| 12 |
|
#include "ReadWrite.hpp" |
| 13 |
|
|
| 14 |
|
|
| 15 |
< |
void map( double *x, double *y, double *z, double centerX, double centerY, |
| 16 |
< |
double centerZ, double boxX, double boxY, double boxZ ); |
| 15 |
> |
void map( double &x, double &y, double &z, |
| 16 |
> |
double boxX, double boxY, double boxZ ); |
| 17 |
|
|
| 18 |
+ |
void rotate( double &x, double &y, double &z, |
| 19 |
+ |
double theta, double phi, double psi ); |
| 20 |
+ |
|
| 21 |
|
char* program_name; |
| 22 |
|
using namespace std; |
| 23 |
|
|
| 48 |
|
|
| 49 |
|
double water_shell = 10.0; |
| 50 |
|
double water_padding = 2.5; |
| 51 |
< |
double lipid_spaceing = 4.0; |
| 51 |
> |
double lipid_spaceing = 2.5; |
| 52 |
|
|
| 53 |
|
srand48( 1337 ); // initialize the random number generator. |
| 54 |
|
|
| 155 |
|
// create an fcc lattice in the water box. |
| 156 |
|
|
| 157 |
|
|
| 158 |
< |
index = 0; |
| 158 |
> |
int ndx = 0; |
| 159 |
|
for( i=0; i < n_cellX; i++ ){ |
| 160 |
|
for( j=0; j < n_cellY; j++ ){ |
| 161 |
|
for( k=0; k < n_cellZ; k++ ){ |
| 162 |
|
|
| 163 |
< |
waterX[index] = i * water_cell + x0; |
| 164 |
< |
waterY[index] = j * water_cell + y0; |
| 165 |
< |
waterZ[index] = k * water_cell + z0; |
| 166 |
< |
index++; |
| 163 |
> |
waterX[ndx] = i * water_cell + x0; |
| 164 |
> |
waterY[ndx] = j * water_cell + y0; |
| 165 |
> |
waterZ[ndx] = k * water_cell + z0; |
| 166 |
> |
ndx++; |
| 167 |
|
|
| 168 |
< |
waterX[index] = i * water_cell + 0.5 * water_cell + x0; |
| 169 |
< |
waterY[index] = j * water_cell + 0.5 * water_cell + y0; |
| 170 |
< |
waterZ[index] = k * water_cell + z0; |
| 171 |
< |
index++; |
| 168 |
> |
waterX[ndx] = i * water_cell + 0.5 * water_cell + x0; |
| 169 |
> |
waterY[ndx] = j * water_cell + 0.5 * water_cell + y0; |
| 170 |
> |
waterZ[ndx] = k * water_cell + z0; |
| 171 |
> |
ndx++; |
| 172 |
|
|
| 173 |
< |
waterX[index] = i * water_cell + x0; |
| 174 |
< |
waterY[index] = j * water_cell + 0.5 * water_cell + y0; |
| 175 |
< |
waterZ[index] = k * water_cell + 0.5 * water_cell + z0; |
| 176 |
< |
index++; |
| 173 |
> |
waterX[ndx] = i * water_cell + x0; |
| 174 |
> |
waterY[ndx] = j * water_cell + 0.5 * water_cell + y0; |
| 175 |
> |
waterZ[ndx] = k * water_cell + 0.5 * water_cell + z0; |
| 176 |
> |
ndx++; |
| 177 |
|
|
| 178 |
< |
waterX[index] = i * water_cell + 0.5 * water_cell + x0; |
| 179 |
< |
waterY[index] = j * water_cell + y0; |
| 180 |
< |
waterZ[index] = k * water_cell + 0.5 * water_cell + z0; |
