1 |
|
|
2 |
– |
|
2 |
|
\chapter{\label{chapt:intro}INTRODUCTION AND THEORETICAL BACKGROUND} |
3 |
|
|
4 |
|
|
71 |
|
\Omega(E) = \Omega(E_{\gamma}) \times \Omega(E - E_{\gamma}). |
72 |
|
\label{introEq:SM1} |
73 |
|
\end{equation} |
74 |
< |
Or additively as |
74 |
> |
Or additively as, |
75 |
|
\begin{equation} |
76 |
|
\ln \Omega(E) = \ln \Omega(E_{\gamma}) + \ln \Omega(E - E_{\gamma}). |
77 |
|
\label{introEq:SM2} |
78 |
|
\end{equation} |
79 |
|
|
80 |
< |
The solution to Eq.~\ref{introEq:SM2} maximizes the number of |
80 |
> |
The solution of interest to Eq.~\ref{introEq:SM2} maximizes the number of |
81 |
|
degenerate configurations in $E$. \cite{Frenkel1996} |
82 |
|
This gives |
83 |
|
\begin{equation} |
101 |
|
degeneracy in Eq.~\ref{introEq:SM3} and the second law of |
102 |
|
thermodynamics. Namely, that for a closed system, entropy will |
103 |
|
increase for an irreversible process.\cite{chandler:1987} Here the |
104 |
< |
process is the partitioning of energy among the two systems. This |
104 |
> |
maximization of the degeneracy when partitioning the energy of the system can be likened to the maximization of the entropy for this process. This |
105 |
|
allows the following definition of entropy: |
106 |
|
\begin{equation} |
107 |
|
S = k_B \ln \Omega(E), |
161 |
|
states the coupled system is able to assume. Namely, |
162 |
|
\begin{equation} |
163 |
|
P_{\gamma} \propto \Omega( E_{\text{bath}} ) = |
164 |
< |
e^{\ln \Omega( E - E_{\gamma})} |
164 |
> |
e^{\ln \Omega( E - E_{\gamma})}. |
165 |
|
\label{introEq:SM11} |
166 |
|
\end{equation} |
167 |
< |
With $E_{\gamma} \ll E$, $\ln \Omega$ can be expanded in a Taylor series: |
167 |
> |
Because $E_{\gamma} \ll E$, $\ln \Omega$ can be expanded in a Taylor series: |
168 |
|
\begin{equation} |
169 |
|
\ln \Omega ( E - E_{\gamma}) = |
170 |
|
\ln \Omega (E) - |
171 |
|
E_{\gamma} \frac{\partial \ln \Omega }{\partial E} |
172 |
< |
+ \ldots |
172 |
> |
+ \ldots. |
173 |
|
\label{introEq:SM12} |
174 |
|
\end{equation} |
175 |
|
Higher order terms are omitted as $E$ is an infinite thermal |
176 |
|
bath. Further, using Eq.~\ref{introEq:SM7}, Eq.~\ref{introEq:SM11} can |
177 |
|
be rewritten: |
178 |
|
\begin{equation} |
179 |
< |
P_{\gamma} \propto e^{-\beta E_{\gamma}} |
179 |
> |
P_{\gamma} \propto e^{-\beta E_{\gamma}}, |
180 |
|
\label{introEq:SM13} |
181 |
|
\end{equation} |
182 |
< |
Where $\ln \Omega(E)$ has been factored out of the proportionality as a |
182 |
> |
where $\ln \Omega(E)$ has been factored out of the proportionality as a |
183 |
|
constant. Normalizing the probability ($\int\limits_{\boldsymbol{\Gamma}} |
184 |
|
d\boldsymbol{\Gamma} P_{\gamma} = 1$) gives |
185 |
|
\begin{equation} |
186 |
|
P_{\gamma} = \frac{e^{-\beta E_{\gamma}}} |
187 |
< |
{\int\limits_{\boldsymbol{\Gamma}} d\boldsymbol{\Gamma} e^{-\beta E_{\gamma}}} |
187 |
> |
{\int\limits_{\boldsymbol{\Gamma}} d\boldsymbol{\Gamma} e^{-\beta E_{\gamma}}}. |
188 |
|
\label{introEq:SM14} |
189 |
|
\end{equation} |
190 |
|
This result is the standard Boltzmann statistical distribution. |
