
1740 +        \frac{h^2}{2m_i}\,\Bigl[ \mathbf{F}_i(t) +
1741 +        \mathbf{\mathcal{G}}_{Ri}(t) \Bigr] \label{oopseEq:vv1} \\
1742 + %
1743 + \mathbf{\dot{r}}_i(t+h) &=
1744 +        \mathbf{\dot{r}}_i(t) + \frac{h}{2m_i}
1745 +        \Bigl[ \mathbf{F}_i(t) + \mathbf{\mathcal{G}}_{Ri}(t) +
1746 +        \mathbf{F}_i(t+h) + \mathbf{\mathcal{G}}_{Vi}(t+h) \Bigr] %
1747 +        \label{oopseEq:vv2}
1748 + \end{align}
1749 + Where:
1750 + \begin{align}
1751 + \mathbf{\mathcal{G}}_{Ri}(t) &=
1752 +        -2 \sum_j \lambda_{Rij}(t) \mathbf{r}_{ij}(t) \\
1753 + %
1754 + \mathbf{\mathcal{G}}_{Vi}(t+h) &=
1755 +        -2 \sum_j \lambda_{Vij}(t+h) \mathbf{r}(t+h)
1756 + \end{align}
1757 + Next, define:
1758 + \begin{align}
1759 + g_{ij} &= h \lambda_{Rij}(t) \\
1760 + k_{ij} &= h \lambda_{Vij}(t+h) \\
1761 + \mathbf{q}_i &= \mathbf{\dot{r}}_i(t) + \frac{h}{2m_i} \mathbf{F}_i(t)
1762 +        - \frac{1}{m_i}\sum_j g_{ij}\mathbf{r}_{ij}(t)
1763 + \end{align}
1764 + Using these definitions, Eq.~\ref{oopseEq:vv1} and \ref{oopseEq:vv2}
1765 + can be rewritten as,
1766 + \begin{align}
1767 + \mathbf{r}_i(t+h) &= \mathbf{r}_i(t) + h \mathbf{q}_i \\
1768 + %
1769 + \mathbf{\dot{r}}(t+h) &= \mathbf{q}_i + \frac{h}{2m_i}\mathbf{F}_i(t+h)
1770 +        -\frac{1}{m_i}\sum_j k_{ij} \mathbf{r}_{ij}(t+h)
1771 + \end{align}
1772 +
1773 + To integrate the equations of motion, the {\sc rattle} algorithm first
1774 + solves for $\mathbf{r}(t+h)$. Let,
1775 + \begin{equation}
1776 + \mathbf{q}_i = \mathbf{\dot{r}}(t) + \frac{h}{2m_i}\mathbf{F}_i(t)
1777 + \end{equation}
1778 + Here $\mathbf{q}_i$ corresponds to an initial unconstrained move. Next
1779 + pick a constraint $j$, and let,
1780 + \begin{equation}
1781 + \mathbf{s} = \mathbf{r}_i(t) + h\mathbf{q}_i(t)
1782 +        - \mathbf{r}_j(t) + h\mathbf{q}_j(t)
1783 + \label{oopseEq:ra1}
1784 + \end{equation}
1785 + If
1786 + \begin{equation}
1787 + \Big| |\mathbf{s}|^2 - d_{ij}^2 \Big| > \text{tolerance},
1788 + \end{equation}
1789 + then the constraint is unsatisfied, and corrections are made to the
1790 + positions. First we define a test corrected configuration as,
1791 + \begin{align}
1792 + \mathbf{r}_i^T(t+h) = \mathbf{r}_i(t) + h\biggl[\mathbf{q}_i -
1793 +        g_{ij}\,\frac{\mathbf{r}_{ij}(t)}{m_i} \biggr] \\
1794 + %
1795 + \mathbf{r}_j^T(t+h) = \mathbf{r}_j(t) + h\biggl[\mathbf{q}_j +
1796 +        g_{ij}\,\frac{\mathbf{r}_{ij}(t)}{m_j} \biggr]
1797 + \end{align}
1798 + And we chose $g_{ij}$ such that, $|\mathbf{r}_i^T - \mathbf{r}_j^T|^2
1799 + = d_{ij}^2$. Solving the quadratic for $g_{ij}$ we obtain the
