| 1 |
gezelter |
3640 |
\documentclass[11pt]{article} |
| 2 |
|
|
\usepackage{amsmath} |
| 3 |
|
|
\usepackage{amssymb} |
| 4 |
|
|
\usepackage{setspace} |
| 5 |
|
|
\usepackage{endfloat} |
| 6 |
|
|
\usepackage{caption} |
| 7 |
|
|
\usepackage{graphicx} |
| 8 |
|
|
\usepackage{multirow} |
| 9 |
|
|
\usepackage[square, comma, sort&compress]{natbib} |
| 10 |
|
|
\usepackage{url} |
| 11 |
|
|
\pagestyle{plain} \pagenumbering{arabic} \oddsidemargin 0.0cm |
| 12 |
|
|
\evensidemargin 0.0cm \topmargin -21pt \headsep 10pt \textheight |
| 13 |
|
|
9.0in \textwidth 6.5in \brokenpenalty=10000 |
| 14 |
|
|
|
| 15 |
|
|
% double space list of tables and figures |
| 16 |
|
|
%\AtBeginDelayedFloats{\renewcomand{\baselinestretch}{1.66}} |
| 17 |
|
|
\setlength{\abovecaptionskip}{20 pt} |
| 18 |
|
|
\setlength{\belowcaptionskip}{30 pt} |
| 19 |
|
|
|
| 20 |
|
|
\bibpunct{[}{]}{,}{s}{}{;} |
| 21 |
|
|
\bibliographystyle{aip} |
| 22 |
|
|
|
| 23 |
|
|
\begin{document} |
| 24 |
|
|
|
| 25 |
|
|
\title{The Langevin Hull: Constant pressure and temperature dynamics for non-periodic systems} |
| 26 |
|
|
|
| 27 |
|
|
\author{Charles F. Varedeman II, Kelsey Stocker, and J. Daniel |
| 28 |
|
|
Gezelter\footnote{Corresponding author. \ Electronic mail: gezelter@nd.edu} \\ |
| 29 |
|
|
Department of Chemistry and Biochemistry,\\ |
| 30 |
|
|
University of Notre Dame\\ |
| 31 |
|
|
Notre Dame, Indiana 46556} |
| 32 |
|
|
|
| 33 |
|
|
\date{\today} |
| 34 |
|
|
|
| 35 |
|
|
\maketitle |
| 36 |
|
|
|
| 37 |
|
|
\begin{doublespace} |
| 38 |
|
|
|
| 39 |
|
|
\begin{abstract} |
| 40 |
|
|
We have developed a new isobaric-isothermal (NPT) algorithm which |
| 41 |
|
|
applies an external pressure to the facets comprising the convex |
| 42 |
|
|
hull surrounding the objects in the system. Additionally, a Langevin |
| 43 |
|
|
thermostat is applied to facets of the hull to mimic contact with an |
| 44 |
|
|
external heat bath. This new method, the ``Langevin Hull'', |
| 45 |
|
|
performs better than traditional affine transform methods for |
| 46 |
|
|
systems containing heterogeneous mixtures of materials with |
| 47 |
|
|
different compressibilities. It does not suffer from the edge |
| 48 |
|
|
effects of boundary potential methods, and allows realistic |
| 49 |
|
|
treatment of both external pressure and thermal conductivity to an |
| 50 |
|
|
implicit solvents. We apply this method to several different |
| 51 |
|
|
systems including bare nano-particles, nano-particles in explicit |
| 52 |
|
|
solvent, as well as clusters of liquid water and ice. The predicted |
| 53 |
|
|
mechanical and thermal properties of these systems are in good |
| 54 |
|
|
agreement with experimental data. |
| 55 |
|
|
\end{abstract} |
| 56 |
|
|
|
| 57 |
|
|
\newpage |
| 58 |
|
|
|
| 59 |
|
|
%\narrowtext |
| 60 |
|
|
|
| 61 |
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 62 |
|
|
% BODY OF TEXT |
| 63 |
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 64 |
|
|
|
| 65 |
|
|
|
| 66 |
|
|
\section{Introduction} |
| 67 |
|
|
|
| 68 |
|
|
Affine transform methods |
| 69 |
|
|
|
| 70 |
|
|
\begin{figure} |
| 71 |
|
|
\includegraphics[width=\linewidth]{AffineScale} |
| 72 |
|
|
\caption{Affine Scale} |
| 73 |
|
|
\label{affineScale} |
| 74 |
|
|
\end{figure} |
| 75 |
|
|
|
| 76 |
|
|
|
| 77 |
|
|
\begin{figure} |
| 78 |
|
|
\includegraphics[width=\linewidth]{AffineScale2} |
| 79 |