193 |
|
\langle A \rangle = |
194 |
|
\frac{\int\limits_{\boldsymbol{\Gamma}} d\boldsymbol{\Gamma} |
195 |
|
A( \boldsymbol{\Gamma} ) e^{-\beta E_{\gamma}}} |
196 |
< |
{\int\limits_{\boldsymbol{\Gamma}} d\boldsymbol{\Gamma} e^{-\beta E_{\gamma}}} |
196 |
> |
{\int\limits_{\boldsymbol{\Gamma}} d\boldsymbol{\Gamma} e^{-\beta E_{\gamma}}}. |
197 |
|
\label{introEq:SM15} |
198 |
|
\end{equation} |
199 |
|
|
205 |
|
average of an observable. Namely, |
206 |
|
\begin{equation} |
207 |
|
\langle A \rangle_t = \frac{1}{\tau} |
208 |
< |
\int_0^{\tau} A[\boldsymbol{\Gamma}(t)]\,dt |
208 |
> |
\int_0^{\tau} A[\boldsymbol{\Gamma}(t)]\,dt, |
209 |
|
\label{introEq:SM16} |
210 |
|
\end{equation} |
211 |
< |
Where the value of an observable is averaged over the length of time, |
211 |
> |
where the value of an observable is averaged over the length of time, |
212 |
|
$\tau$, that the simulation is run. This type of measurement mirrors |
213 |
|
the experimental measurement of an observable. In an experiment, the |
214 |
|
instrument analyzing the system must average its observation over the |
243 |
|
force method of sampling.\cite{Frenkel1996} Consider the following |
244 |
|
single dimensional integral: |
245 |
|
\begin{equation} |
246 |
< |
I = \int_a^b f(x)dx |
246 |
> |
I = \int_a^b f(x)dx. |
247 |
|
\label{eq:MCex1} |
248 |
|
\end{equation} |
249 |
|
The equation can be recast as: |
250 |
|
\begin{equation} |
251 |
< |
I = \int^b_a \frac{f(x)}{\rho(x)} \rho(x) dx |
251 |
> |
I = \int^b_a \frac{f(x)}{\rho(x)} \rho(x) dx, |
252 |
|
\label{introEq:Importance1} |
253 |
|
\end{equation} |
254 |
< |
Where $\rho(x)$ is an arbitrary probability distribution in $x$. If |
254 |
> |
where $\rho(x)$ is an arbitrary probability distribution in $x$. If |
255 |
|
one conducts $\tau$ trials selecting a random number, $\zeta_\tau$, |
256 |
|
from the distribution $\rho(x)$ on the interval $[a,b]$, then |
257 |
|
Eq.~\ref{introEq:Importance1} becomes |
258 |
|
\begin{equation} |
259 |
< |
I= \lim_{\tau \rightarrow \infty}\biggl \langle \frac{f(x)}{\rho(x)} \biggr \rangle_{\text{trials}[a,b]} |
259 |
> |
I= \lim_{\tau \rightarrow \infty}\biggl \langle \frac{f(x)}{\rho(x)} \biggr \rangle_{\text{trials}[a,b]}. |
260 |
|
\label{introEq:Importance2} |
261 |
|
\end{equation} |
262 |
|
If $\rho(x)$ is uniformly distributed over the interval $[a,b]$, |
263 |
|
\begin{equation} |
264 |
< |
\rho(x) = \frac{1}{b-a} |
264 |
> |
\rho(x) = \frac{1}{b-a}, |
265 |
|
\label{introEq:importance2b} |
266 |
|
\end{equation} |
267 |
|
then the integral can be rewritten as |
268 |
|
\begin{equation} |
269 |
|
I = (b-a)\lim_{\tau \rightarrow \infty} |
270 |
< |
\langle f(x) \rangle_{\text{trials}[a,b]} |
270 |
> |
\langle f(x) \rangle_{\text{trials}[a,b]}. |
271 |
|
\label{eq:MCex2} |
272 |
|
\end{equation} |
273 |
|
|
276 |
|
\begin{equation} |
277 |
|
\langle A \rangle = \frac{\int d^N \mathbf{r}~A(\mathbf{r}^N)% |
278 |
|
e^{-\beta V(\mathbf{r}^N)}}% |
279 |
< |
{\int d^N \mathbf{r}~e^{-\beta V(\mathbf{r}^N)}} |
279 |
