ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/interfacial/interfacial.bib
Revision: 3768
Committed: Mon Oct 3 17:38:14 2011 UTC (14 years, 3 months ago) by skuang
Original Path: interfacial/interfacial.bib
File size: 123933 byte(s)
Log Message:
added citation, supporting info. some edits.

File Contents

# User Rev Content
1 skuang 3719 %% This BibTeX bibliography file was created using BibDesk.
2     %% http://bibdesk.sourceforge.net/
3    
4    
5 skuang 3768 %% Created for Shenyu Kuang at 2011-09-30 16:49:26 -0400
6 skuang 3719
7    
8     %% Saved with string encoding Unicode (UTF-8)
9    
10    
11    
12 skuang 3768 @article{swartz1989,
13     Author = {Swartz, E. T. and Pohl, R. O.},
14     Date-Added = {2011-09-30 16:46:34 -0400},
15     Date-Modified = {2011-09-30 16:49:19 -0400},
16     Doi = {10.1103/RevModPhys.61.605},
17     Issue = {3},
18     Journal = {Rev. Mod. Phys.},
19     Month = {Jul},
20     Pages = {605--668},
21     Publisher = {American Physical Society},
22     Title = {Thermal boundary resistance},
23     Url = {http://link.aps.org/doi/10.1103/RevModPhys.61.605},
24     Volume = {61},
25     Year = {1989},
26     Bdsk-Url-1 = {http://link.aps.org/doi/10.1103/RevModPhys.61.605},
27     Bdsk-Url-2 = {http://dx.doi.org/10.1103/RevModPhys.61.605}}
28    
29 skuang 3762 @article{Luo20101,
30     Abstract = {Non-equilibrium molecular dynamics (NEMD) simulations were performed on Au{\^a}€``SAM (self-assembly monolayer){\^a}€``Au junctions to study the thermal energy transport across the junctions. Thermal conductance of the Au{\^a}€``SAM interfaces was calculated. Temperature effects, simulated external pressure effects, SAM molecule coverage effects and Au{\^a}€``SAM bond strength effects on the interfacial thermal conductance were studied. It was found that the interfacial thermal conductance increased with temperature increase at temperatures lower than 250 K, but it did not have large changes at temperatures from 250 to 400 K. Such a trend was found to be similar to experimental observations on similar junctions. The simulated external pressure did not affect the interfacial thermal conductance. SAM molecule coverage and Au{\^a}€``SAM bond strength were found to significantly affect on the thermal conductance. The vibration densities of state (VDOS) were calculated to explore the mechanism of thermal energy transport. Interfacial thermal resistance was found mainly due to the limited population of low-frequency vibration modes of the SAM molecule. Ballistic energy transport inside the SAM molecules was confirmed, and the anharmonicity played an important role in energy transport across the junctions. A heat pulse was imposed on the junction substrate, and heat dissipation inside the junction was studied. Analysis of the junction response to the heat pulse showed that the Au{\^a}€``SAM interfacial thermal resistance was much larger than the Au substrate and SAM resistances separately. This work showed that both the Au substrate and SAM molecules transported thermal energy efficiently, and it was the Au{\^a}€``SAM interfaces that dominated the thermal energy transport across the Au{\^a}€``SAM{\^a}€``Au junctions.},
31     Author = {Tengfei Luo and John R. Lloyd},
32     Date-Added = {2011-09-23 14:48:57 -0400},
33 skuang 3766 Date-Modified = {2011-09-29 12:31:53 -0400},
34 skuang 3762 Doi = {10.1016/j.ijheatmasstransfer.2009.10.033},
35     Issn = {0017-9310},
36 skuang 3766 Journal = {Int. J. Heat Mass Transfer},
37 skuang 3762 Keywords = {Vibration},
38     Number = {1-3},
39     Pages = {1 - 11},
40     Title = {Non-equilibrium molecular dynamics study of thermal energy transport in Au{\^a}€``SAM{\^a}€``Au junctions},
41     Url = {http://www.sciencedirect.com/science/article/pii/S0017931009005742},
42     Volume = {53},
43     Year = {2010},
44     Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S0017931009005742},
45     Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.ijheatmasstransfer.2009.10.033}}
46    
47 skuang 3755 @article{doi:10.1080/0026897031000068578,
48     Abstract = { Using equilibrium and non-equilibrium molecular dynamics simulations, we determine the Kapitza resistance (or thermal contact resistance) at a model liquid-solid interface. The Kapitza resistance (or the associated Kapitza length) can reach appreciable values when the liquid does not wet the solid. The analogy with the hydrodynamic slip length is discussed. },
49 skuang 3766 Author = {Barrat, JEAN-LOUIS and Chiaruttini, FRAN{\c C}OIS},
50 skuang 3755 Date-Added = {2011-07-29 10:04:36 -0400},
51 skuang 3766 Date-Modified = {2011-09-29 13:37:49 -0400},
52 skuang 3755 Doi = {10.1080/0026897031000068578},
53     Eprint = {http://tandfprod.literatumonline.com/doi/pdf/10.1080/0026897031000068578},
54 skuang 3766 Journal = {Mol. Phys.},
55 skuang 3755 Number = {11},
56     Pages = {1605-1610},
57     Title = {Kapitza resistance at the liquid---solid interface},
58     Url = {http://tandfprod.literatumonline.com/doi/abs/10.1080/0026897031000068578},
59     Volume = {101},
60     Year = {2003},
61     Bdsk-Url-1 = {http://tandfprod.literatumonline.com/doi/abs/10.1080/0026897031000068578},
62     Bdsk-Url-2 = {http://dx.doi.org/10.1080/0026897031000068578}}
63    
64     @article{doi:10.1021/jp020581+,
65     Abstract = { The rate of energy dissipation from Au nanoparticles to their surroundings has been examined by pump−probe spectroscopy. These experiments were performed for particles suspended in aqueous solution, with average sizes ranging from 4 to 50 nm in diameter. The results show that energy relaxation is a very nonexponential process. Fitting the data to a stretched exponential function yields a characteristic time scale for relaxation that varies from ca. 10 ps for the smallest particles examined (∼4 nm diameter) to almost 400 ps for the 50 nm diameter particles. The relaxation times are proportional to the square of the radius, but do not depend on the initial temperature of the particles (i.e., the pump laser power). For very small particles, the time scale for energy dissipation is comparable to the time scale for electron−phonon coupling, which implies that significant energy loss occurs before the electrons and phonons reach thermal equilibrium within the particle. },
66     Author = {Hu, Min and Hartland, Gregory V.},
67     Date-Added = {2011-07-28 17:46:33 -0400},
68     Date-Modified = {2011-07-28 17:46:33 -0400},
69     Doi = {10.1021/jp020581+},
70     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp020581%2B},
71     Journal = {The Journal of Physical Chemistry B},
72     Number = {28},
73     Pages = {7029-7033},
74     Title = {Heat Dissipation for Au Particles in Aqueous Solution:  Relaxation Time versus Size},
75     Url = {http://pubs.acs.org/doi/abs/10.1021/jp020581%2B},
76     Volume = {106},
77     Year = {2002},
78     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp020581+},
79     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp020581+}}
80    
81     @article{PhysRevLett.96.186101,
82     Author = {Ge, Zhenbin and Cahill, David G. and Braun, Paul V.},
83     Date-Added = {2011-07-28 15:41:43 -0400},
84     Date-Modified = {2011-07-28 15:41:43 -0400},
85     Doi = {10.1103/PhysRevLett.96.186101},
86     Journal = {Phys. Rev. Lett.},
87     Month = {May},
88     Number = {18},
89     Numpages = {4},
90     Pages = {186101},
91     Publisher = {American Physical Society},
92     Title = {Thermal Conductance of Hydrophilic and Hydrophobic Interfaces},
93     Volume = {96},
94     Year = {2006},
95     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevLett.96.186101}}
96    
97     @article{doi:10.1021/jp048375k,
98     Abstract = { Water- and alcohol-soluble AuPd nanoparticles have been investigated to determine the effect of the organic stabilizing group on the thermal conductance G of the particle/fluid interface. The thermal decays of tiopronin-stabilized 3−5-nm diameter AuPd alloy nanoparticles, thioalkylated ethylene glycol-stabilized 3−5-nm diameter AuPd nanoparticles, and cetyltrimethylammonium bromide-stabilized 22-nm diameter Au-core/AuPd-shell nanoparticles give thermal conductances G ≈ 100−300 MW m-2 K-1 for the particle/water interfaces, approximately an order of magnitude larger than the conductance of the interfaces between alkanethiol-terminated AuPd nanoparticles and toluene. The similar values of G for particles ranging in size from 3 to 24 nm with widely varying surface chemistry indicate that the thermal coupling between AuPd nanoparticles and water is strong regardless of the self-assembled stabilizing group. },
99     Author = {Ge, Zhenbin and Cahill, David G. and Braun, Paul V.},
100     Date-Added = {2011-07-28 15:41:14 -0400},
101     Date-Modified = {2011-07-28 15:59:32 -0400},
102     Doi = {10.1021/jp048375k},
103     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp048375k},
104     Journal = {J. Phys. Chem. B},
105     Number = {49},
106     Pages = {18870-18875},
107     Title = {AuPd Metal Nanoparticles as Probes of Nanoscale Thermal Transport in Aqueous Solution},
108     Url = {http://pubs.acs.org/doi/abs/10.1021/jp048375k},
109     Volume = {108},
110     Year = {2004},
111     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp048375k},
112     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp048375k}}
113    
114     @article{PhysRevB.67.054302,
115     Author = {Costescu, Ruxandra M. and Wall, Marcel A. and Cahill, David G.},
116     Date-Added = {2011-07-28 15:40:29 -0400},
117     Date-Modified = {2011-07-28 15:40:29 -0400},
118     Doi = {10.1103/PhysRevB.67.054302},
119     Journal = {Phys. Rev. B},
120     Month = {Feb},
121     Number = {5},
122     Numpages = {5},
123     Pages = {054302},
