| 2 |
|
#include <cstdlib> |
| 3 |
|
#include <cstring> |
| 4 |
|
#include <cstdio> |
| 5 |
+ |
#include <cmath> |
| 6 |
|
|
| 7 |
|
#include "SimSetup.hpp" |
| 8 |
|
#include "SimInfo.hpp" |
| 12 |
|
#include "ReadWrite.hpp" |
| 13 |
|
|
| 14 |
|
|
| 15 |
+ |
void map( double *x, double *y, double *z, double centerX, double centerY, |
| 16 |
+ |
double centerZ, double boxX, double boxY, double boxZ ); |
| 17 |
+ |
|
| 18 |
|
char* program_name; |
| 19 |
|
using namespace std; |
| 20 |
|
|
| 37 |
|
const double water_vol = 4.0 / water_rho; // volume occupied by 4 waters |
| 38 |
|
const double water_cell = 4.929; // fcc unit cell length |
| 39 |
|
|
| 40 |
< |
int n_lipidsX = 5; |
| 41 |
< |
int n_lipidsY = 10; |
| 42 |
< |
int n_lipids = n_lipidsX * n_lipidsY; |
| 40 |
> |
int n_lipids = 50; |
| 41 |
> |
double water_ratio = 25.0; // water to lipid ratio |
| 42 |
> |
int n_h2o_target = (int)( n_lipids * water_ratio + 0.5 ); |
| 43 |
|
|
| 44 |
|
std::cerr << "n_lipids = " << n_lipids << "\n"; |
| 45 |
|
|
| 71 |
|
lipidAtoms = entry_plug->atoms; |
| 72 |
|
lipidNAtoms = entry_plug->n_atoms; |
| 73 |
|
|
| 70 |
– |
int group_nAtoms = n_lipids * lipidNAtoms; |
| 71 |
– |
Atom** group_atoms = new Atom*[group_nAtoms]; |
| 72 |
– |
DirectionalAtom* dAtom; |
| 73 |
– |
DirectionalAtom* dAtomNew; |
| 74 |
– |
|
| 75 |
– |
double rotMat[3][3]; |
| 76 |
– |
|
| 77 |
– |
rotMat[0][0] = 1.0; |
| 78 |
– |
rotMat[0][1] = 0.0; |
| 79 |
– |
rotMat[0][2] = 0.0; |
| 80 |
– |
|
| 81 |
– |
rotMat[1][0] = 0.0; |
| 82 |
– |
rotMat[1][1] = 1.0; |
| 83 |
– |
rotMat[1][2] = 0.0; |
| 84 |
– |
|
| 85 |
– |
rotMat[2][0] = 0.0; |
| 86 |
– |
rotMat[2][1] = 0.0; |
| 87 |
– |
rotMat[2][2] = 1.0; |
| 74 |
|
|
| 75 |
< |
int index =0; |
| 90 |
< |
for(i=0; i<n_lipids; i++ ){ |
| 91 |
< |
for(j=0; j<lipidNAtoms; j++){ |
| 92 |
< |
|
| 93 |
< |
if( lipidAtoms[j]->isDirectional() ){ |
| 94 |
< |
dAtom = (DirectionalAtom *)lipidAtoms[j]; |
| 95 |
< |
|
| 96 |
< |
dAtomNew = new DirectionalAtom(); |
| 97 |
< |
dAtomNew->setSUx( dAtom->getSUx() ); |
| 98 |
< |
dAtomNew->setSUx( dAtom->getSUx() ); |
| 99 |
< |
dAtomNew->setSUx( dAtom->getSUx() ); |
| 100 |
< |
|
| 101 |
< |
dAtomNew->setA( rotMat ); |
| 102 |
< |
|
| 103 |
< |
group_atoms[index] = dAtomNew; |
| 104 |
< |
} |
| 105 |
< |
else{ |
| 106 |
< |
|
| 107 |
< |
group_atoms[index] = new GeneralAtom(); |
| 108 |
< |
} |
| 109 |
< |
|
| 110 |
< |
group_atoms[index]->setType( lipidAtoms[j]->getType() ); |
| 111 |
< |
|
| 112 |
< |
index++; |
| 113 |
< |
} |
| 114 |
< |
} |
| 75 |
> |
// find the width, height, and length of the molecule |
| 76 |
|
|
| 116 |
– |
index = 0; |
| 117 |
– |
for(i=0; i<n_lipidsX; i++){ |
| 118 |
– |
for(j=0; j<n_lipidsY; j++){ |