> |
{\int d^N \mathbf{r}~e^{-\beta V(\mathbf{r}^N)}}, |
280 |
|
\label{eq:mcEnsAvg} |
281 |
|
\end{equation} |
282 |
< |
Where $\mathbf{r}^N$ stands for the coordinates of all $N$ particles |
282 |
> |
where $\mathbf{r}^N$ stands for the coordinates of all $N$ particles |
283 |
|
and $A$ is some observable that is only dependent on position. This is |
284 |
|
the ensemble average of $A$ as presented in |
285 |
|
Sec.~\ref{introSec:statThermo}, except here $A$ is independent of |
298 |
|
\begin {equation} |
299 |
|
\rho_{kT}(\mathbf{r}^N) = |
300 |
|
\frac{e^{-\beta V(\mathbf{r}^N)}} |
301 |
< |
{\int d^N \mathbf{r}~e^{-\beta V(\mathbf{r}^N)}} |
301 |
> |
{\int d^N \mathbf{r}~e^{-\beta V(\mathbf{r}^N)}}, |
302 |
|
\label{introEq:MCboltzman} |
303 |
|
\end{equation} |
304 |
< |
Where $\rho_{kT}$ is the Boltzmann distribution. The ensemble average |
304 |
> |
where $\rho_{kT}$ is the Boltzmann distribution. The ensemble average |
305 |
|
can be rewritten as |
306 |
|
\begin{equation} |
307 |
|
\langle A \rangle = \int d^N \mathbf{r}~A(\mathbf{r}^N) |
308 |
< |
\rho_{kT}(\mathbf{r}^N) |
308 |
> |
\rho_{kT}(\mathbf{r}^N). |
309 |
|
\label{introEq:Importance3} |
310 |
|
\end{equation} |
311 |
|
Applying Eq.~\ref{introEq:Importance1} one obtains |
312 |
|
\begin{equation} |
313 |
|
\langle A \rangle = \biggl \langle |
314 |
|
\frac{ A \rho_{kT}(\mathbf{r}^N) } |
315 |
< |
{\rho(\mathbf{r}^N)} \biggr \rangle_{\text{trials}} |
315 |
> |
{\rho(\mathbf{r}^N)} \biggr \rangle_{\text{trials}}. |
316 |
|
\label{introEq:Importance4} |
317 |
|
\end{equation} |
318 |
|
By selecting $\rho(\mathbf{r}^N)$ to be $\rho_{kT}(\mathbf{r}^N)$ |
319 |
|
Eq.~\ref{introEq:Importance4} becomes |
320 |
|
\begin{equation} |
321 |
< |
\langle A \rangle = \langle A(\mathbf{r}^N) \rangle_{kT} |
321 |
> |
\langle A \rangle = \langle A(\mathbf{r}^N) \rangle_{kT}. |
322 |
|
\label{introEq:Importance5} |
323 |
|
\end{equation} |
324 |
|
The difficulty is selecting points $\mathbf{r}^N$ such that they are |
345 |
|
|
346 |
|
The transition probability is given by the following: |
347 |
|
\begin{equation} |
348 |
< |
\pi_{mn} = \alpha_{mn} \times \accMe(m \rightarrow n) |
348 |
> |
\pi_{mn} = \alpha_{mn} \times \accMe(m \rightarrow n), |
349 |
|
\label{introEq:MCpi} |
350 |
|
\end{equation} |
351 |
< |
Where $\alpha_{mn}$ is the probability of attempting the move $m |
351 |
> |
where $\alpha_{mn}$ is the probability of attempting the move $m |
352 |
|
\rightarrow n$, and $\accMe$ is the probability of accepting the move |
353 |
|
$m \rightarrow n$. Defining a probability vector, |
354 |
|
$\boldsymbol{\rho}$, such that |
355 |
|
\begin{equation} |
356 |
|
\boldsymbol{\rho} = \{\rho_1, \rho_2, \ldots \rho_m, \rho_n, |
357 |
< |
\ldots \rho_N \} |
357 |
> |
\ldots \rho_N \}, |
358 |
|
\label{introEq:MCrhoVector} |
359 |
|
\end{equation} |
360 |
|
a transition matrix $\boldsymbol{\Pi}$ can be defined, |
361 |
|
whose elements are $\pi_{mn}$, for each given transition. The |
362 |
|
limiting distribution of the Markov chain can then be found by |