|
|
\caption{Affine Scale2} |
| 80 |
|
|
\label{affineScale2} |
| 81 |
|
|
\end{figure} |
| 82 |
|
|
|
| 83 |
|
|
Heterogeneous mixtures of materials with different compressibilities? |
| 84 |
|
|
|
| 85 |
|
|
Explicitly non-periodic systems |
| 86 |
|
|
|
| 87 |
|
|
Elastic Bag |
| 88 |
|
|
|
| 89 |
|
|
Spherical Boundary approaches |
| 90 |
|
|
|
| 91 |
|
|
\section{Methodology} |
| 92 |
|
|
|
| 93 |
|
|
A new method which uses a constant pressure and temperature bath that |
| 94 |
|
|
interacts with the objects that are currently at the edge of the |
| 95 |
|
|
system. |
| 96 |
|
|
|
| 97 |
|
|
Novel features: No a priori geometry is defined, No affine transforms, |
| 98 |
|
|
No fictitious particles, No bounding potentials. |
| 99 |
|
|
|
| 100 |
|
|
Simulation starts as a collection of atomic locations in 3D (a point |
| 101 |
|
|
cloud). |
| 102 |
|
|
|
| 103 |
|
|
Delaunay triangulation finds all facets between coplanar neighbors. |
| 104 |
|
|
|
| 105 |
|
|
The Convex Hull is the set of facets that have no concave corners at a |
| 106 |
|
|
vertex. |
| 107 |
|
|
|
| 108 |
|
|
Molecules on the convex hull are dynamic. As they re-enter the |
| 109 |
|
|
cluster, all interactions with the external bath are removed.The |
| 110 |
|
|
external bath applies pressure to the facets of the convex hull in |
| 111 |
|
|
direct proportion to the area of the facet.Thermal coupling depends on |
| 112 |
|
|
the solvent temperature, friction and the size and shape of each |
| 113 |
|
|
facet. |
| 114 |
|
|
|
| 115 |
|
|
\begin{equation} |
| 116 |
|
|
m_i \dot{\mathbf v}_i(t)=-{\mathbf \nabla}_i U |
| 117 |
|
|
\end{equation} |
| 118 |
|
|
|
| 119 |
|
|
\begin{equation} |
| 120 |
|
|
m_i \dot{\mathbf v}_i(t)=-{\mathbf \nabla}_i U + {\mathbf F}_i^{\mathrm ext} |
| 121 |
|
|
\end{equation} |
| 122 |
|
|
|
| 123 |
|
|
\begin{equation} |
| 124 |
|
|
{\mathbf F}_{i}^{\mathrm ext} = \sum_{\begin{array}{c}\mathrm{facets\ |
| 125 |
|
|
} f \\ \mathrm{containing\ } i\end{array}} \frac{1}{3}\ {\mathbf |
| 126 |
|
|
F}_f^{\mathrm ext} |
| 127 |
|
|
\end{equation} |
| 128 |
|
|
|
| 129 |
|
|
\begin{equation} |
| 130 |
|
|
\begin{array}{rclclcl} |
| 131 |
|
|
{\mathbf F}_f^{\text{ext}} & = & \text{external pressure} & + & \text{drag force} & + & \text{random force} \\ |
| 132 |
|
|
& = & -\hat{n}_f P A_f & - & \Xi_f(t) {\mathbf v}_f(t) & + & {\mathbf R}_f(t) |
| 133 |
|
|
\end{array} |
| 134 |
|
|
\end{equation} |
| 135 |
|
|
|
| 136 |
|
|
\begin{eqnarray} |
| 137 |
|
|
A_f & = & \text{area of facet}\ f \\ |
| 138 |
|
|
\hat{n}_f & = & \text{facet normal} \\ |
| 139 |
|
|
P & = & \text{external pressure} |
| 140 |
|
|
\end{eqnarray} |
| 141 |
|
|
|
| 142 |
|
|
\begin{eqnarray} |
| 143 |
|
|
{\mathbf v}_f(t) & = & \text{velocity of facet} \\ |
| 144 |
|
|
& = & \frac{1}{3} \sum_{i=1}^{3} {\mathbf v}_i \\ |
| 145 |
|
|
\Xi_f(t) & = & \text{is a hydrodynamic tensor that depends} \\ |
| 146 |
|
|
& & \text{on the geometry and surface area of} \\ |
| 147 |
|
|
& & \text{facet} \ f\ \text{and the viscosity of the fluid.} |
| 148 |
|
|
\end{eqnarray} |
| 149 |
|
|
|
| 150 |
|
|
\begin{eqnarray} |
| 151 |
|
|
\left< {\mathbf R}_f(t) \right> & = & 0 \\ |
| 152 |
|
|
\left<{\mathbf R}_f(t) {\mathbf R}_f^T(t^\prime)\right> & = & 2 k_B T\ |
| 153 |
|
|
\Xi_f(t)\delta(t-t^\prime) |
| 154 |
|
|
\end{eqnarray} |
| 155 |
|
|
|
| 156 |
|
|
Implemented in OpenMD.\cite{Meineke:2005gd,openmd} |
