ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/mattDisertation/Introduction.tex
(Generate patch)

Comparing trunk/mattDisertation/Introduction.tex (file contents):
Revision 1092 by mmeineke, Tue Mar 16 21:35:16 2004 UTC vs.
Revision 1105 by mmeineke, Tue Apr 13 18:32:53 2004 UTC

# Line 69 | Line 69 | is the total energy of both systems, can be represente
69   ($E_{\text{bath}}+E_{\gamma}$) remain constant. $\Omega(E)$, where $E$
70   is the total energy of both systems, can be represented as
71   \begin{equation}
72 < \Omega(E) = \Omega(E_{\gamma}) \times \Omega(E - E_{\gamma})
72 > \Omega(E) = \Omega(E_{\gamma}) \times \Omega(E - E_{\gamma}).
73   \label{introEq:SM1}
74   \end{equation}
75   Or additively as
76   \begin{equation}
77 < \ln \Omega(E) = \ln \Omega(E_{\gamma}) + \ln \Omega(E - E_{\gamma})
77 > \ln \Omega(E) = \ln \Omega(E_{\gamma}) + \ln \Omega(E - E_{\gamma}).
78   \label{introEq:SM2}
79   \end{equation}
80  
# Line 86 | Line 86 | This gives
86          \frac{\partial \ln \Omega(E_{\gamma})}{\partial E_{\gamma}}
87           +
88          \frac{\partial \ln \Omega(E_{\text{bath}})}{\partial E_{\text{bath}}}
89 <        \frac{\partial E_{\text{bath}}}{\partial E_{\gamma}}
89 >        \frac{\partial E_{\text{bath}}}{\partial E_{\gamma}},
90   \label{introEq:SM3}
91   \end{equation}
92 < Where $E_{\text{bath}}$ is $E-E_{\gamma}$, and
92 > where $E_{\text{bath}}$ is $E-E_{\gamma}$, and
93   $\frac{\partial E_{\text{bath}}}{\partial E_{\gamma}}$ is
94   $-1$. Eq.~\ref{introEq:SM3} becomes
95   \begin{equation}
96   \frac{\partial \ln \Omega(E_{\gamma})}{\partial E_{\gamma}} =
97 < \frac{\partial \ln \Omega(E_{\text{bath}})}{\partial E_{\text{bath}}}
97 > \frac{\partial \ln \Omega(E_{\text{bath}})}{\partial E_{\text{bath}}}.
98   \label{introEq:SM4}
99   \end{equation}
100  
# Line 105 | Line 105 | allows the following definition of entropy:
105   process is the partitioning of energy among the two systems.  This
106   allows the following definition of entropy:
107   \begin{equation}
108 < S = k_B \ln \Omega(E)
108 > S = k_B \ln \Omega(E),
109   \label{introEq:SM5}
110   \end{equation}
111 < Where $k_B$ is the Boltzmann constant.  Having defined entropy, one can
112 < also define the temperature of the system using the Maxwell relation
111 > where $k_B$ is the Boltzmann constant.  Having defined entropy, one can
112 > also define the temperature of the system using the Maxwell relation,
113   \begin{equation}
114 < \frac{1}{T} = \biggl ( \frac{\partial S}{\partial E} \biggr )_{N,V}
114 > \frac{1}{T} = \biggl ( \frac{\partial S}{\partial E} \biggr )_{N,V}.
115   \label{introEq:SM6}
116   \end{equation}
117   The temperature in the system $\gamma$ is then
118   \begin{equation}
119   \beta( E_{\gamma} ) = \frac{1}{k_B T} =
120 <        \frac{\partial \ln \Omega(E_{\gamma})}{\partial E_{\gamma}}
120 >        \frac{\partial \ln \Omega(E_{\gamma})}{\partial E_{\gamma}}.
121   \label{introEq:SM7}
122   \end{equation}
123   Applying this to Eq.~\ref{introEq:SM4} gives the following
124   \begin{equation}
125 < \beta( E_{\gamma} ) = \beta( E_{\text{bath}} )
125 > \beta( E_{\gamma} ) = \beta( E_{\text{bath}} ).
126   \label{introEq:SM8}
127   \end{equation}
128   Eq.~\ref{introEq:SM8} shows that the partitioning of energy between
# Line 140 | Line 140 | $E_{\gamma}$:
140   to the total energy of both systems and the fluctuations in
141   $E_{\gamma}$:
142   \begin{equation}
143 < \Omega( E_{\gamma} ) = \Omega( E - E_{\gamma} )
143 > \Omega( E_{\gamma} ) = \Omega( E - E_{\gamma} ).
144   \label{introEq:SM9}
145   \end{equation}
146   As for the expectation value, it can be defined
147   \begin{equation}
148   \langle A \rangle =
149          \int\limits_{\boldsymbol{\Gamma}} d\boldsymbol{\Gamma}
150 <        P_{\gamma} A(\boldsymbol{\Gamma})
150 >        P_{\gamma} A(\boldsymbol{\Gamma}),
151   \label{introEq:SM10}
152   \end{equation}
153 < Where $\int\limits_{\boldsymbol{\Gamma}} d\boldsymbol{\Gamma}$ denotes
153 > where $\int\limits_{\boldsymbol{\Gamma}} d\boldsymbol{\Gamma}$ denotes
154   an integration over all accessible points in phase space, $P_{\gamma}$
155   is the probability of being in a given phase state and
156   $A(\boldsymbol{\Gamma})$ is an observable that is a function of the

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines