| 1 |
mmeineke |
28 |
#include <iostream> |
| 2 |
|
|
#include <cstdlib> |
| 3 |
|
|
#include <cstring> |
| 4 |
|
|
#include <cstdio> |
| 5 |
mmeineke |
29 |
#include <cmath> |
| 6 |
mmeineke |
28 |
|
| 7 |
|
|
#include "SimSetup.hpp" |
| 8 |
|
|
#include "SimInfo.hpp" |
| 9 |
|
|
#include "Atom.hpp" |
| 10 |
|
|
#include "Integrator.hpp" |
| 11 |
|
|
#include "Thermo.hpp" |
| 12 |
|
|
#include "ReadWrite.hpp" |
| 13 |
|
|
|
| 14 |
|
|
|
| 15 |
mmeineke |
29 |
void map( double *x, double *y, double *z, double centerX, double centerY, |
| 16 |
|
|
double centerZ, double boxX, double boxY, double boxZ ); |
| 17 |
|
|
|
| 18 |
mmeineke |
28 |
char* program_name; |
| 19 |
|
|
using namespace std; |
| 20 |
|
|
|
| 21 |
|
|
int main(int argc,char* argv[]){ |
| 22 |
|
|
|
| 23 |
|
|
int i, j, k, l; |
| 24 |
|
|
unsigned int n_atoms, eo, xo; |
| 25 |
|
|
char* in_name; |
| 26 |
|
|
SimSetup* startMe; |
| 27 |
|
|
SimInfo* entry_plug; |
| 28 |
|
|
Thermo* tStats; |
| 29 |
|
|
|
| 30 |
|
|
int lipidNAtoms; |
| 31 |
|
|
Atom** lipidAtoms; |
| 32 |
|
|
|
| 33 |
|
|
int tot_Natoms; |
| 34 |
|
|
Atom** totAtoms; |
| 35 |
|
|
|
| 36 |
|
|
const double water_rho = 0.0334; // number density per cubic angstrom |
| 37 |
|
|
const double water_vol = 4.0 / water_rho; // volume occupied by 4 waters |
| 38 |
|
|
const double water_cell = 4.929; // fcc unit cell length |
| 39 |
|
|
|
| 40 |
mmeineke |
29 |
int n_lipids = 50; |
| 41 |
|
|
double water_ratio = 25.0; // water to lipid ratio |
| 42 |
|
|
int n_h2o_target = (int)( n_lipids * water_ratio + 0.5 ); |
| 43 |
mmeineke |
28 |
|
| 44 |
|
|
std::cerr << "n_lipids = " << n_lipids << "\n"; |
| 45 |
|
|
|
| 46 |
|
|
double water_shell = 10.0; |
| 47 |
|
|
double water_padding = 2.5; |
| 48 |
|
|
double lipid_spaceing = 4.0; |
| 49 |
|
|
|
| 50 |
|
|
srand48( 1337 ); // initialize the random number generator. |
| 51 |
|
|
|
| 52 |
|
|
program_name = argv[0]; /*save the program name in case we need it*/ |
| 53 |
|
|
if( argc < 3 ){ |
| 54 |
|
|
cerr<< "Error, input and output bass files are needed to run.\n" |
| 55 |
|
|
<< program_name << " <input.bass> <output.bass>\n"; |
| 56 |
|
|
|
| 57 |
|
|
exit(8); |
| 58 |
|
|
} |
| 59 |
|
|
|
| 60 |
|
|
in_name = argv[1]; |
| 61 |
|
|
char* out_name = argv[2]; |
| 62 |
|
|
entry_plug = new SimInfo; |
| 63 |
|
|
|
| 64 |
|
|
startMe = new SimSetup; |
| 65 |
|
|