363 |
|
applying the transition matrix an infinite number of times to the |
364 |
< |
distribution vector. |
364 |
> |
distribution vector, |
365 |
|
\begin{equation} |
366 |
|
\boldsymbol{\rho}_{\text{limit}} = |
367 |
|
\lim_{N \rightarrow \infty} \boldsymbol{\rho}_{\text{initial}} |
368 |
< |
\boldsymbol{\Pi}^N |
368 |
> |
\boldsymbol{\Pi}^N. |
369 |
|
\label{introEq:MCmarkovLimit} |
370 |
|
\end{equation} |
371 |
|
The limiting distribution of the chain is independent of the starting |
372 |
|
distribution, and successive applications of the transition matrix |
373 |
< |
will only yield the limiting distribution again. |
373 |
> |
will only yield the limiting distribution again, |
374 |
|
\begin{equation} |
375 |
|
\boldsymbol{\rho}_{\text{limit}} = \boldsymbol{\rho}_{\text{limit}} |
376 |
< |
\boldsymbol{\Pi} |
376 |
> |
\boldsymbol{\Pi}. |
377 |
|
\label{introEq:MCmarkovEquil} |
378 |
|
\end{equation} |
379 |
|
|
383 |
|
Eq.~\ref{introEq:MCmarkovEquil} is solved such that |
384 |
|
$\boldsymbol{\rho}_{\text{limit}}$ matches the Boltzmann distribution |
385 |
|
of states. The method accomplishes this by imposing the strong |
386 |
< |
condition of microscopic reversibility on the equilibrium |
387 |
< |
distribution. This means that at equilibrium, the probability of going |
388 |
< |
from $m$ to $n$ is the same as going from $n$ to $m$. |
386 |
> |
condition of detailed balance on the equilibrium |
387 |
> |
distribution. This means that the probability of going |
388 |
> |
from $m$ to $n$ is the same as going from $n$ to $m$, |
389 |
|
\begin{equation} |
390 |
< |
\rho_m\pi_{mn} = \rho_n\pi_{nm} |
390 |
> |
\rho_m\pi_{mn} = \rho_n\pi_{nm}. |
391 |
|
\label{introEq:MCmicroReverse} |
392 |
|
\end{equation} |
393 |
|
Further, $\boldsymbol{\alpha}$ is chosen to be a symmetric matrix in |
395 |
|
Eq.~\ref{introEq:MCmicroReverse} becomes |
396 |
|
\begin{equation} |
397 |
|
\frac{\accMe(m \rightarrow n)}{\accMe(n \rightarrow m)} = |
398 |
< |
\frac{\rho_n}{\rho_m} |
398 |
> |
\frac{\rho_n}{\rho_m}. |
399 |
|
\label{introEq:MCmicro2} |
400 |
|
\end{equation} |
401 |
|
For a Boltzmann limiting distribution, |
402 |
|
\begin{equation} |
403 |
|
\frac{\rho_n}{\rho_m} = e^{-\beta[\mathcal{U}(n) - \mathcal{U}(m)]} |
404 |
< |
= e^{-\beta \Delta \mathcal{U}} |
404 |
> |
= e^{-\beta \Delta \mathcal{U}}, |
405 |
|
\label{introEq:MCmicro3} |
406 |
|
\end{equation} |
407 |
< |
This allows for the following set of acceptance rules be defined: |
407 |
> |
where $\Delta\mathcal{U}$ is the change in the total energy of the system. This allows for the following set of acceptance rules be defined: |
408 |
|
\begin{equation} |
409 |
|
\accMe( m \rightarrow n ) = |
410 |
|
\begin{cases} |
442 |
|
calculate time correlation functions of the form\cite{Hansen86} |
443 |
|
\begin{equation} |
444 |
|
\langle A(t)\,A(0)\rangle = \lim_{\tau\rightarrow\infty} \frac{1}{\tau} |
445 |
< |
\int_0^{\tau} A(t+t^{\prime})\,A(t^{\prime})\,dt^{\prime} |
445 |
> |
\int_0^{\tau} A(t+t^{\prime})\,A(t^{\prime})\,dt^{\prime}. |
446 |
|
\label{introEq:timeCorr} |
447 |
|
\end{equation} |
448 |
|
These correlations can be used to measure fundamental time constants |
602 |
|
subsequent force evaluations, pair calculations are only calculated |
603 |
|
from the neighbor lists. The lists are updated if any particle |
604 |
|
in the system moves farther than $r_{\text{list}}-r_{\text{cut}}$, |
605 |
< |
which indeicates the possibility that a particle has left or joined the |
605 |
> |
which indicates the possibility that a particle has left or joined the |
606 |
|
neighbor list. |
607 |
|
|
608 |
|
\subsection{\label{introSec:mdIntegrate} Integration of the Equations of Motion} |
613 |
|
\begin{equation} |
614 |
|
q(t+\Delta t)= q(t) + v(t)\Delta t + \frac{F(t)}{2m}\Delta t^2 + |
615 |
|
\frac{\Delta t^3}{3!}\frac{\partial^3 q(t)}{\partial t^3} + |
616 |
< |
\mathcal{O}(\Delta t^4) |
616 |
> |
\mathcal{O}(\Delta t^4) . |
617 |
|
\label{introEq:verletForward} |
618 |
|
\end{equation} |
619 |
|
As well as, |
620 |
|
\begin{equation} |
621 |
|
q(t-\Delta t)= q(t) - v(t)\Delta t + \frac{F(t)}{2m}\Delta t^2 - |
622 |
|
\frac{\Delta t^3}{3!}\frac{\partial^3 q(t)}{\partial t^3} + |
623 |
< |
\mathcal{O}(\Delta t^4) |
623 |
> |
\mathcal{O}(\Delta t^4) , |
624 |
|
\label{introEq:verletBack} |
625 |
|
\end{equation} |
626 |
< |
Where $m$ is the mass of the particle, $q(t)$ is the position at time |
626 |
> |
where $m$ is the mass of the particle, $q(t)$ is the position at time |
627 |
|
$t$, $v(t)$ the velocity, and $F(t)$ the force acting on the |
628 |
|
particle. Adding together Eq.~\ref{introEq:verletForward} and |
629 |
|
Eq.~\ref{introEq:verletBack} results in, |
630 |
|
\begin{equation} |
631 |
|
q(t+\Delta t)+q(t-\Delta t) = |
632 |
< |
2q(t) + \frac{F(t)}{m}\Delta t^2 + \mathcal{O}(\Delta t^4) |
632 |
> |
2q(t) + \frac{F(t)}{m}\Delta t^2 + \mathcal{O}(\Delta t^4) , |
633 |
|
\label{introEq:verletSum} |
634 |
|
\end{equation} |
635 |
< |
Or equivalently, |
635 |
> |
or equivalently, |
636 |
|
\begin{equation} |
637 |
|
q(t+\Delta t) \approx |
638 |
< |
2q(t) - q(t-\Delta t) + \frac{F(t)}{m}\Delta t^2 |
638 |
> |
2q(t) - q(t-\Delta t) + \frac{F(t)}{m}\Delta t^2. |
639 |
|
\label{introEq:verletFinal} |
640 |
|
\end{equation} |
641 |
|
Which contains an error in the estimate of the new positions on the |
644 |
|
In practice, however, the simulations in this research were integrated |
645 |
|
with the velocity reformulation of the Verlet method.\cite{allen87:csl} |
646 |
|
\begin{align} |
647 |
< |
q(t+\Delta t) &= q(t) + v(t)\Delta t + \frac{F(t)}{2m}\Delta t^2 % |
647 |
> |
q(t+\Delta t) &= q(t) + v(t)\Delta t + \frac{F(t)}{2m}\Delta t^2 ,% |
648 |
|
\label{introEq:MDvelVerletPos} \\% |
649 |
|
% |
650 |
< |
v(t+\Delta t) &= v(t) + \frac{\Delta t}{2m}[F(t) + F(t+\Delta t)] % |
650 |
> |
v(t+\Delta t) &= v(t) + \frac{\Delta t}{2m}[F(t) + F(t+\Delta t)] .% |
651 |
|
\label{introEq:MDvelVerletVel} |
652 |
|
\end{align} |
653 |
|
The original Verlet algorithm can be regained by substituting the |
703 |
|
\sin\phi\sin\theta &% |
704 |