1800 + approximation,
1801 + \begin{equation}
1802 + g_{ij} = \frac{(s^2 - d^2)}{2h[\mathbf{s}\cdot\mathbf{r}_{ij}(t)]
1803 +        (\frac{1}{m_i} + \frac{1}{m_j})}
1804 + \end{equation}
1805 + Although not an exact solution for $g_{ij}$, as this is an iterative
1806 + scheme overall, the eventual solution will converge. With a trial
1807 + $g_{ij}$, the new $\mathbf{q}$'s become,
1808 + \begin{align}
1809 + \mathbf{q}_i &= \mathbf{q}^{\text{old}}_i - g_{ij}\,
1810 +        \frac{\mathbf{r}_{ij}(t)}{m_i} \\
1811 + %
1812 + \mathbf{q}_j &= \mathbf{q}^{\text{old}}_j + g_{ij}\,
1813 +        \frac{\mathbf{r}_{ij}(t)}{m_j}
1814 + \end{align}
1815 + The whole algorithm is then repeated from Eq.~\ref{oopseEq:ra1} until
1816 + all constraints are satisfied.
1817 +
1818 + The second step of {\sc rattle}, is to then update the velocities. The
1819 + step starts with,
1820 + \begin{equation}
1821 + \mathbf{\dot{r}}_i(t+h) = \mathbf{q}_i + \frac{h}{2m_i}\mathbf{F}_i(t+h)
1822 + \end{equation}
1823 + Next we pick a constraint $j$, and calculate the dot product $\ell$.
1824 + \begin{equation}
1825 + \ell = \mathbf{r}_{ij}(t+h) \cdot \mathbf{\dot{r}}_{ij}(t+h)
1826 + \label{oopseEq:rv1}
1827 + \end{equation}
1828 + Here if constraint Eq.~\ref{oopseEq:c2} holds, $\ell$ should be
1829 + zero. Therefore if $\ell$ is greater than some tolerance, then
1830 + corrections are made to the $i$ and $j$ velocities.
1831 + \begin{align}
1832 + \mathbf{\dot{r}}_i^T &= \mathbf{\dot{r}}_i(t+h) - k_{ij}
1833 +        \frac{\mathbf{\dot{r}}_{ij}(t+h)}{m_i} \\
1834 + %
1835 + \mathbf{\dot{r}}_j^T &= \mathbf{\dot{r}}_j(t+h) + k_{ij}
1836 +        \frac{\mathbf{\dot{r}}_{ij}(t+h)}{m_j}
1837 + \end{align}
1838 + Like in the previous step, we select a value for $k_{ij}$ such that
1839 + $\ell$ is zero.
1840 + \begin{equation}
1841 + k_{ij} = \frac{\ell}{d^2_{ij}(\frac{1}{m_i} + \frac{1}{m_j})}
1842 + \end{equation}
1843 + The test velocities, $\mathbf{\dot{r}}^T_i$ and
1844 + $\mathbf{\dot{r}}^T_j$, then replace their respective velocities, and
1845 + the algorithm is iterated from Eq.~\ref{oopseEq:rv1} until all
1846 + constraints are satisfied.
1847 +
1848 +
1849 + \subsection{\label{oopseSec:zcons}Z-Constraint Method}
1850 +
1851 + Based on the fluctuation-dissipation theorem, a force auto-correlation
1852 + method was developed by Roux and Karplus to investigate the dynamics
1853 + of ions inside ion channels.\cite{Roux91} The time-dependent friction
1854 + coefficient can be calculated from the deviation of the instantaneous
1855 + force from its mean force.
1856 + \begin{equation}
1857 + \xi(z,t)=\langle\delta F(z,t)\delta F(z,0)\rangle/k_{B}T
1858 + \end{equation}
1859 + where%
1860 + \begin{equation}
1861 + \delta F(z,t)=F(z,t)-\langle F(z,t)\rangle
1862 + \end{equation}
1863 +
1864 +
1865 + If the time-dependent friction decays rapidly, the static friction
1866 + coefficient can be approximated by
1867 + \begin{equation}
1868 + \xi_{\text{static}}(z)=\int_{0}^{\infty}\langle\delta F(z,t)\delta F(z,0)\rangle dt
1869 + \end{equation}
1870 + Allowing diffusion constant to then be calculated through the
1871 + Einstein relation:\cite{Marrink94}
1872 + \begin{equation}
1873 + D(z)=\frac{k_{B}T}{\xi_{\text{static}}(z)}=\frac{(k_{B}T)^{2}}{\int_{0}^{\infty
1874 + }\langle\delta F(z,t)\delta F(z,0)\rangle dt}%
1875 + \end{equation}
1876 +
1877 + The Z-Constraint method, which fixes the z coordinates of the
1878 + molecules with respect to the center of the mass of the system, has
1879 + been a method suggested to obtain the forces required for the force
1880 + auto-correlation calculation.\cite{Marrink94} However, simply resetting the
1881 + coordinate will move the center of the mass of the whole system. To
1882 + avoid this problem, a new method was used in {\sc oopse}. Instead of
1883 + resetting the coordinate, we reset the forces of z-constrained
1884 + molecules as well as subtract the total constraint forces from the
1885 + rest of the system after the force calculation at each time step.
1886 +
1887 + After the force calculation, define $G_\alpha$ as
1888 + \begin{equation}
1889 + G_{\alpha} = \sum_i F_{\alpha i}
1890 + \label{oopseEq:zc1}
1891 + \end{equation}
1892 + Where $F_{\alpha i}$ is the force in the z direction of atom $i$ in
1893 + z-constrained molecule $\alpha$. The forces of the z constrained
1894 + molecule are then set to:
1895 + \begin{equation}
1896 + F_{\alpha i} = F_{\alpha i} -
1897 +        \frac{m_{\alpha i} G_{\alpha}}{\sum_i m_{\alpha i}}
1898 + \end{equation}
1899 + Here, $m_{\alpha i}$ is the mass of atom $i$ in the z-constrained
1900 + molecule. Having rescaled the forces, the velocities must also be
1901 + rescaled to subtract out any center of mass velocity in the z
1902 + direction.
1903 + \begin{equation}
1904 + v_{\alpha i} = v_{\alpha i} -
1905 +        \frac{\sum_i m_{\alpha i} v_{\alpha i}}{\sum_i m_{\alpha i}}
1906 + \end{equation}
1907 + Where $v_{\alpha i}$ is the velocity of atom $i$ in the z direction.
1908 + Lastly, all of the accumulated z constrained forces must be subtracted
1909 + from the system to keep the system center of mass from drifting.
1910 + \begin{equation}
1911 + F_{\beta i} = F_{\beta i} - \frac{m_{\beta i} \sum_{\alpha} G_{\alpha}}
1912 +        {\sum_{\beta}\sum_i m_{\beta i}}
1913 + \end{equation}
1914 + Where $\beta$ are all of the unconstrained molecules in the system.