startMe->setSimInfo( entry_plug ); |
| 66 |
|
|
startMe->parseFile( in_name ); |
| 67 |
|
|
startMe->createSim(); |
| 68 |
|
|
|
| 69 |
|
|
delete startMe; |
| 70 |
|
|
|
| 71 |
|
|
lipidAtoms = entry_plug->atoms; |
| 72 |
|
|
lipidNAtoms = entry_plug->n_atoms; |
| 73 |
|
|
|
| 74 |
|
|
|
| 75 |
mmeineke |
29 |
// find the width, height, and length of the molecule |
| 76 |
mmeineke |
28 |
|
| 77 |
|
|
double min_x, min_y, min_z; |
| 78 |
|
|
double max_x, max_y, max_z; |
| 79 |
|
|
double test_x, test_y, test_z; |
| 80 |
|
|
|
| 81 |
mmeineke |
29 |
max_x = min_x = lipidAtoms[0]->getX(); |
| 82 |
|
|
max_y = min_y = lipidAtoms[0]->getY(); |
| 83 |
|
|
max_z = min_z = lipidAtoms[0]->getZ(); |
| 84 |
mmeineke |
28 |
|
| 85 |
mmeineke |
29 |
for(i=0; i<lipidNAtoms; i++){ |
| 86 |
mmeineke |
28 |
|
| 87 |
mmeineke |
29 |
test_x = lipidAtoms[i]->getX(); |
| 88 |
|
|
test_y = lipidAtoms[i]->getY(); |
| 89 |
|
|
test_z = lipidAtoms[i]->getZ(); |
| 90 |
mmeineke |
28 |
|
| 91 |
|
|
if( test_x < min_x ) min_x = test_x; |
| 92 |
|
|
if( test_y < min_y ) min_y = test_y; |
| 93 |
|
|
if( test_z < min_z ) min_z = test_z; |
| 94 |
|
|
|
| 95 |
|
|
if( test_x > max_x ) max_x = test_x; |
| 96 |
|
|
if( test_y > max_y ) max_y = test_y; |
| 97 |
|
|
if( test_z > max_z ) max_z = test_z; |
| 98 |
|
|
} |
| 99 |
|
|
|
| 100 |
mmeineke |
29 |
double ml2 = pow((max_x - min_x), 2 ) + pow((max_y - min_y), 2 ) |
| 101 |
|
|
+ pow((max_x - min_x), 2 ); |
| 102 |
|
|
double max_length = sqrt( ml2 ); |
| 103 |
mmeineke |
28 |
|
| 104 |
|
|
|
| 105 |
mmeineke |
29 |
// from this information, create the test box |
| 106 |
|
|
|
| 107 |
|
|
|
| 108 |
|
|
double box_x; |
| 109 |
|
|
double box_y; |
| 110 |
|
|
double box_z; |
| 111 |
|
|
|
| 112 |
|
|
box_x = box_y = box_z = max_length + water_cell * 4.0; // pad with 4 cells |
| 113 |
|
|
|
| 114 |
|
|
int n_cellX = (int)(box_x / water_cell + 1.0 ); |
| 115 |
|
|
int n_cellY = (int)(box_y / water_cell + 1.0 ); |
| 116 |
|
|
int n_cellZ = (int)(box_z / water_cell + 1.0 ); |
| 117 |
|
|
|
| 118 |
mmeineke |
28 |
box_x = water_cell * n_cellX; |
| 119 |
|
|
box_y = water_cell * n_cellY; |
| 120 |
|
|
box_z = water_cell * n_cellZ; |
| 121 |
|
|
|
| 122 |
|
|
int n_water = n_cellX * n_cellY * n_cellZ * 4; |
| 123 |
|
|
|
| 124 |
|
|
double *waterX = new double[n_water]; |
| 125 |
|
|
double *waterY = new double[n_water]; |
| 126 |