| 119 |
– |
for(l=0; l<lipidNAtoms; l++){ |
| 120 |
– |
|
| 121 |
– |
group_atoms[index]->setX( lipidAtoms[l]->getX() + |
| 122 |
– |
i*lipid_spaceing ); |
| 123 |
– |
|
| 124 |
– |
group_atoms[index]->setY( lipidAtoms[l]->getY() + |
| 125 |
– |
j*lipid_spaceing ); |
| 126 |
– |
|
| 127 |
– |
group_atoms[index]->setZ( lipidAtoms[l]->getZ() ); |
| 128 |
– |
|
| 129 |
– |
index++; |
| 130 |
– |
} |
| 131 |
– |
} |
| 132 |
– |
} |
| 133 |
– |
|
| 77 |
|
double min_x, min_y, min_z; |
| 78 |
|
double max_x, max_y, max_z; |
| 79 |
|
double test_x, test_y, test_z; |
| 80 |
|
|
| 81 |
< |
max_x = min_x = group_atoms[0]->getX(); |
| 82 |
< |
max_y = min_y = group_atoms[0]->getY(); |
| 83 |
< |
max_z = min_z = group_atoms[0]->getZ(); |
| 81 |
> |
max_x = min_x = lipidAtoms[0]->getX(); |
| 82 |
> |
max_y = min_y = lipidAtoms[0]->getY(); |
| 83 |
> |
max_z = min_z = lipidAtoms[0]->getZ(); |
| 84 |
|
|
| 85 |
< |
for(i=0; i<group_nAtoms; i++){ |
| 85 |
> |
for(i=0; i<lipidNAtoms; i++){ |
| 86 |
|
|
| 87 |
< |
test_x = group_atoms[i]->getX(); |
| 88 |
< |
test_y = group_atoms[i]->getY(); |
| 89 |
< |
test_z = group_atoms[i]->getZ(); |
| 87 |
> |
test_x = lipidAtoms[i]->getX(); |
| 88 |
> |
test_y = lipidAtoms[i]->getY(); |
| 89 |
> |
test_z = lipidAtoms[i]->getZ(); |
| 90 |
|
|
| 91 |
|
if( test_x < min_x ) min_x = test_x; |
| 92 |
|
if( test_y < min_y ) min_y = test_y; |
| 97 |
|
if( test_z > max_z ) max_z = test_z; |
| 98 |
|
} |
| 99 |
|
|
| 100 |
< |
double box_x = max_x - min_x + 2*water_shell; |
| 101 |
< |
double box_y = max_y - min_y + 2*water_shell; |
| 102 |
< |
double box_z = max_z - min_z + 2*water_shell; |
| 100 |
> |
double ml2 = pow((max_x - min_x), 2 ) + pow((max_y - min_y), 2 ) |
| 101 |
> |
+ pow((max_x - min_x), 2 ); |
| 102 |
> |
double max_length = sqrt( ml2 ); |
| 103 |
|
|
| 161 |
– |
int n_cellX = (int)(box_x / water_cell + 0.5 ); |
| 162 |
– |
int n_cellY = (int)(box_y / water_cell + 0.5 ); |
| 163 |
– |
int n_cellZ = (int)(box_z / water_cell + 0.5 ); |
| 104 |
|
|
| 105 |
+ |
// from this information, create the test box |
| 106 |
+ |
|
| 107 |
+ |
|
| 108 |
+ |
double box_x; |
| 109 |
+ |
double box_y; |
| 110 |
+ |
double box_z; |
| 111 |
+ |
|
| 112 |
+ |
box_x = box_y = box_z = max_length + water_cell * 4.0; // pad with 4 cells |
| 113 |
+ |
|
| 114 |
+ |
int n_cellX = (int)(box_x / water_cell + 1.0 ); |
| 115 |
+ |
int n_cellY = (int)(box_y / water_cell + 1.0 ); |
| 116 |
+ |
int n_cellZ = (int)(box_z / water_cell + 1.0 ); |
| 117 |
+ |
|
| 118 |
|
box_x = water_cell * n_cellX; |
| 119 |
|
box_y = water_cell * n_cellY; |
| 120 |
|
box_z = water_cell * n_cellZ; |
| 125 |
|
double *waterY = new double[n_water]; |
| 126 |
|
double *waterZ = new double[n_water]; |