1915 +
1916 + At the very beginning of the simulation, the molecules may not be at their
1917 + constrained positions. To move a z-constrained molecule to its specified
1918 + position, a simple harmonic potential is used
1919 + \begin{equation}
1920 + U(t)=\frac{1}{2}k_{\text{Harmonic}}(z(t)-z_{\text{cons}})^{2}%
1921 + \end{equation}
1922 + where $k_{\text{Harmonic}}$ is the harmonic force constant, $z(t)$ is the
1923 + current $z$ coordinate of the center of mass of the constrained molecule, and
1924 + $z_{\text{cons}}$ is the constrained position. The harmonic force operating
1925 + on the z-constrained molecule at time $t$ can be calculated by
1926 + \begin{equation}
1927 + F_{z_{\text{Harmonic}}}(t)=-\frac{\partial U(t)}{\partial z(t)}=
1928 +        -k_{\text{Harmonic}}(z(t)-z_{\text{cons}})
1929 + \end{equation}
1930 +
1931   \section{\label{oopseSec:props}Trajectory Analysis}
1932  
1933   \subsection{\label{oopseSec:staticProps}Static Property Analysis}
1934  
1935   The static properties of the trajectories are analyzed with the
1936 < program \texttt{staticProps}. The code is capable of calculating the following
1937 < pair correlations between species A and B:
1938 < \begin{itemize}
1939 <        \item $g_{\text{AB}}(r)$: Eq.~\ref{eq:gofr}
981 <        \item $g_{\text{AB}}(r, \cos \theta)$: Eq.~\ref{eq:gofrCosTheta}
982 <        \item $g_{\text{AB}}(r, \cos \omega)$: Eq.~\ref{eq:gofrCosOmega}
983 <        \item $g_{\text{AB}}(x, y, z)$: Eq.~\ref{eq:gofrXYZ}
984 <        \item $\langle \cos \omega \rangle_{\text{AB}}(r)$:
985 <                Eq.~\ref{eq:cosOmegaOfR}
986 < \end{itemize}
1936 > program \texttt{staticProps}. The code is capable of calculating a
1937 > number of pair correlations between species A and B. Some of which
1938 > only apply to directional entities. The summary of pair correlations
1939 > can be found in Table~\ref{oopseTb:gofrs}
1940  
1941 + \begin{table}
1942 + \caption[The list of pair correlations in \texttt{staticProps}]{The different pair correlations in \texttt{staticProps} along with whether atom A or B must be directional.}
1943 + \label{oopseTb:gofrs}
1944 + \begin{center}
1945 + \begin{tabular}{|l|c|c|}
1946 + \hline
1947 + Name      & Equation & Directional Atom \\ \hline
1948 + $g_{\text{AB}}(r)$              & Eq.~\ref{eq:gofr}         & neither \\ \hline
1949 + $g_{\text{AB}}(r, \cos \theta)$ & Eq.~\ref{eq:gofrCosTheta} & A \\ \hline
1950 + $g_{\text{AB}}(r, \cos \omega)$ & Eq.~\ref{eq:gofrCosOmega} & both \\ \hline
1951 + $g_{\text{AB}}(x, y, z)$        & Eq.~\ref{eq:gofrXYZ}      & neither \\ \hline
1952 + $\langle \cos \omega \rangle_{\text{AB}}(r)$ & Eq.~\ref{eq:cosOmegaOfR} &%
1953 +        both \\ \hline
1954 + \end{tabular}
1955 + \end{center}
1956 + \end{table}
1957 +
1958   The first pair correlation, $g_{\text{AB}}(r)$, is defined as follows:
1959   \begin{equation}
1960   g_{\text{AB}}(r) = \frac{V}{N_{\text{A}}N_{\text{B}}}\langle %%
# Line 1062 | Line 2032 | entities as a function of their distance from each oth
2032   correlation that gives the average correlation of two directional
2033   entities as a function of their distance from each other.
2034  
1065 All static properties are calculated on a frame by frame basis. The
1066 trajectory is read a single frame at a time, and the appropriate
1067 calculations are done on each frame. Once one frame is finished, the
1068 next frame is read in, and a running average of the property being
1069 calculated is accumulated in each frame. The program allows for the
1070 user to specify more than one property be calculated in single run,
1071 preventing the need to read a file multiple times.