| 157 |
|
|
|
| 158 |
|
|
\section{Tests \& Applications} |
| 159 |
|
|
|
| 160 |
|
|
\subsection{Bulk modulus of gold nanoparticles} |
| 161 |
|
|
|
| 162 |
|
|
\begin{figure} |
| 163 |
|
|
\includegraphics[width=\linewidth]{pressure_tb} |
| 164 |
|
|
\caption{Pressure response is rapid (18 \AA gold nanoparticle), target |
| 165 |
|
|
pressure = 4 GPa} |
| 166 |
|
|
\label{pressureResponse} |
| 167 |
|
|
\end{figure} |
| 168 |
|
|
|
| 169 |
|
|
\begin{figure} |
| 170 |
|
|
\includegraphics[width=\linewidth]{temperature_tb} |
| 171 |
|
|
\caption{Temperature equilibration depends on surface area and bath |
| 172 |
|
|
viscosity. Target Temperature = 300K} |
| 173 |
|
|
\label{temperatureResponse} |
| 174 |
|
|
\end{figure} |
| 175 |
|
|
|
| 176 |
|
|
\begin{equation} |
| 177 |
|
|
\kappa_T=-\frac{1}{V_{\mathrm{eq}}}\left(\frac{\partial V}{\partial |
| 178 |
|
|
P}\right) |
| 179 |
|
|
\end{equation} |
| 180 |
|
|
|
| 181 |
|
|
\begin{figure} |
| 182 |
|
|
\includegraphics[width=\linewidth]{compress_tb} |
| 183 |
|
|
\caption{Isothermal Compressibility (18 \AA gold nanoparticle)} |
| 184 |
|
|
\label{temperatureResponse} |
| 185 |
|
|
\end{figure} |
| 186 |
|
|
|
| 187 |
|
|
\subsection{Compressibility of SPC/E water clusters} |
| 188 |
|
|
|
| 189 |
|
|
\begin{figure} |
| 190 |
|
|
\includegraphics[width=\linewidth]{g_r_theta} |
| 191 |
|
|
\caption{Definition of coordinates} |
| 192 |
|
|
\label{coords} |
| 193 |
|
|
\end{figure} |
| 194 |
|
|
|
| 195 |
|
|
\begin{equation} |
| 196 |
|
|
\cos{\theta}=\frac{\vec{r}_i\cdot\vec{\mu}_i}{|\vec{r}_i||\vec{\mu}_i|} |
| 197 |
|
|
\end{equation} |
| 198 |
|
|
|
| 199 |
|
|
\begin{figure} |
| 200 |
|
|
\includegraphics[width=\linewidth]{pAngle} |
| 201 |
|
|
\caption{SPC/E water clusters: only minor dewetting at the boundary} |
| 202 |
|
|
\label{pAngle} |
| 203 |
|
|
\end{figure} |
| 204 |
|
|
|
| 205 |
|
|
\begin{figure} |
| 206 |
|
|
\includegraphics[width=\linewidth]{isothermal} |
| 207 |
|
|
\caption{Compressibility of SPC/E water} |
| 208 |
|
|
\label{compWater} |
| 209 |
|
|
\end{figure} |
| 210 |
|
|
|
| 211 |
|
|
\subsection{Heterogeneous nanoparticle / water mixtures} |
| 212 |
|
|
|
| 213 |
|
|
|
| 214 |
|
|
\section{Appendix A: Hydrodynamic tensor for triangular facets} |
| 215 |
|
|
|
| 216 |
|
|
\begin{figure} |
| 217 |
|
|
\includegraphics[width=\linewidth]{hydro} |
| 218 |
|
|
\caption{Hydro} |
| 219 |
|
|
\label{hydro} |
| 220 |
|
|
\end{figure} |
| 221 |
|
|
|
| 222 |
|
|
\begin{equation} |
| 223 |
|
|
\Xi_f(t) =\left[\sum_{i=1}^3 T_{if}\right]^{-1} |
| 224 |
|
|
\end{equation} |
| 225 |
|
|
|
| 226 |
|
|
\begin{equation} |
| 227 |
|
|
T_{if}=\frac{A_i}{8\pi\eta R_{if}}\left(I + |
| 228 |
|
|
\frac{\mathbf{R}_{if}\mathbf{R}_{if}^T}{R_{if}^2}\right) |
| 229 |
|
|
\end{equation} |
| 230 |
|
|
|
| 231 |
|
|
\section{Appendix B: Computing Convex Hulls on Parallel Computers} |
| 232 |
|
|
|
| 233 |
|
|
\section{Acknowledgments} |
| 234 |
|
|
Support for this project was provided by the |
| 235 |
|
|
National Science Foundation under grant CHE-0848243. Computational |
| 236 |
|
|
time was provided by the Center for Research Computing (CRC) at the |
| 237 |
|
|
University of Notre Dame. |
| 238 |
|
|
|
| 239 |
|
|
\newpage |
| 240 |
|
|
|
| 241 |
|
|
\bibliography{langevinHull} |
| 242 |
|
|
|
| 243 |
|
|
\end{doublespace} |
| 244 |
|
|
\end{document} |