|
-\cos\phi\sin\theta &% |
705 |
|
\cos\theta |
706 |
< |
\end{bmatrix} |
706 |
> |
\end{bmatrix}. |
707 |
|
\label{introEq:EulerRotMat} |
708 |
|
\end{equation} |
709 |
|
|
719 |
|
\begin{align} |
720 |
|
\dot{\phi} &= -\omega^s_x \frac{\sin\phi\cos\theta}{\sin\theta} + |
721 |
|
\omega^s_y \frac{\cos\phi\cos\theta}{\sin\theta} + |
722 |
< |
\omega^s_z |
722 |
> |
\omega^s_z, |
723 |
|
\label{introEq:MDeulerPhi} \\% |
724 |
|
% |
725 |
< |
\dot{\theta} &= \omega^s_x \cos\phi + \omega^s_y \sin\phi |
725 |
> |
\dot{\theta} &= \omega^s_x \cos\phi + \omega^s_y \sin\phi, |
726 |
|
\label{introEq:MDeulerTheta} \\% |
727 |
|
% |
728 |
|
\dot{\psi} &= \omega^s_x \frac{\sin\phi}{\sin\theta} - |
729 |
< |
\omega^s_y \frac{\cos\phi}{\sin\theta} |
729 |
> |
\omega^s_y \frac{\cos\phi}{\sin\theta}, |
730 |
|
\label{introEq:MDeulerPsi} |
731 |
|
\end{align} |
732 |
< |
Where $\omega^s_{\alpha}$ is the angular velocity in the lab space frame |
732 |
> |
where $\omega^s_{\alpha}$ is the angular velocity in the lab space frame |
733 |
|
along Cartesian coordinate $\alpha$. However, a difficulty arises when |
734 |
|
attempting to integrate Eq.~\ref{introEq:MDeulerPhi} and |
735 |
|
Eq.~\ref{introEq:MDeulerPsi}. The $\frac{1}{\sin \theta}$ present in |
755 |
|
defined as, |
756 |
|
\begin{equation} |
757 |
|
iL=\sum^f_{j=1} \biggl [\dot{q}_j\frac{\partial}{\partial q_j} + |
758 |
< |
F_j\frac{\partial}{\partial p_j} \biggr ] |
758 |
> |
F_j\frac{\partial}{\partial p_j} \biggr ]. |
759 |
|
\label{introEq:LiouvilleOperator} |
760 |
|
\end{equation} |
761 |
|
Here, $q_j$ and $p_j$ are the position and conjugate momenta of a |
763 |
|
$\Gamma$ is defined as the set of all positions and conjugate momenta, |
764 |
|
$\{q_j,p_j\}$, and the propagator, $U(t)$, is defined |
765 |
|
\begin {equation} |
766 |
< |
U(t) = e^{iLt} |
766 |
> |
U(t) = e^{iLt}. |
767 |
|
\label{introEq:Lpropagator} |
768 |
|
\end{equation} |
769 |
|
This allows the specification of $\Gamma$ at any time $t$ as |
770 |
|
\begin{equation} |
771 |
< |
\Gamma(t) = U(t)\Gamma(0) |
771 |
> |
\Gamma(t) = U(t)\Gamma(0). |
772 |
|
\label{introEq:Lp2} |
773 |
|
\end{equation} |
774 |
|
It is important to note, $U(t)$ is a unitary operator meaning |
775 |
|
\begin{equation} |
776 |
< |
U(-t)=U^{-1}(t) |
776 |
> |
U(-t)=U^{-1}(t). |
777 |
|
\label{introEq:Lp3} |
778 |
|
\end{equation} |
779 |
|
|
780 |
|
Decomposing $L$ into two parts, $iL_1$ and $iL_2$, one can use the |
781 |
|
Trotter theorem to yield |
782 |
|
\begin{align} |
783 |
< |
e^{iLt} &= e^{i(L_1 + L_2)t} \notag \\% |
783 |
> |
e^{iLt} &= e^{i(L_1 + L_2)t}, \notag \\% |
784 |
|
% |
785 |
< |
&= \biggl [ e^{i(L_1 +L_2)\frac{t}{P}} \biggr]^P \notag \\% |
785 |
> |
&= \biggl [ e^{i(L_1 +L_2)\frac{t}{P}} \biggr]^P, \notag \\% |
786 |
|
% |
787 |
|
&= \biggl [ e^{iL_1\frac{\Delta t}{2}}\, e^{iL_2\Delta t}\, |
788 |
|
e^{iL_1\frac{\Delta t}{2}} \biggr ]^P + |
789 |
< |
\mathcal{O}\biggl (\frac{t^3}{P^2} \biggr ) \label{introEq:Lp4} |
789 |
> |
\mathcal{O}\biggl (\frac{t^3}{P^2} \biggr ), \label{introEq:Lp4} |