1072
2035   \subsection{\label{dynamicProps}Dynamic Property Analysis}
2036  
2037   The dynamic properties of a trajectory are calculated with the program
2038 < \texttt{dynamicProps}. The program will calculate the following properties:
2038 > \texttt{dynamicProps}. The program calculates the following properties:
2039   \begin{gather}
2040   \langle | \mathbf{r}(t) - \mathbf{r}(0) |^2 \rangle \label{eq:rms}\\
2041   \langle \mathbf{v}(t) \cdot \mathbf{v}(0) \rangle \label{eq:velCorr} \\
2042   \langle \mathbf{j}(t) \cdot \mathbf{j}(0) \rangle \label{eq:angularVelCorr}
2043   \end{gather}
2044  
2045 < Eq.~\ref{eq:rms} is the root mean square displacement
2046 < function. Eq.~\ref{eq:velCorr} and Eq.~\ref{eq:angularVelCorr} are the
2045 > Eq.~\ref{eq:rms} is the root mean square displacement function. Which
2046 > allows one to observe the average displacement of an atom as a
2047 > function of time. The quantity is useful when calculating diffusion
2048 > coefficients because of the Einstein Relation, which is valid at long
2049 > times.\cite{allen87:csl}
2050 > \begin{equation}
2051 > 2tD = \langle | \mathbf{r}(t) - \mathbf{r}(0) |^2 \rangle
2052 > \label{oopseEq:einstein}
2053 > \end{equation}
2054 >
2055 > Eq.~\ref{eq:velCorr} and \ref{eq:angularVelCorr} are the translational
2056   velocity and angular velocity correlation functions respectively. The
2057 < latter is only applicable to directional species in the simulation.
2057 > latter is only applicable to directional species in the
2058 > simulation. The velocity autocorrelation functions are useful when
2059 > determining vibrational information about the system of interest.
2060  
1088 The \texttt{dynamicProps} program handles he file in a manner different from
1089 \texttt{staticProps}. As the properties calculated by this program are time
1090 dependent, multiple frames must be read in simultaneously by the
1091 program. For small trajectories this is no problem, and the entire
1092 trajectory is read into memory. However, for long trajectories of
1093 large systems, the files can be quite large. In order to accommodate
1094 large files, \texttt{dynamicProps} adopts a scheme whereby two blocks of memory
1095 are allocated to read in several frames each.
1096
1097 In this two block scheme, the correlation functions are first
1098 calculated within each memory block, then the cross correlations
1099 between the frames contained within the two blocks are
1100 calculated. Once completed, the memory blocks are incremented, and the
1101 process is repeated. A diagram illustrating the process is shown in
1102 Fig.~\ref{oopseFig:dynamicPropsMemory}. As was the case with
1103 \texttt{staticProps}, multiple properties may be calculated in a
1104 single run to avoid multiple reads on the same file.
1105
1106
1107
2061   \section{\label{oopseSec:design}Program Design}
2062  
2063   \subsection{\label{sec:architecture} {\sc oopse} Architecture}
# Line 1143 | Line 2096 | and the corresponding parallel version \texttt{oopse\_
2096   developed to utilize the routines provided by \texttt{libBASS} and
2097   \texttt{libmdtools}. The main program of the package is \texttt{oopse}
2098   and the corresponding parallel version \texttt{oopse\_MPI}. These two
2099 < programs will take the \texttt{.bass} file, and create then integrate
2099 > programs will take the \texttt{.bass} file, and create (and integrate)
2100   the simulation specified in the script. The two analysis programs
2101   \texttt{staticProps} and \texttt{dynamicProps} utilize the core
2102   libraries to initialize and read in trajectories from previously
# Line 1155 | Line 2108 | store and output the system configurations they create
2108  
2109   \subsection{\label{oopseSec:parallelization} Parallelization of {\sc oopse}}
2110  
2111 < Although processor power is continually growing month by month, it is
2112 < still unreasonable to simulate systems of more then a 1000 atoms on a
2113 < single processor. To facilitate study of larger system sizes or
2114 < smaller systems on long time scales in a reasonable period of time,
2115 < parallel methods were developed allowing multiple CPU's to share the
2116 < simulation workload. Three general categories of parallel
2117 < decomposition method's have been developed including atomic, spatial
2118 < and force decomposition methods.