|
|
double *waterZ = new double[n_water]; |
| 127 |
|
|
|
| 128 |
mmeineke |
29 |
|
| 129 |
|
|
// find the center of the test lipid, and make it the center of our |
| 130 |
|
|
// soon to be created water box. |
| 131 |
|
|
|
| 132 |
|
|
|
| 133 |
mmeineke |
28 |
double cx, cy, cz; |
| 134 |
|
|
|
| 135 |
|
|
cx = 0.0; |
| 136 |
|
|
cy = 0.0; |
| 137 |
|
|
cz = 0.0; |
| 138 |
mmeineke |
29 |
for(i=0; i<lipidNAtoms; i++){ |
| 139 |
|
|
cx += lipidAtoms[i]->getX(); |
| 140 |
|
|
cy += lipidAtoms[i]->getY(); |
| 141 |
|
|
cz += lipidAtoms[i]->getZ(); |
| 142 |
mmeineke |
28 |
} |
| 143 |
mmeineke |
29 |
cx /= lipidNAtoms; |
| 144 |
|
|
cy /= lipidNAtoms; |
| 145 |
|
|
cz /= lipidNAtoms; |
| 146 |
mmeineke |
28 |
|
| 147 |
|
|
double x0 = cx - ( box_x * 0.5 ); |
| 148 |
|
|
double y0 = cy - ( box_y * 0.5 ); |
| 149 |
|
|
double z0 = cz - ( box_z * 0.5 ); |
| 150 |
mmeineke |
29 |
|
| 151 |
|
|
|
| 152 |
|
|
// create an fcc lattice in the water box. |
| 153 |
|
|
|
| 154 |
mmeineke |
28 |
|
| 155 |
|
|
index = 0; |
| 156 |
|
|
for( i=0; i < n_cellX; i++ ){ |
| 157 |
|
|
for( j=0; j < n_cellY; j++ ){ |
| 158 |
|
|
for( k=0; k < n_cellZ; k++ ){ |
| 159 |
|
|
|
| 160 |
|
|
waterX[index] = i * water_cell + x0; |
| 161 |
|
|
waterY[index] = j * water_cell + y0; |
| 162 |
|
|
waterZ[index] = k * water_cell + z0; |
| 163 |
|
|
index++; |
| 164 |
|
|
|
| 165 |
|
|
waterX[index] = i * water_cell + 0.5 * water_cell + x0; |
| 166 |
|
|
waterY[index] = j * water_cell + 0.5 * water_cell + y0; |
| 167 |
|
|
waterZ[index] = k * water_cell + z0; |
| 168 |
|
|
index++; |
| 169 |
|
|
|
| 170 |
|
|
waterX[index] = i * water_cell + x0; |
| 171 |
|
|
waterY[index] = j * water_cell + 0.5 * water_cell + y0; |
| 172 |
|
|
waterZ[index] = k * water_cell + 0.5 * water_cell + z0; |
| 173 |
|
|
index++; |
| 174 |
|
|
|
| 175 |
|
|
waterX[index] = i * water_cell + 0.5 * water_cell + x0; |
| 176 |
|
|
waterY[index] = j * water_cell + y0; |
| 177 |
|
|
waterZ[index] = k * water_cell + 0.5 * water_cell + z0; |
| 178 |
|
|
index++; |
| 179 |
|
|
} |
| 180 |
|
|
} |
| 181 |
|
|
} |
| 182 |
|
|
|
| 183 |
mmeineke |
29 |
|
| 184 |
|
|
// calculate the number of water's displaced by our molecule. |
| 185 |
|
|
|
| 186 |
mmeineke |
28 |
int *isActive = new int[n_water]; |
| 187 |
|
|
for(i=0; i<n_water; i++) isActive[i] = 1; |
| 188 |
|
|
|
| 189 |
mmeineke |
29 |