| 181 |
< |
index++; |
| 178 |
> |
waterX[ndx] = i * water_cell + 0.5 * water_cell + x0; |
| 179 |
> |
waterY[ndx] = j * water_cell + y0; |
| 180 |
> |
waterZ[ndx] = k * water_cell + 0.5 * water_cell + z0; |
| 181 |
> |
ndx++; |
| 182 |
|
} |
| 183 |
|
} |
| 184 |
|
} |
| 201 |
|
dy = waterY[i] - lipidAtoms[j]->getY(); |
| 202 |
|
dz = waterZ[i] - lipidAtoms[j]->getZ(); |
| 203 |
|
|
| 204 |
< |
map( &dx, &dy, &dz, cx, cy, cz, box_x, box_y, box_z ); |
| 204 |
> |
map( dx, dy, dz, box_x, box_y, box_z ); |
| 205 |
|
|
| 206 |
|
dx2 = dx * dx; |
| 207 |
|
dy2 = dy * dy; |
| 214 |
|
} |
| 215 |
|
} |
| 216 |
|
} |
| 217 |
< |
|
| 217 |
> |
|
| 218 |
|
n_h2o_target += n_deleted * n_lipids; |
| 219 |
|
|
| 220 |
|
// find a box size that best suits the number of waters we need. |
| 221 |
|
|
| 222 |
|
int done = 0; |
| 223 |
|
|
| 224 |
< |
if( n_waters < n_h2o_target ){ |
| 224 |
> |
if( n_water < n_h2o_target ){ |
| 225 |
|
|
| 226 |
|
int n_generated = n_cellX; |
| 227 |
|
int n_test, nx, ny, nz; |
| 229 |
|
ny = n_cellY; |
| 230 |
|
nz = n_cellZ; |
| 231 |
|
|
| 232 |
+ |
n_test = 4 * nx * ny * nz; |
| 233 |
+ |
|
| 234 |
|
while( n_test < n_h2o_target ){ |
| 235 |
|
|
| 236 |
|
nz++; |
| 239 |
|
|
| 240 |
|
int n_diff, goodX, goodY, goodZ; |
| 241 |
|
|
| 242 |
< |
n_diff = ntest - n_h2o_target; |
| 242 |
> |
n_diff = n_test - n_h2o_target; |
| 243 |
|
goodX = nx; |
| 244 |
|
goodY = ny; |
| 245 |
|
goodZ = nz; |
| 246 |
|
|
| 247 |
|
int test_diff; |
| 248 |
< |
int n_limit = n_z; |
| 249 |
< |
n_z = n_cellZ; |
| 248 |
> |
int n_limit = nz; |
| 249 |
> |
nz = n_cellZ; |
| 250 |
|
|
| 251 |
|
for( i=n_generated; i<=n_limit; i++ ){ |
| 252 |
|
for( j=i; j<=n_limit; j++ ){ |
| 275 |
|
n_cellZ = goodZ; |
| 276 |
|
} |
| 277 |
|
|
| 278 |
< |
// we now have the best box size for the simulation. |
| 279 |
< |
|
| 280 |
< |
|
| 278 |
> |
// we now have the best box size for the simulation. Next we |
| 279 |
> |
// recreate the water box to the new specifications. |
| 280 |
> |
|
| 281 |
> |
n_water = n_cellX * n_cellY * n_cellZ * 4; |
| 282 |
> |
|
| 283 |
> |
delete[] waterX; |
| 284 |
> |
delete[] waterY; |
| 285 |
> |
delete[] waterZ; |
| 286 |
> |
|
| 287 |
> |
waterX = new double[n_water]; |
| 288 |
> |
waterY = new double[n_water]; |
| 289 |
> |
waterZ = new double[n_water]; |
| 290 |
> |
|
| 291 |
> |
box_x = water_cell * n_cellX; |
| 292 |
> |
box_y = water_cell * n_cellY; |
| 293 |
> |
box_z = water_cell * n_cellZ; |
| 294 |