790 |
|
\end{align} |
791 |
< |
Where $\Delta t = t/P$. |
791 |
> |
where $\Delta t = t/P$. |
792 |
|
With this, a discrete time operator $G(\Delta t)$ can be defined: |
793 |
|
\begin{align} |
794 |
|
G(\Delta t) &= e^{iL_1\frac{\Delta t}{2}}\, e^{iL_2\Delta t}\, |
795 |
< |
e^{iL_1\frac{\Delta t}{2}} \notag \\% |
795 |
> |
e^{iL_1\frac{\Delta t}{2}}, \notag \\% |
796 |
|
% |
797 |
|
&= U_1 \biggl ( \frac{\Delta t}{2} \biggr )\, U_2 ( \Delta t )\, |
798 |
< |
U_1 \biggl ( \frac{\Delta t}{2} \biggr ) |
798 |
> |
U_1 \biggl ( \frac{\Delta t}{2} \biggr ). |
799 |
|
\label{introEq:Lp5} |
800 |
|
\end{align} |
801 |
|
Because $U_1(t)$ and $U_2(t)$ are unitary, $G(\Delta t)$ is also |
804 |
|
|
805 |
|
As an example, consider the following decomposition of $L$: |
806 |
|
\begin{align} |
807 |
< |
iL_1 &= \dot{q}\frac{\partial}{\partial q}% |
807 |
> |
iL_1 &= \dot{q}\frac{\partial}{\partial q},% |
808 |
|
\label{introEq:Lp6a} \\% |
809 |
|
% |
810 |
< |
iL_2 &= F(q)\frac{\partial}{\partial p}% |
810 |
> |
iL_2 &= F(q)\frac{\partial}{\partial p}.% |
811 |
|
\label{introEq:Lp6b} |
812 |
|
\end{align} |
813 |
|
This leads to propagator $G( \Delta t )$ as, |
814 |
|
\begin{equation} |
815 |
|
G(\Delta t) = e^{\frac{\Delta t}{2} F(q)\frac{\partial}{\partial p}} \, |
816 |
|
e^{\Delta t\,\dot{q}\frac{\partial}{\partial q}} \, |
817 |
< |
e^{\frac{\Delta t}{2} F(q)\frac{\partial}{\partial p}} |
817 |
> |
e^{\frac{\Delta t}{2} F(q)\frac{\partial}{\partial p}}. |
818 |
|
\label{introEq:Lp7} |
819 |
|
\end{equation} |
820 |
|
Operating $G(\Delta t)$ on $\Gamma(0)$, and utilizing the operator property |
821 |
|
\begin{equation} |
822 |
< |
e^{c\frac{\partial}{\partial x}}\, f(x) = f(x+c) |
822 |
> |
e^{c\frac{\partial}{\partial x}}\, f(x) = f(x+c), |
823 |
|
\label{introEq:Lp8} |
824 |
|
\end{equation} |
825 |
< |
Where $c$ is independent of $x$. One obtains the following: |
825 |
> |
where $c$ is independent of $x$. One obtains the following: |
826 |
|
\begin{align} |
827 |
|
\dot{q}\biggl (\frac{\Delta t}{2}\biggr ) &= |
828 |
< |
\dot{q}(0) + \frac{\Delta t}{2m}\, F[q(0)] \label{introEq:Lp9a}\\% |
828 |
> |
\dot{q}(0) + \frac{\Delta t}{2m}\, F[q(0)], \label{introEq:Lp9a}\\% |
829 |
|
% |
830 |
< |
q(\Delta t) &= q(0) + \Delta t\, \dot{q}\biggl (\frac{\Delta t}{2}\biggr )% |
830 |
> |
q(\Delta t) &= q(0) + \Delta t\, \dot{q}\biggl (\frac{\Delta t}{2}\biggr ),% |
831 |
|
\label{introEq:Lp9b}\\% |
832 |
|
% |
833 |
|
\dot{q}(\Delta t) &= \dot{q}\biggl (\frac{\Delta t}{2}\biggr ) + |
834 |
< |
\frac{\Delta t}{2m}\, F[q(0)] \label{introEq:Lp9c} |
834 |
> |
\frac{\Delta t}{2m}\, F[q(0)]. \label{introEq:Lp9c} |
835 |
|
\end{align} |
836 |
|
Or written another way, |
837 |
|
\begin{align} |
838 |
|
q(t+\Delta t) &= q(0) + \dot{q}(0)\Delta t + |
839 |
< |
\frac{F[q(0)]}{m}\frac{\Delta t^2}{2} % |
839 |
> |
\frac{F[q(0)]}{m}\frac{\Delta t^2}{2}, % |
840 |
|
\label{introEq:Lp10a} \\% |
841 |
|
% |
842 |
|
\dot{q}(\Delta t) &= \dot{q}(0) + \frac{\Delta t}{2m} |
843 |
< |
\biggl [F[q(0)] + F[q(\Delta t)] \biggr] % |