| 127 |
|
|
| 128 |
+ |
|
| 129 |
+ |
// find the center of the test lipid, and make it the center of our |
| 130 |
+ |
// soon to be created water box. |
| 131 |
+ |
|
| 132 |
+ |
|
| 133 |
|
double cx, cy, cz; |
| 134 |
|
|
| 135 |
|
cx = 0.0; |
| 136 |
|
cy = 0.0; |
| 137 |
|
cz = 0.0; |
| 138 |
< |
for(i=0; i<group_nAtoms; i++){ |
| 139 |
< |
cx += group_atoms[i]->getX(); |
| 140 |
< |
cy += group_atoms[i]->getY(); |
| 141 |
< |
cz += group_atoms[i]->getZ(); |
| 138 |
> |
for(i=0; i<lipidNAtoms; i++){ |
| 139 |
> |
cx += lipidAtoms[i]->getX(); |
| 140 |
> |
cy += lipidAtoms[i]->getY(); |
| 141 |
> |
cz += lipidAtoms[i]->getZ(); |
| 142 |
|
} |
| 143 |
< |
cx /= group_nAtoms; |
| 144 |
< |
cy /= group_nAtoms; |
| 145 |
< |
cz /= group_nAtoms; |
| 143 |
> |
cx /= lipidNAtoms; |
| 144 |
> |
cy /= lipidNAtoms; |
| 145 |
> |
cz /= lipidNAtoms; |
| 146 |
|
|
| 147 |
|
double x0 = cx - ( box_x * 0.5 ); |
| 148 |
|
double y0 = cy - ( box_y * 0.5 ); |
| 149 |
|
double z0 = cz - ( box_z * 0.5 ); |
| 150 |
+ |
|
| 151 |
+ |
|
| 152 |
+ |
// create an fcc lattice in the water box. |
| 153 |
+ |
|
| 154 |
|
|
| 155 |
|
index = 0; |
| 156 |
|
for( i=0; i < n_cellX; i++ ){ |
| 180 |
|
} |
| 181 |
|
} |
| 182 |
|
|
| 183 |
+ |
|
| 184 |
+ |
// calculate the number of water's displaced by our molecule. |
| 185 |
+ |
|
| 186 |
|
int *isActive = new int[n_water]; |
| 187 |
|
for(i=0; i<n_water; i++) isActive[i] = 1; |
| 188 |
|
|
| 189 |
< |
int n_active = n_water; |
| 189 |
> |
int n_deleted = 0; |
| 190 |
|
double dx, dy, dz; |
| 191 |
|
double dx2, dy2, dz2, dSqr; |
| 192 |
|
double rCutSqr = water_padding * water_padding; |
| 193 |
|
|
| 194 |
|
for(i=0; ( (i<n_water) && isActive[i] ); i++){ |
| 195 |
< |
for(j=0; ( (j<group_nAtoms) && isActive[i] ); j++){ |
| 195 |
> |
for(j=0; ( (j<lipidNAtoms) && isActive[i] ); j++){ |
| 196 |
|
|
| 197 |
< |
dx = waterX[i] - group_atoms[j]->getX(); |
| 198 |
< |
dy = waterY[i] - group_atoms[j]->getY(); |
| 199 |
< |
dz = waterZ[i] - group_atoms[j]->getZ(); |
| 197 |
> |
dx = waterX[i] - lipidAtoms[j]->getX(); |
| 198 |
> |
dy = waterY[i] - lipidAtoms[j]->getY(); |
| 199 |
> |
dz = waterZ[i] - lipidAtoms[j]->getZ(); |
| 200 |
|
|
| 201 |
+ |
map( &dx, &dy, &dz, cx, cy, cz, box_x, box_y, box_z ); |
| 202 |
+ |
|
| 203 |
|
dx2 = dx * dx; |
| 204 |
|
dy2 = dy * dy; |
| 205 |
|
dz2 = dz * dz; |
| 207 |
|
dSqr = dx2 + dy2 + dz2; |
| 208 |
|
if( dSqr < rCutSqr ){ |
| 209 |
|
isActive[i] = 0; |
| 210 |
< |
n_active--; |
| 210 |
> |
n_deleted++; |
| 211 |
|
} |
| 212 |
|
} |
| 213 |
|
} |
| 214 |
|
|
| 215 |
< |
std::cerr << "final n_waters = " << n_active << "\n"; |
| 215 |
> |
n_h2o_target += n_deleted * n_lipids; |
| 216 |
|
|
| 217 |
+ |
// find a box size that best suits the number of waters we need. |
| 218 |
+ |
|
| 219 |
+ |
int done = 0; |
| 220 |
+ |
|
| 221 |
+ |
if( n_waters < n_h2o_target ){ |
| 222 |
+ |
|
| 223 |
+ |
int n_generated = n_cellX; |
| 224 |
+ |
int n_test, nx, ny, nz; |
| 225 |
+ |
nx = n_cellX; |
| 226 |
+ |
ny = n_cellY; |
| 227 |
+ |
nz = n_cellZ; |
| 228 |
+ |
|
| 229 |
+ |
while( n_test < n_h2o_target ){ |
| 230 |
+ |
|
| 231 |
+ |
nz++; |
| 232 |
+ |
n_test = 4 * nx * ny * nz; |
| 233 |
+ |
} |
| 234 |
+ |
|
| 235 |
+ |
int n_diff, goodX, goodY, goodZ; |
| 236 |
+ |
|
| 237 |
+ |
n_diff = ntest - n_h2o_target; |
| 238 |
+ |
goodX = nx; |
| 239 |
+ |
goodY = ny; |
| 240 |
+ |
goodZ = nz; |
| 241 |
+ |
|
| 242 |
+ |
int test_diff; |
| 243 |
+ |
int n_limit = n_z; |
| 244 |
+ |
n_z = n_cellZ; |
| 245 |
+ |
|
| 246 |
+ |
for( i=n_generated; i<=n_limit; i++ ){ |
| 247 |
+ |
for( j=i; j<=n_limit; j++ ){ |
| 248 |
+ |
for( k=j; k<=n_limit; k++ ){ |
| 249 |
+ |
|
| 250 |
+ |
n_test = 4 * i * j * k; |
| 251 |
+ |
|
| 252 |
+ |
if( n_test > n_h2o_target ){ |
| 253 |
+ |
|
| 254 |
+ |
test_diff = n_test - n_h2o_target; |
| 255 |
+ |
|
| 256 |
+ |
if( test_diff < n_diff ){ |
| 257 |
+ |
|
| 258 |
+ |
n_diff = test_diff; |
| 259 |
+ |
goodX = nx; |
| 260 |
+ |
goodY = ny; |
| 261 |
+ |
goodZ = nz; |
| 262 |
+ |
} |
| 263 |
+ |
} |
| 264 |
+ |
} |
| 265 |
+ |
} |
| 266 |
+ |
} |
| 267 |
+ |
|
| 268 |
+ |
n_cellX = goodX; |
| 269 |
+ |
n_cellY = goodY; |
| 270 |
+ |
n_cellZ = goodZ; |
| 271 |
+ |
} |
| 272 |
+ |
|
| 273 |
+ |
// we now have the best box size for the simulation. |
| 274 |
+ |
|
| 275 |
+ |
|
| 276 |
+ |
|
| 277 |
+ |
|
| 278 |
+ |
|
| 279 |
+ |
|
| 280 |
+ |
|
| 281 |
+ |
|
| 282 |
+ |
|
| 283 |
+ |
|
| 284 |
|
int new_nAtoms = group_nAtoms + n_active; |
| 285 |
|
Atom** new_atoms = new Atom*[new_nAtoms]; |
| 286 |
|
|
| 388 |
|
|
| 389 |
|
return 0; |
| 390 |
|
} |
| 391 |
+ |
|
| 392 |
+ |
|
| 393 |
+ |
void map( x, y, z, centerX, centerY, centerZ, boxX, boxY, boxZ ) |
| 394 |
+ |
double *x, *y, *z; |
| 395 |
+ |
double centerX, centerY, centerZ; |
| 396 |
+ |
double boxX, boxY, boxZ; |
| 397 |
+ |
{ |
| 398 |
+ |
|
| 399 |
+ |
*x -= centerX; |
| 400 |
+ |
*y -= centerY; |
| 401 |
+ |
*z -= centerZ; |
| 402 |
+ |
|
| 403 |
+ |
if(*x < 0) *x -= boxX * (double)( (int)( (*x / boxX) - 0.5 ) ); |
| 404 |
+ |
else *x -= boxX * (double)( (int)( (*x / boxX ) + 0.5)); |
| 405 |
+ |
|
| 406 |
+ |
if(*y < 0) *y -= boxY * (double)( (int)( (*y / boxY) - 0.5 ) ); |
| 407 |
+ |
else *y -= boxY * (double)( (int)( (*y / boxY ) + 0.5)); |
| 408 |
+ |
|
| 409 |
+ |
if(*z < 0) *z -= boxZ * (double)( (int)( (*z / boxZ) - 0.5 ) ); |
| 410 |
+ |
else *z -= boxZ * (double)( (int)( (*z / boxZ ) + 0.5)); |
| 411 |
+ |
} |