> |
|
| 295 |
> |
x0 = 0.0; |
| 296 |
> |
y0 = 0.0; |
| 297 |
> |
z0 = 0.0; |
| 298 |
> |
|
| 299 |
> |
cx = ( box_x * 0.5 ); |
| 300 |
> |
cy = ( box_y * 0.5 ); |
| 301 |
> |
cz = ( box_z * 0.5 ); |
| 302 |
> |
|
| 303 |
> |
// create an fcc lattice in the water box. |
| 304 |
> |
|
| 305 |
> |
ndx = 0; |
| 306 |
> |
for( i=0; i < n_cellX; i++ ){ |
| 307 |
> |
for( j=0; j < n_cellY; j++ ){ |
| 308 |
> |
for( k=0; k < n_cellZ; k++ ){ |
| 309 |
> |
|
| 310 |
> |
waterX[ndx] = i * water_cell + x0; |
| 311 |
> |
waterY[ndx] = j * water_cell + y0; |
| 312 |
> |
waterZ[ndx] = k * water_cell + z0; |
| 313 |
> |
ndx++; |
| 314 |
> |
|
| 315 |
> |
waterX[ndx] = i * water_cell + 0.5 * water_cell + x0; |
| 316 |
> |
waterY[ndx] = j * water_cell + 0.5 * water_cell + y0; |
| 317 |
> |
waterZ[ndx] = k * water_cell + z0; |
| 318 |
> |
ndx++; |
| 319 |
> |
|
| 320 |
> |
waterX[ndx] = i * water_cell + x0; |
| 321 |
> |
waterY[ndx] = j * water_cell + 0.5 * water_cell + y0; |
| 322 |
> |
waterZ[ndx] = k * water_cell + 0.5 * water_cell + z0; |
| 323 |
> |
ndx++; |
| 324 |
> |
|
| 325 |
> |
waterX[ndx] = i * water_cell + 0.5 * water_cell + x0; |
| 326 |
> |
waterY[ndx] = j * water_cell + y0; |
| 327 |
> |
waterZ[ndx] = k * water_cell + 0.5 * water_cell + z0; |
| 328 |
> |
ndx++; |
| 329 |
> |
} |
| 330 |
> |
} |
| 331 |
> |
} |
| 332 |
> |
|
| 333 |
> |
// ************************************************************** |
| 334 |
> |
|
| 335 |
> |
|
| 336 |
> |
|
| 337 |
> |
// start a 3D RSA for the for the lipid placements |
| 338 |
> |
|
| 339 |
> |
srand48( 1337 ); |
| 340 |
> |
|
| 341 |
> |
int rsaNAtoms = n_lipids * lipidNAtoms; |
| 342 |
> |
Atom** rsaAtoms = new Atom*[rsaNAtoms]; |
| 343 |
|
|
| 344 |
+ |
DirectionalAtom* dAtom; |
| 345 |
+ |
DirectionalAtom* dAtomNew; |
| 346 |
|
|
| 347 |
+ |
double rotMat[3][3]; |
| 348 |
+ |
double unitRotMat[3][3]; |
| 349 |
+ |
|
| 350 |
+ |
unitRotMat[0][0] = 1.0; |
| 351 |
+ |
unitRotMat[0][1] = 0.0; |
| 352 |
+ |
unitRotMat[0][2] = 0.0; |
| 353 |
+ |
|
| 354 |
+ |
unitRotMat[1][0] = 0.0; |
| 355 |
+ |
unitRotMat[1][1] = 1.0; |
| 356 |
+ |
unitRotMat[1][2] = 0.0; |
| 357 |
+ |
|
| 358 |
+ |
unitRotMat[2][0] = 0.0; |
| 359 |
+ |
unitRotMat[2][1] = 0.0; |
| 360 |
+ |
unitRotMat[2][2] = 1.0; |
| 361 |
|
|
| 362 |
+ |
ndx = 0; |
| 363 |
+ |
for(i=0; i<n_lipids; i++ ){ |
| 364 |
+ |
for(j=0; j<lipidNAtoms; j++){ |
| 365 |
+ |
|
| 366 |
+ |
if( lipidAtoms[j]->isDirectional() ){ |
| 367 |
+ |
dAtom = (DirectionalAtom *)lipidAtoms[j]; |
| 368 |
+ |
|
| 369 |
+ |
dAtomNew = new DirectionalAtom(); |
| 370 |
+ |
dAtomNew->setSUx( dAtom->getSUx() ); |
| 371 |
+ |
dAtomNew->setSUx( dAtom->getSUx() ); |
| 372 |
+ |
dAtomNew->setSUx( dAtom->getSUx() ); |
| 373 |
+ |
|
| 374 |
+ |
dAtom->getA( rotMat ); |
| 375 |
+ |
dAtomNew->setA( rotMat ); |
| 376 |
+ |
|
| 377 |
+ |
rsaAtoms[ndx] = dAtomNew; |
| 378 |
+ |
} |
| 379 |
+ |
else{ |
| 380 |
+ |
|
| 381 |
+ |
rsaAtoms[ndx] = new GeneralAtom(); |
| 382 |
+ |
} |
| 383 |
+ |
|
| 384 |
+ |
rsaAtoms[ndx]->setType( lipidAtoms[j]->getType() ); |
| 385 |
+ |
|
| 386 |
+ |
ndx++; |
| 387 |
+ |
} |
| 388 |
+ |
} |
| 389 |
+ |
|
| 390 |
+ |
double testX, testY, testZ; |
| 391 |
+ |
double theta, phi, psi; |
| 392 |
+ |
double tempX, tempY, tempZ; |
| 393 |
+ |
int reject; |
| 394 |
+ |
int testDX, acceptedDX; |
| 395 |
+ |
|
| 396 |
+ |
rCutSqr = lipid_spaceing * lipid_spaceing; |
| 397 |
+ |
|
| 398 |
+ |
for(i=0; i<n_lipids; i++ ){ |
| 399 |
+ |
done = 0; |
| 400 |
+ |
while( !done ){ |
| 401 |
+ |
|
| 402 |
+ |
testX = drand48() * box_x; |
| 403 |
+ |
testY = drand48() * box_y; |
| 404 |
+ |
testZ = drand48() * box_z; |
| 405 |
+ |
|
| 406 |
+ |
theta = drand48() * 2.0 * M_PI; |
| 407 |
+ |
phi = drand48() * 2.0 * M_PI; |
| 408 |
+ |
psi = drand48() * 2.0 * M_PI; |
| 409 |
+ |
|
| 410 |
+ |
ndx = i * lipidNAtoms; |
| 411 |
+ |
for(j=0; j<lipidNAtoms; j++){ |
| 412 |
+ |
|
| 413 |
+ |
tempX = lipidAtoms[j]->getX(); |
| 414 |
+ |
tempY = lipidAtoms[j]->getY(); |
| 415 |
+ |
tempZ = lipidAtoms[j]->getZ(); |
| 416 |
|
|
| 417 |
+ |
rotate( tempX, tempY, tempZ, theta, phi, psi ); |
| 418 |
+ |
|
| 419 |
+ |
rsaAtoms[ndx + j]->setX( tempX + testX ); |
| 420 |
+ |
rsaAtoms[ndx + j]->setY( tempY + testY ); |
| 421 |
+ |
rsaAtoms[ndx + j]->setZ( tempZ + testZ ); |
| 422 |
+ |
} |
| 423 |
+ |
|
| 424 |
+ |
reject = 0; |
| 425 |
+ |
for( j=0; !reject && j<i; j++){ |
| 426 |
+ |
for(k=0; !reject && k<lipidNAtoms; k++){ |
| 427 |
+ |
|
| 428 |
+ |
acceptedDX = j*lipidNAtoms + k; |
| 429 |
+ |
for(l=0; !reject && l<lipidNAtoms; l++){ |
| 430 |
+ |
|
| 431 |
+ |
testDX = ndx + l; |
| 432 |
|
|
| 433 |
+ |
dx = rsaAtoms[testDX]->getX() - rsaAtoms[acceptedDX]->getX(); |
| 434 |
+ |
dy = rsaAtoms[testDX]->getY() - rsaAtoms[acceptedDX]->getY(); |
| 435 |
+ |
dz = rsaAtoms[testDX]->getZ() - rsaAtoms[acceptedDX]->getZ(); |
| 436 |
+ |
|
| 437 |
+ |
map( dx, dy, dz, box_x, box_y, box_z ); |
| 438 |
+ |
|
| 439 |
+ |
dx2 = dx * dx; |
| 440 |
+ |
dy2 = dy * dy; |
| 441 |
+ |
dz2 = dz * dz; |
| 442 |
+ |
|
| 443 |
+ |
dSqr = dx2 + dy2 + dz2; |
| 444 |
+ |
if( dSqr < rCutSqr ) reject = 1; |
| 445 |
+ |
} |
| 446 |
+ |
} |
| 447 |
+ |
} |
| 448 |
|
|
| 449 |
+ |
if( !reject ){ |
| 450 |
+ |
done = 1; |
| 451 |
+ |
std::cerr << i << " has been accepted\n"; |
| 452 |
+ |
} |
| 453 |
+ |
} |
| 454 |
+ |
} |
| 455 |
+ |
|
| 456 |
+ |
// cut out the waters that overlap with the lipids. |
| 457 |
+ |
|
| 458 |
+ |
delete[] isActive; |
| 459 |
+ |
isActive = new int[n_water]; |
| 460 |
+ |
for(i=0; i<n_water; i++) isActive[i] = 1; |
| 461 |
+ |
int n_active = n_water; |
| 462 |
+ |
rCutSqr = water_padding * water_padding; |
| 463 |
+ |
|
| 464 |
+ |
for(i=0; ( (i<n_water) && isActive[i] ); i++){ |
| 465 |
+ |
for(j=0; ( (j<rsaNAtoms) && isActive[i] ); j++){ |
| 466 |
|
|
| 467 |
+ |
dx = waterX[i] - rsaAtoms[j]->getX(); |
| 468 |
+ |
dy = waterY[i] - rsaAtoms[j]->getY(); |
| 469 |
+ |
dz = waterZ[i] - rsaAtoms[j]->getZ(); |
| 470 |
|
|
| 471 |
< |
int new_nAtoms = group_nAtoms + n_active; |
| 471 |
> |
map( dx, dy, dz, box_x, box_y, box_z ); |
| 472 |
> |
|
| 473 |
> |
dx2 = dx * dx; |
| 474 |
> |
dy2 = dy * dy; |
| 475 |
> |
dz2 = dz * dz; |
| 476 |
> |
|
| 477 |
> |
dSqr = dx2 + dy2 + dz2; |
| 478 |
> |
if( dSqr < rCutSqr ){ |
| 479 |
> |
isActive[i] = 0; |
| 480 |
> |
n_active--; |
| 481 |
> |
} |
| 482 |
> |
} |
| 483 |
> |
} |
| 484 |
> |
|
| 485 |
> |
std::cerr << "final n_waters = " << n_active << "\n"; |
| 486 |
> |
|
| 487 |
> |
// place all of the waters and lipids into one new array |
| 488 |
> |
|
| 489 |
> |
int new_nAtoms = rsaNAtoms + n_active; |
| 490 |
|
Atom** new_atoms = new Atom*[new_nAtoms]; |
| 491 |
|
|
| 492 |
< |
index = 0; |
| 493 |
< |
for(i=0; i<group_nAtoms; i++ ){ |
| 492 |
> |
ndx = 0; |
| 493 |
> |
for(i=0; i<rsaNAtoms; i++ ){ |
| 494 |
|
|
| 495 |
< |
if( group_atoms[i]->isDirectional() ){ |
| 496 |
< |
dAtom = (DirectionalAtom *)group_atoms[i]; |
| 495 |
> |
if( rsaAtoms[i]->isDirectional() ){ |
| 496 |
> |
dAtom = (DirectionalAtom *)rsaAtoms[i]; |
| 497 |
|
|
| 498 |
|
dAtomNew = new DirectionalAtom(); |
| 499 |
|
dAtomNew->setSUx( dAtom->getSUx() ); |
| 500 |
|
dAtomNew->setSUx( dAtom->getSUx() ); |
| 501 |
|
dAtomNew->setSUx( dAtom->getSUx() ); |
| 502 |
|
|
| 503 |
+ |
dAtom->getA( rotMat ); |
| 504 |
|
dAtomNew->setA( rotMat ); |
| 505 |
|
|
| 506 |
< |
new_atoms[index] = dAtomNew; |
| 506 |
> |
new_atoms[ndx] = dAtomNew; |
| 507 |
|
} |
| 508 |
|
else{ |
| 509 |
|
|
| 510 |
< |
new_atoms[index] = new GeneralAtom(); |
| 510 |
> |
new_atoms[ndx] = new GeneralAtom(); |
| 511 |
|
} |
| 512 |
|
|
| 513 |
< |
new_atoms[index]->setType( group_atoms[i]->getType() ); |
| 513 |
> |
new_atoms[ndx]->setType( rsaAtoms[i]->getType() ); |
| 514 |
|
|
| 515 |
< |
new_atoms[index]->setX( group_atoms[i]->getX() ); |
| 516 |
< |
new_atoms[index]->setY( group_atoms[i]->getY() ); |
| 517 |
< |
new_atoms[index]->setZ( group_atoms[i]->getZ() ); |
| 515 |
> |
new_atoms[ndx]->setX( rsaAtoms[i]->getX() ); |
| 516 |
> |
new_atoms[ndx]->setY( rsaAtoms[i]->getY() ); |
| 517 |
> |
new_atoms[ndx]->setZ( rsaAtoms[i]->getZ() ); |
| 518 |
|
|
| 519 |
< |
new_atoms[index]->set_vx( 0.0 ); |
| 520 |
< |
new_atoms[index]->set_vy( 0.0 ); |
| 521 |
< |
new_atoms[index]->set_vz( 0.0 ); |
| 519 |
> |
new_atoms[ndx]->set_vx( 0.0 ); |
| 520 |
> |
new_atoms[ndx]->set_vy( 0.0 ); |
| 521 |
> |
new_atoms[ndx]->set_vz( 0.0 ); |
| 522 |
|
|
| 523 |
< |
index++; |
| 523 |
> |
ndx++; |
| 524 |
|
} |
| 525 |
|
|
| 320 |
– |
|
| 321 |
– |
|
| 322 |
– |
|
| 526 |
|
for(i=0; i<n_water; i++){ |
| 527 |
|
if(isActive[i]){ |
| 528 |
|
|
| 529 |
< |
new_atoms[index] = new DirectionalAtom(); |
| 530 |
< |
new_atoms[index]->setType( "SSD" ); |
| 529 |
> |
new_atoms[ndx] = new DirectionalAtom(); |
| 530 |
> |
new_atoms[ndx]->setType( "SSD" ); |
| 531 |
|
|
| 532 |
< |
new_atoms[index]->setX( waterX[i] ); |
| 533 |
< |
new_atoms[index]->setY( waterY[i] ); |
| 534 |
< |
new_atoms[index]->setZ( waterZ[i] ); |
| 532 |
> |
new_atoms[ndx]->setX( waterX[i] ); |
| 533 |
> |
new_atoms[ndx]->setY( waterY[i] ); |
| 534 |
> |
new_atoms[ndx]->setZ( waterZ[i] ); |
| 535 |
|
|
| 536 |
< |
new_atoms[index]->set_vx( 0.0 ); |
| 537 |
< |
new_atoms[index]->set_vy( 0.0 ); |
| 538 |
< |
new_atoms[index]->set_vz( 0.0 ); |
| 536 |
> |
new_atoms[ndx]->set_vx( 0.0 ); |
| 537 |
> |
new_atoms[ndx]->set_vy( 0.0 ); |
| 538 |
> |
new_atoms[ndx]->set_vz( 0.0 ); |
| 539 |
|
|
| 540 |
< |
dAtom = (DirectionalAtom *) new_atoms[index]; |
| 540 |
> |
dAtom = (DirectionalAtom *) new_atoms[ndx]; |
| 541 |
|
|
| 542 |
|
dAtom->setSUx( 0.0 ); |
| 543 |
|
dAtom->setSUy( 0.0 ); |
| 544 |
|
dAtom->setSUz( 1.0 ); |
| 545 |
|
|
| 546 |
< |
dAtom->setA( rotMat ); |
| 546 |
> |
dAtom->setA( unitRotMat ); |
| 547 |
|
|
| 548 |
< |
index++; |
| 548 |
> |
ndx++; |
| 549 |
|
} |
| 550 |
|
} |
| 551 |
|
|
| 593 |
|
} |
| 594 |
|
|
| 595 |
|
|
| 596 |
< |
void map( x, y, z, centerX, centerY, centerZ, boxX, boxY, boxZ ) |
| 597 |
< |
double *x, *y, *z; |
| 598 |
< |
double centerX, centerY, centerZ; |
| 599 |
< |
double boxX, boxY, boxZ; |
| 600 |
< |
{ |
| 596 |
> |
void map( double &x, double &y, double &z, |
| 597 |
> |
double boxX, double boxY, double boxZ ){ |
| 598 |
> |
|
| 599 |
> |
if(x < 0) x -= boxX * (double)( (int)( (x / boxX) - 0.5 ) ); |
| 600 |
> |
else x -= boxX * (double)( (int)( (x / boxX ) + 0.5)); |
| 601 |
|
|
| 602 |
< |
*x -= centerX; |
| 603 |
< |
*y -= centerY; |
| 604 |
< |
*z -= centerZ; |
| 602 |
> |
if(y < 0) y -= boxY * (double)( (int)( (y / boxY) - 0.5 ) ); |
| 603 |
> |
else y -= boxY * (double)( (int)( (y / boxY ) + 0.5)); |
| 604 |
> |
|
| 605 |
> |
if(z < 0) z -= boxZ * (double)( (int)( (z / boxZ) - 0.5 ) ); |
| 606 |
> |
else z -= boxZ * (double)( (int)( (z / boxZ ) + 0.5)); |
| 607 |
> |
} |
| 608 |
|
|
| 403 |
– |
if(*x < 0) *x -= boxX * (double)( (int)( (*x / boxX) - 0.5 ) ); |
| 404 |
– |
else *x -= boxX * (double)( (int)( (*x / boxX ) + 0.5)); |
| 609 |
|
|
| 610 |
< |
if(*y < 0) *y -= boxY * (double)( (int)( (*y / boxY) - 0.5 ) ); |
| 611 |
< |
else *y -= boxY * (double)( (int)( (*y / boxY ) + 0.5)); |
| 610 |
> |
void rotate( double &x, double &y, double &z, |
| 611 |
> |
double theta, double phi, double psi ){ |
| 612 |
> |
|
| 613 |
> |
double newX, newY, newZ; |
| 614 |
> |
|
| 615 |
> |
double A[3][3]; |
| 616 |
> |
|
| 617 |
> |
A[0][0] = (cos(phi) * cos(psi)) - (sin(phi) * cos(theta) * sin(psi)); |
| 618 |
> |
A[0][1] = (sin(phi) * cos(psi)) + (cos(phi) * cos(theta) * sin(psi)); |
| 619 |
> |
A[0][2] = sin(theta) * sin(psi); |
| 620 |
|
|
| 621 |
< |
if(*z < 0) *z -= boxZ * (double)( (int)( (*z / boxZ) - 0.5 ) ); |
| 622 |
< |
else *z -= boxZ * (double)( (int)( (*z / boxZ ) + 0.5)); |
| 621 |
> |
A[1][0] = -(cos(phi) * sin(psi)) - (sin(phi) * cos(theta) * cos(psi)); |
| 622 |
> |
A[1][1] = -(sin(phi) * sin(psi)) + (cos(phi) * cos(theta) * cos(psi)); |
| 623 |
> |
A[1][2] = sin(theta) * cos(psi); |
| 624 |
> |
|
| 625 |
> |
A[2][0] = sin(phi) * sin(theta); |
| 626 |
> |
A[2][1] = -cos(phi) * sin(theta); |
| 627 |
> |
A[2][2] = cos(theta); |
| 628 |
> |
|
| 629 |
> |
newX = (x * A[0][0]) + (y * A[0][1]) + (z * A[0][2]); |
| 630 |
> |
newY = (x * A[1][0]) + (y * A[1][1]) + (z * A[1][2]); |
| 631 |
> |
newZ = (x * A[2][0]) + (y * A[2][1]) + (z * A[2][2]); |
| 632 |
> |
|
| 633 |
> |
x = newX; |
| 634 |
> |
y = newY; |
| 635 |
> |
z = newZ; |
| 636 |
|
} |