6 |
|
|
7 |
|
\section{\label{introSec:theory}Theoretical Background} |
8 |
|
|
9 |
< |
The techniques used in the course of this research fall under the two main classes of |
10 |
< |
molecular simulation: Molecular Dynamics and Monte Carlo. Molecular Dynamic simulations |
11 |
< |
integrate the equations of motion for a given system of particles, allowing the researher |
12 |
< |
to gain insight into the time dependent evolution of a system. Diffusion phenomena are |
13 |
< |
readily studied with this simulation technique, making Molecular Dynamics the main simulation |
14 |
< |
technique used in this research. Other aspects of the research fall under the Monte Carlo |
15 |
< |
class of simulations. In Monte Carlo, the configuration space available to the collection |
16 |
< |
of particles is sampled stochastichally, or randomly. Each configuration is chosen with |
17 |
< |
a given probability based on the Maxwell Boltzman distribution. These types of simulations |
18 |
< |
are best used to probe properties of a system that are only dependent only on the state of |
19 |
< |
the system. Structural information about a system is most readily obtained through |
20 |
< |
these types of methods. |
9 |
> |
The techniques used in the course of this research fall under the two |
10 |
> |
main classes of molecular simulation: Molecular Dynamics and Monte |
11 |
> |
Carlo. Molecular Dynamic simulations integrate the equations of motion |
12 |
> |
for a given system of particles, allowing the researher to gain |
13 |
> |
insight into the time dependent evolution of a system. Diffusion |
14 |
> |
phenomena are readily studied with this simulation technique, making |
15 |
> |
Molecular Dynamics the main simulation technique used in this |
16 |
> |
research. Other aspects of the research fall under the Monte Carlo |
17 |
> |
class of simulations. In Monte Carlo, the configuration space |
18 |
> |
available to the collection of particles is sampled stochastichally, |
19 |
> |
or randomly. Each configuration is chosen with a given probability |
20 |
> |
based on the Maxwell Boltzman distribution. These types of simulations |
21 |
> |
are best used to probe properties of a system that are only dependent |
22 |
> |
only on the state of the system. Structural information about a system |
23 |
> |
is most readily obtained through these types of methods. |
24 |
|
|
25 |
< |
Although the two techniques employed seem dissimilar, they are both linked by the overarching |
26 |
< |
principles of Statistical Thermodynamics. Statistical Thermodynamics governs the behavior of |
27 |
< |
both classes of simulations and dictates what each method can and cannot do. When investigating |
28 |
< |
a system, one most first analyze what thermodynamic properties of the system are being probed, |
29 |
< |
then chose which method best suits that objective. |
25 |
> |
Although the two techniques employed seem dissimilar, they are both |
26 |
> |
linked by the overarching principles of Statistical |
27 |
> |
Thermodynamics. Statistical Thermodynamics governs the behavior of |
28 |
> |
both classes of simulations and dictates what each method can and |
29 |
> |
cannot do. When investigating a system, one most first analyze what |
30 |
> |
thermodynamic properties of the system are being probed, then chose |
31 |
> |
which method best suits that objective. |
32 |
|
|
33 |
|
\subsection{\label{introSec:statThermo}Statistical Thermodynamics} |
34 |
|
|
38 |
|
|
39 |
|
\subsection{\label{introSec:monteCarlo}Monte Carlo Simulations} |
40 |
|
|
41 |
< |
Stochastic sampling |
41 |
> |
The Monte Carlo method was developed by Metropolis and Ulam for their |
42 |
> |
work in fissionable material.\cite{metropolis:1949} The method is so |
43 |
> |
named, because it heavily uses random numbers in its |
44 |
> |
solution.\cite{allen87:csl} The Monte Carlo method allows for the |
45 |
> |
solution of integrals through the stochastic sampling of the values |
46 |
> |
within the integral. In the simplest case, the evaluation of an |
47 |
> |
integral would follow a brute force method of |
48 |
> |
sampling.\cite{Frenkel1996} Consider the following single dimensional |
49 |
> |
integral: |
50 |
> |
\begin{equation} |
51 |
> |
I = f(x)dx |
52 |
> |
\label{eq:MCex1} |
53 |
> |
\end{equation} |
54 |
> |
The equation can be recast as: |
55 |
> |
\begin{equation} |
56 |
> |
I = (b-a)<f(x)> |
57 |
> |
\label{eq:MCex2} |
58 |
> |
\end{equation} |
59 |
> |
Where $<f(x)>$ is the unweighted average over the interval |
60 |
> |
$[a,b]$. The calculation of the integral could then be solved by |
61 |
> |
randomly choosing points along the interval $[a,b]$ and calculating |
62 |
> |
the value of $f(x)$ at each point. The accumulated average would then |
63 |
> |
approach $I$ in the limit where the number of trials is infintely |
64 |
> |
large. |
65 |
|
|
66 |
< |
detatiled balance |
66 |
> |
However, in Statistical Mechanics, one is typically interested in |
67 |
> |
integrals of the form: |
68 |
> |
\begin{equation} |
69 |
> |
<A> = \frac{A}{exp^{-\beta}} |
70 |
> |
\label{eq:mcEnsAvg} |
71 |
> |
\end{equation} |
72 |
> |
Where $r^N$ stands for the coordinates of all $N$ particles and $A$ is |
73 |
> |
some observable that is only dependent on position. $<A>$ is the |
74 |
> |
ensemble average of $A$ as presented in |
75 |
> |
Sec.~\ref{introSec:statThermo}. Because $A$ is independent of |
76 |
> |
momentum, the momenta contribution of the integral can be factored |
77 |
> |
out, leaving the configurational integral. Application of the brute |
78 |
> |
force method to this system would yield highly inefficient |
79 |
> |
results. Due to the Boltzman weighting of this integral, most random |
80 |
> |
configurations will have a near zero contribution to the ensemble |
81 |
> |
average. This is where a importance sampling comes into |
82 |
> |
play.\cite{allen87:csl} |
83 |
|
|
84 |
< |
metropilis monte carlo |
84 |
> |
Importance Sampling is a method where one selects a distribution from |
85 |
> |
which the random configurations are chosen in order to more |
86 |
> |
efficiently calculate the integral.\cite{Frenkel1996} Consider again |
87 |
> |
Eq.~\ref{eq:MCex1} rewritten to be: |
88 |
|
|
89 |
+ |
|
90 |
+ |
|
91 |
|
\subsection{\label{introSec:md}Molecular Dynamics Simulations} |
92 |
|
|
93 |
|
time averages |