2111 > Although processor power is continually growing roughly following
2112 > Moore's Law, it is still unreasonable to simulate systems of more then
2113 > a 1000 atoms on a single processor. To facilitate study of larger
2114 > system sizes or smaller systems on long time scales in a reasonable
2115 > period of time, parallel methods were developed allowing multiple
2116 > CPU's to share the simulation workload. Three general categories of
2117 > parallel decomposition methods have been developed including atomic,
2118 > spatial and force decomposition methods.
2119  
2120 < Algorithmically simplest of the three method's is atomic decomposition
2120 > Algorithmically simplest of the three methods is atomic decomposition
2121   where N particles in a simulation are split among P processors for the
2122   duration of the simulation. Computational cost scales as an optimal
2123   $O(N/P)$ for atomic decomposition. Unfortunately all processors must
2124 < communicate positions and forces with all other processors leading
2125 < communication to scale as an unfavorable $O(N)$ independent of the
2126 < number of processors. This communication bottleneck led to the
2127 < development of spatial and force decomposition methods in which
2128 < communication among processors scales much more favorably. Spatial or
2129 < domain decomposition divides the physical spatial domain into 3D boxes
2130 < in which each processor is responsible for calculation of forces and
2131 < positions of particles located in its box. Particles are reassigned to
2132 < different processors as they move through simulation space. To
2133 < calculate forces on a given particle, a processor must know the
2134 < positions of particles within some cutoff radius located on nearby
2135 < processors instead of the positions of particles on all
2136 < processors. Both communication between processors and computation
2137 < scale as $O(N/P)$ in the spatial method. However, spatial
2124 > communicate positions and forces with all other processors at every
2125 > force evaluation, leading communication costs to scale as an
2126 > unfavorable $O(N)$, \emph{independent of the number of processors}. This
2127 > communication bottleneck led to the development of spatial and force
2128 > decomposition methods in which communication among processors scales
2129 > much more favorably. Spatial or domain decomposition divides the
2130 > physical spatial domain into 3D boxes in which each processor is
2131 > responsible for calculation of forces and positions of particles
2132 > located in its box. Particles are reassigned to different processors
2133 > as they move through simulation space. To calculate forces on a given
2134 > particle, a processor must know the positions of particles within some
2135 > cutoff radius located on nearby processors instead of the positions of
2136 > particles on all processors. Both communication between processors and
2137 > computation scale as $O(N/P)$ in the spatial method. However, spatial
2138   decomposition adds algorithmic complexity to the simulation code and
2139   is not very efficient for small N since the overall communication
2140   scales as the surface to volume ratio $(N/P)^{2/3}$ in three
2141   dimensions.
2142  
2143 < Force decomposition assigns particles to processors based on a block
2144 < decomposition of the force matrix. Processors are split into a
2145 < optimally square grid forming row and column processor groups. Forces
2146 < are calculated on particles in a given row by particles located in
2147 < that processors column assignment. Force decomposition is less complex
2148 < to implement then the spatial method but still scales computationally
2149 < as $O(N/P)$ and scales as $(N/\sqrt{p})$ in communication
2150 < cost. Plimpton also found that force decompositions scales more
2151 < favorably then spatial decomposition up to 10,000 atoms and favorably
2152 < competes with spatial methods for up to 100,000 atoms.
2143 > The parallelization method used in {\sc oopse} is the force
2144 > decomposition method.  Force decomposition assigns particles to
2145 > processors based on a block decomposition of the force
2146 > matrix. Processors are split into an optimally square grid forming row
2147 > and column processor groups. Forces are calculated on particles in a
2148 > given row by particles located in that processors column
2149 > assignment. Force decomposition is less complex to implement than the
2150 > spatial method but still scales computationally as $O(N/P)$ and scales
2151 > as $O(N/\sqrt{P})$ in communication cost. Plimpton has also found that
2152 > force decompositions scale more favorably than spatial decompositions
2153 > for systems up to 10,000 atoms and favorably compete with spatial
2154 > methods up to 100,000 atoms.\cite{plimpton95}
2155  
2156   \subsection{\label{oopseSec:memAlloc}Memory Issues in Trajectory Analysis}
2157  
2158   For large simulations, the trajectory files can sometimes reach sizes
2159   in excess of several gigabytes. In order to effectively analyze that
2160 < amount of data+, two memory management schemes have been devised for
2160 > amount of data, two memory management schemes have been devised for
2161   \texttt{staticProps} and for \texttt{dynamicProps}. The first scheme,
2162   developed for \texttt{staticProps}, is the simplest. As each frame's
2163   statistics are calculated independent of each other, memory is
# Line 1210 | Line 2165 | all requested correlations per frame with only a singl
2165   complete for the snapshot. To prevent multiple passes through a
2166   potentially large file, \texttt{staticProps} is capable of calculating
2167   all requested correlations per frame with only a single pair loop in
2168 < each frame and a single read through of the file.
2168 > each frame and a single read of the file.
2169  
2170   The second, more advanced memory scheme, is used by
2171   \texttt{dynamicProps}. Here, the program must have multiple frames in
# Line 1220 | Line 2175 | user, and upon reading a block of the trajectory,
2175   in blocks. The number of frames in each block is specified by the
2176   user, and upon reading a block of the trajectory,
2177   \texttt{dynamicProps} will calculate all of the time correlation frame
2178 < pairs within the block. After in block correlations are complete, a
2178 > pairs within the block. After in-block correlations are complete, a
2179   second block of the trajectory is read, and the cross correlations are
2180   calculated between the two blocks. this second block is then freed and
2181   then incremented and the process repeated until the end of the
# Line 1238 | Line 2193 | Fig.~\ref{oopseFig:dynamicPropsMemory}.
2193   \label{oopseFig:dynamicPropsMemory}
2194   \end{figure}
2195  
1241 \subsection{\label{openSource}Open Source and Distribution License}
1242
2196   \section{\label{oopseSec:conclusion}Conclusion}
2197  
2198   We have presented the design and implementation of our open source
2199 < simulation package {\sc oopse}. The package offers novel
2200 < capabilities to the field of Molecular Dynamics simulation packages in
2201 < the form of dipolar force fields, and symplectic integration of rigid
2202 < body dynamics. It is capable of scaling across multiple processors
2203 < through the use of MPI. It also implements several integration
2204 < ensembles allowing the end user control over temperature and
2205 < pressure. In addition, it is capable of integrating constrained
2206 < dynamics through both the {\sc rattle} algorithm and the z-constraint
2207 < method.
2199 > simulation package {\sc oopse}. The package offers novel capabilities
2200 > to the field of Molecular Dynamics simulation packages in the form of
2201 > dipolar force fields, and symplectic integration of rigid body
2202 > dynamics. It is capable of scaling across multiple processors through
2203 > the use of force based decomposition using MPI. It also implements
2204 > several advanced integrators allowing the end user control over
2205 > temperature and pressure. In addition, it is capable of integrating
2206 > constrained dynamics through both the {\sc rattle} algorithm and the
2207 > z-constraint method.
2208  
2209   These features are all brought together in a single open-source
2210 < development package. This allows researchers to not only benefit from
2210 > program. Allowing researchers to not only benefit from
2211   {\sc oopse}, but also contribute to {\sc oopse}'s development as
2212   well.Documentation and source code for {\sc oopse} can be downloaded
2213   from \texttt{http://www.openscience.org/oopse/}.

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines