1 |
|
|
2 |
|
|
3 |
< |
\chapter{\label{chapt:intro}Introduction and Theoretical Background} |
3 |
> |
\chapter{\label{chapt:intro}INTRODUCTION AND THEORETICAL BACKGROUND} |
4 |
|
|
5 |
|
|
6 |
|
The techniques used in the course of this research fall under the two |
641 |
|
\label{introEq:EulerRotMat} |
642 |
|
\end{equation} |
643 |
|
|
644 |
+ |
\begin{figure} |
645 |
+ |
\centering |
646 |
+ |
\includegraphics[width=\linewidth]{eulerRotFig.eps} |
647 |
+ |
\caption[Euler rotation of Cartesian coordinates]{The rotation scheme for Euler angles. First is a rotation of $\phi$ about the $z$ axis (blue rotation). Next is a rotation of $\theta$ about the new $x\prime$ axis (green rotation). Lastly is a final rotation of $\psi$ about the new $z\prime$ axis (red rotation).} |
648 |
+ |
\label{introFig:eulerAngles} |
649 |
+ |
\end{figure} |
650 |
+ |
|
651 |
|
The equations of motion for Euler angles can be written down |
652 |
|
as\cite{allen87:csl} |
653 |
|
\begin{align} |