int n_deleted = 0; |
| 190 |
mmeineke |
28 |
double dx, dy, dz; |
| 191 |
|
|
double dx2, dy2, dz2, dSqr; |
| 192 |
|
|
double rCutSqr = water_padding * water_padding; |
| 193 |
|
|
|
| 194 |
|
|
for(i=0; ( (i<n_water) && isActive[i] ); i++){ |
| 195 |
mmeineke |
29 |
for(j=0; ( (j<lipidNAtoms) && isActive[i] ); j++){ |
| 196 |
mmeineke |
28 |
|
| 197 |
mmeineke |
29 |
dx = waterX[i] - lipidAtoms[j]->getX(); |
| 198 |
|
|
dy = waterY[i] - lipidAtoms[j]->getY(); |
| 199 |
|
|
dz = waterZ[i] - lipidAtoms[j]->getZ(); |
| 200 |
mmeineke |
28 |
|
| 201 |
mmeineke |
29 |
map( &dx, &dy, &dz, cx, cy, cz, box_x, box_y, box_z ); |
| 202 |
|
|
|
| 203 |
mmeineke |
28 |
dx2 = dx * dx; |
| 204 |
|
|
dy2 = dy * dy; |
| 205 |
|
|
dz2 = dz * dz; |
| 206 |
|
|
|
| 207 |
|
|
dSqr = dx2 + dy2 + dz2; |
| 208 |
|
|
if( dSqr < rCutSqr ){ |
| 209 |
|
|
isActive[i] = 0; |
| 210 |
mmeineke |
29 |
n_deleted++; |
| 211 |
mmeineke |
28 |
} |
| 212 |
|
|
} |
| 213 |
|
|
} |
| 214 |
|
|
|
| 215 |
mmeineke |
29 |
n_h2o_target += n_deleted * n_lipids; |
| 216 |
mmeineke |
28 |
|
| 217 |
mmeineke |
29 |
// find a box size that best suits the number of waters we need. |
| 218 |
|
|
|
| 219 |
|
|
int done = 0; |
| 220 |
|
|
|
| 221 |
|
|
if( n_waters < n_h2o_target ){ |
| 222 |
|
|
|
| 223 |
|
|
int n_generated = n_cellX; |
| 224 |
|
|
int n_test, nx, ny, nz; |
| 225 |
|
|
nx = n_cellX; |
| 226 |
|
|
ny = n_cellY; |
| 227 |
|
|
nz = n_cellZ; |
| 228 |
|
|
|
| 229 |
|
|
while( n_test < n_h2o_target ){ |
| 230 |
|
|
|
| 231 |
|
|
nz++; |
| 232 |
|
|
n_test = 4 * nx * ny * nz; |
| 233 |
|
|
} |
| 234 |
|
|
|
| 235 |
|
|
int n_diff, goodX, goodY, goodZ; |
| 236 |
|
|
|
| 237 |
|
|
n_diff = ntest - n_h2o_target; |
| 238 |
|
|
goodX = nx; |
| 239 |
|
|
goodY = ny; |
| 240 |
|
|
goodZ = nz; |
| 241 |
|
|
|
| 242 |
|
|
int test_diff; |
| 243 |
|
|
int n_limit = n_z; |
| 244 |
|
|
n_z = n_cellZ; |
| 245 |
|
|
|
| 246 |
|
|
for( i=n_generated; i<=n_limit; i++ ){ |
| 247 |
|
|
for( j=i; j<=n_limit; j++ ){ |
| 248 |
|
|
for( k=j; k<=n_limit; k++ ){ |
| 249 |
|
|
|
| 250 |
|
|
n_test = 4 * i * j * k; |
| 251 |
|
|
|
| 252 |
|
|
if( n_test > n_h2o_target ){ |
| 253 |
|
|
|
| 254 |
|
|
test_diff = n_test - n_h2o_target; |
| 255 |
|
|
|
| 256 |
|
|
if( test_diff < n_diff ){ |
| 257 |
|
|
|
| 258 |
|
|
n_diff = test_diff; |
| 259 |
|
|
goodX = nx; |
| 260 |
|
|
goodY = ny; |
| 261 |
|
|
goodZ = nz; |
| 262 |
|
|
} |
| 263 |
|
|
} |
| 264 |
|
|
} |
| 265 |
|
|
} |
| 266 |
|
|
} |
| 267 |
|
|
|
| 268 |
|
|
n_cellX = goodX; |
| 269 |
|
|
n_cellY = goodY; |
| 270 |
|
|
n_cellZ = goodZ; |
| 271 |
|
|
} |
| 272 |
|
|
|
| 273 |
|
|
// we now have the best box size for the simulation. |
| 274 |
|
|
|
| 275 |
|
|
|
| 276 |
|
|
|
| 277 |
|
|
|
| 278 |
|
|
|
| 279 |
|
|
|
| 280 |
|
|
|
| 281 |
|
|
|
| 282 |
|
|
|
| 283 |
|
|
|
| 284 |
mmeineke |
28 |
int new_nAtoms = group_nAtoms + n_active; |
| 285 |
|
|
Atom** new_atoms = new Atom*[new_nAtoms]; |
| 286 |
|
|
|
| 287 |
|
|
index = 0; |
| 288 |
|
|
for(i=0; i<group_nAtoms; i++ ){ |
| 289 |
|
|
|
| 290 |
|
|
if( group_atoms[i]->isDirectional() ){ |
| 291 |
|
|
dAtom = (DirectionalAtom *)group_atoms[i]; |
| 292 |
|
|
|
| 293 |
|
|
dAtomNew = new DirectionalAtom(); |
| 294 |
|
|
dAtomNew->setSUx( dAtom->getSUx() ); |
| 295 |
|
|
dAtomNew->setSUx( dAtom->getSUx() ); |
| 296 |
|
|
dAtomNew->setSUx( dAtom->getSUx() ); |
| 297 |
|
|
|
| 298 |
|
|
dAtomNew->setA( rotMat ); |
| 299 |
|
|
|
| 300 |
|
|
new_atoms[index] = dAtomNew; |
| 301 |
|
|
} |
| 302 |
|
|
else{ |
| 303 |
|
|
|
| 304 |
|
|
new_atoms[index] = new GeneralAtom(); |
| 305 |
|
|
} |
| 306 |
|
|
|
| 307 |
|
|
new_atoms[index]->setType( group_atoms[i]->getType() ); |
| 308 |
|
|
|
| 309 |
|
|
new_atoms[index]->setX( group_atoms[i]->getX() ); |
| 310 |
|
|
new_atoms[index]->setY( group_atoms[i]->getY() ); |
| 311 |
|
|
new_atoms[index]->setZ( group_atoms[i]->getZ() ); |
| 312 |
|
|
|
| 313 |
|
|
new_atoms[index]->set_vx( 0.0 ); |
| 314 |
|
|
new_atoms[index]->set_vy( 0.0 ); |
| 315 |
|
|
new_atoms[index]->set_vz( 0.0 ); |
| 316 |
|
|
|
| 317 |
|
|
index++; |
| 318 |
|
|
} |
| 319 |
|
|
|
| 320 |
|
|
|
| 321 |
|
|
|
| 322 |
|
|
|
| 323 |
|
|
for(i=0; i<n_water; i++){ |
| 324 |
|
|
if(isActive[i]){ |
| 325 |
|
|
|
| 326 |
|
|
new_atoms[index] = new DirectionalAtom(); |
| 327 |
|
|
new_atoms[index]->setType( "SSD" ); |
| 328 |
|
|
|
| 329 |
|
|
new_atoms[index]->setX( waterX[i] ); |
| 330 |
|
|
new_atoms[index]->setY( waterY[i] ); |
| 331 |
|
|
new_atoms[index]->setZ( waterZ[i] ); |
| 332 |
|
|
|
| 333 |
|
|
new_atoms[index]->set_vx( 0.0 ); |
| 334 |
|
|
new_atoms[index]->set_vy( 0.0 ); |
| 335 |
|
|
new_atoms[index]->set_vz( 0.0 ); |
| 336 |
|
|
|
| 337 |
|
|
dAtom = (DirectionalAtom *) new_atoms[index]; |
| 338 |
|
|
|
| 339 |
|
|
dAtom->setSUx( 0.0 ); |
| 340 |
|
|
dAtom->setSUy( 0.0 ); |
| 341 |
|
|
dAtom->setSUz( 1.0 ); |
| 342 |
|
|
|
| 343 |
|
|
dAtom->setA( rotMat ); |
| 344 |
|
|
|
| 345 |
|
|
index++; |
| 346 |
|
|
} |
| 347 |
|
|
} |
| 348 |
|
|
|
| 349 |
|
|
entry_plug->n_atoms = new_nAtoms; |
| 350 |
|
|
entry_plug->atoms = new_atoms; |
| 351 |
|
|
|
| 352 |
|
|
entry_plug->box_x = box_x; |
| 353 |
|
|
entry_plug->box_y = box_y; |
| 354 |
|
|
entry_plug->box_z = box_z; |
| 355 |
|
|
|
| 356 |
|
|
DumpWriter* xyz_out = new DumpWriter( entry_plug ); |
| 357 |
|
|
xyz_out->writeFinal(); |
| 358 |
|
|
delete xyz_out; |
| 359 |
|
|
|
| 360 |
|
|
FILE* out_file; |
| 361 |
|
|
|
| 362 |
|
|
out_file = fopen( out_name, "w" ); |
| 363 |
|
|
|
| 364 |
|
|
fprintf(out_file, |
| 365 |
|
|
"#include \"water.mdl\"\n" |
| 366 |
|
|
"#include \"lipid.mdl\"\n" |
| 367 |
|
|
"\n" |
| 368 |
|
|
"nComponents = 2;\n" |
| 369 |
|
|
"component{\n" |
| 370 |
|
|
" type = \"theLipid\";\n" |
| 371 |
|
|
" nMol = %d;\n" |
| 372 |
|
|
"}\n" |
| 373 |
|
|
"\n" |
| 374 |
|
|
"component{\n" |
| 375 |
|
|
" type = \"SSD_water\";\n" |
| 376 |
|
|
" nMol = %d;\n" |
| 377 |
|
|
"}\n" |
| 378 |
|
|
"\n" |
| 379 |
|
|
"initialConfig = \"%s\";\n" |
| 380 |
|
|
"\n" |
| 381 |
|
|
"boxX = %lf;\n" |
| 382 |
|
|
"boxY = %lf;\n" |
| 383 |
|
|
"boxZ = %lf;\n", |
| 384 |
|
|
n_lipids, n_active, entry_plug->finalName, |
| 385 |
|
|
box_x, box_y, box_z ); |
| 386 |
|
|
|
| 387 |
|
|
fclose( out_file ); |
| 388 |
|
|
|
| 389 |
|
|
return 0; |
| 390 |
|
|
} |
| 391 |
mmeineke |
29 |
|
| 392 |
|
|
|
| 393 |
|
|
void map( x, y, z, centerX, centerY, centerZ, boxX, boxY, boxZ ) |
| 394 |
|
|
double *x, *y, *z; |
| 395 |
|
|
double centerX, centerY, centerZ; |
| 396 |
|
|
double boxX, boxY, boxZ; |
| 397 |
|
|
{ |
| 398 |
|
|
|
| 399 |
|
|
*x -= centerX; |
| 400 |
|
|
*y -= centerY; |
| 401 |
|
|
*z -= centerZ; |
| 402 |
|
|
|
| 403 |
|
|
if(*x < 0) *x -= boxX * (double)( (int)( (*x / boxX) - 0.5 ) ); |
| 404 |
|
|
else *x -= boxX * (double)( (int)( (*x / boxX ) + 0.5)); |
| 405 |
|
|
|
| 406 |
|
|
if(*y < 0) *y -= boxY * (double)( (int)( (*y / boxY) - 0.5 ) ); |
| 407 |
|
|
else *y -= boxY * (double)( (int)( (*y / boxY ) + 0.5)); |
| 408 |
|
|
|
| 409 |
|
|
if(*z < 0) *z -= boxZ * (double)( (int)( (*z / boxZ) - 0.5 ) ); |
| 410 |
|
|
else *z -= boxZ * (double)( (int)( (*z / boxZ ) + 0.5)); |
| 411 |
|
|
} |