843 |
> |
\biggl [F[q(0)] + F[q(\Delta t)] \biggr]. % |
844 |
|
\label{introEq:Lp10b} |
845 |
|
\end{align} |
846 |
|
This is the velocity Verlet formulation presented in |
868 |
|
Liouville operator: |
869 |
|
\begin{align} |
870 |
|
iL_{\text{pos}} &= \dot{q}\frac{\partial}{\partial q} + |
871 |
< |
\mathsf{\dot{A}}\frac{\partial}{\partial \mathsf{A}} |
871 |
> |
\mathsf{\dot{A}}\frac{\partial}{\partial \mathsf{A}} , |
872 |
|
\label{introEq:SR1a} \\% |
873 |
|
% |
874 |
< |
iL_F &= F(q)\frac{\partial}{\partial p} |
874 |
> |
iL_F &= F(q)\frac{\partial}{\partial p}, |
875 |
|
\label{introEq:SR1b} \\% |
876 |
< |
iL_{\tau} &= \tau(\mathsf{A})\frac{\partial}{\partial j} |
876 |
> |
iL_{\tau} &= \tau(\mathsf{A})\frac{\partial}{\partial j}, |
877 |
|
\label{introEq:SR1b} \\% |
878 |
|
\end{align} |
879 |
< |
Where $\tau(\mathsf{A})$ is the torque of the system |
879 |
> |
where $\tau(\mathsf{A})$ is the torque of the system |
880 |
|
due to the configuration, and $j$ is the conjugate |
881 |
|
angular momenta of the system. The propagator, $G(\Delta t)$, becomes |
882 |
|
\begin{equation} |
884 |
|
e^{\frac{\Delta t}{2} \tau(\mathsf{A})\frac{\partial}{\partial j}} \, |
885 |
|
e^{\Delta t\,iL_{\text{pos}}} \, |
886 |
|
e^{\frac{\Delta t}{2} \tau(\mathsf{A})\frac{\partial}{\partial j}} \, |
887 |
< |
e^{\frac{\Delta t}{2} F(q)\frac{\partial}{\partial p}} |
887 |
> |
e^{\frac{\Delta t}{2} F(q)\frac{\partial}{\partial p}}. |
888 |
|
\label{introEq:SR2} |
889 |
|
\end{equation} |
890 |
|
Propagation of the linear and angular momenta follows as in the Verlet |
898 |
|
\mathcal{U}_y \biggl(\frac{\Delta t}{2}\biggr)\, |
899 |
|
\mathcal{U}_z (\Delta t)\, |
900 |
|
\mathcal{U}_y \biggl(\frac{\Delta t}{2}\biggr)\, |
901 |
< |
\mathcal{U}_x \biggl(\frac{\Delta t}{2}\biggr)\, |
901 |
> |
\mathcal{U}_x \biggl(\frac{\Delta t}{2}\biggr), |
902 |
|
\label{introEq:SR3} |
903 |
|
\end{equation} |
904 |
< |
Where $\mathcal{U}_{\alpha}$ is a unitary rotation of $\mathsf{A}$ and |
904 |
> |
where $\mathcal{U}_{\alpha}$ is a unitary rotation of $\mathsf{A}$ and |
905 |
|
$j$ about each axis $\alpha$. As all propagations are now |
906 |
|
unitary and symplectic, the entire integration scheme is also |
907 |
|
symplectic and time reversible. |
921 |
|
|
922 |
|
The chapter concerning random sequential adsorption simulations is a |
923 |
|
study in applying Statistical Mechanics simulation techniques in order |
924 |
< |
to obtain a simple model capable of explaining the results. My |
924 |
> |
to obtain a simple model capable of explaining experimental observations. My |
925 |
|
advisor, Dr. Gezelter, and I were approached by a colleague, |
926 |
|
Dr. Lieberman, about possible explanations for the partial coverage of |
927 |
|
a gold surface by a particular compound synthesized in her group. We |
961 |
|
In the last chapter, I discuss future directions |
962 |
|
for both {\sc oopse} and this mesoscale model. Additionally, I will |
963 |
|
give a summary of the results found in this dissertation. |
965 |
– |
|
966 |
– |
|