124     Publisher = {American Physical Society},
125     Title = {Thermal conductance of epitaxial interfaces},
126     Volume = {67},
127     Year = {2003},
128     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevB.67.054302}}
129    
130 skuang 3750 @article{garde:nl2005,
131     Abstract = { Systems with nanoscopic features contain a high density of interfaces. Thermal transport in such systems can be governed by the resistance to heat transfer, the Kapitza resistance (RK), at the interface. Although soft interfaces, such as those between immiscible liquids or between a biomolecule and solvent, are ubiquitous, few studies of thermal transport at such interfaces have been reported. Here we characterize the interfacial conductance, 1/RK, of soft interfaces as a function of molecular architecture, chemistry, and the strength of cross-interfacial intermolecular interactions through detailed molecular dynamics simulations. The conductance of various interfaces studied here, for example, water−organic liquid, water−surfactant, surfactant−organic liquid, is relatively high (in the range of 65−370 MW/m2 K) compared to that for solid−liquid interfaces (∼10 MW/m2 K). Interestingly, the dependence of interfacial conductance on the chemistry and molecular architecture cannot be explained solely in terms of either bulk property mismatch or the strength of intermolecular attraction between the two phases. The observed trends can be attributed to a combination of strong cross-interface intermolecular interactions and good thermal coupling via soft vibration modes present at liquid−liquid interfaces. },
132     Author = {Patel, Harshit A. and Garde, Shekhar and Keblinski, Pawel},
133     Date-Added = {2011-07-26 13:56:59 -0400},
134     Date-Modified = {2011-07-26 13:57:47 -0400},
135     Doi = {10.1021/nl051526q},
136     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/nl051526q},
137 skuang 3755 Journal = {Nano Lett.},
138 skuang 3750 Note = {PMID: 16277458},
139     Number = {11},
140     Pages = {2225-2231},
141     Title = {Thermal Resistance of Nanoscopic Liquid−Liquid Interfaces:  Dependence on Chemistry and Molecular Architecture},
142     Url = {http://pubs.acs.org/doi/abs/10.1021/nl051526q},
143     Volume = {5},
144     Year = {2005},
145     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/nl051526q},
146     Bdsk-Url-2 = {http://dx.doi.org/10.1021/nl051526q}}
147    
148     @article{garde:PhysRevLett2009,
149     Author = {Shenogina, Natalia and Godawat, Rahul and Keblinski, Pawel and Garde, Shekhar},
150     Date-Added = {2011-07-25 16:06:12 -0400},
151     Date-Modified = {2011-07-26 13:58:33 -0400},
152     Doi = {10.1103/PhysRevLett.102.156101},
153     Journal = {Phys. Rev. Lett.},
154     Month = {Apr},
155     Number = {15},
156     Numpages = {4},
157     Pages = {156101},
158     Publisher = {American Physical Society},
159     Title = {How Wetting and Adhesion Affect Thermal Conductance of a Range of Hydrophobic to Hydrophilic Aqueous Interfaces},
160     Volume = {102},
161     Year = {2009},
162     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevLett.102.156101}}
163    
164 skuang 3749 @article{doi:10.1021/cr9801317,
165     Author = {Takano, Hajime and Kenseth, Jeremy R. and Wong, Sze-Shun and O'Brie, Janese C. and Porter, Marc D.},
166     Date-Added = {2011-07-25 14:50:24 -0400},
167     Date-Modified = {2011-07-25 14:50:24 -0400},
168     Doi = {10.1021/cr9801317},
169     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/cr9801317},
170 skuang 3755 Journal = {Chem. Rev.},
171 skuang 3749 Number = {10},
172     Pages = {2845-2890},
173     Title = {Chemical and Biochemical Analysis Using Scanning Force Microscopy},
174     Url = {http://pubs.acs.org/doi/abs/10.1021/cr9801317},
175     Volume = {99},
176     Year = {1999},
177     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/cr9801317},
178     Bdsk-Url-2 = {http://dx.doi.org/10.1021/cr9801317}}
179    
180     @article{doi:10.1021/ja00008a001,
181     Author = {Widrig, Cindra A. and Alves, Carla A. and Porter, Marc D.},
182     Date-Added = {2011-07-25 14:49:37 -0400},
183     Date-Modified = {2011-07-25 14:49:37 -0400},
184     Doi = {10.1021/ja00008a001},
185     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/ja00008a001},
186 skuang 3755 Journal = {J. Am. Chem. Soc.},
187 skuang 3749 Number = {8},
188     Pages = {2805-2810},
189     Title = {Scanning tunneling microscopy of ethanethiolate and n-octadecanethiolate monolayers spontaneously absorbed at gold surfaces},
190     Url = {http://pubs.acs.org/doi/abs/10.1021/ja00008a001},
191     Volume = {113},
192     Year = {1991},
193     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/ja00008a001},
194     Bdsk-Url-2 = {http://dx.doi.org/10.1021/ja00008a001}}
195    
196 skuang 3737 @article{doi:10.1021/la026493y,
197     Abstract = { We have studied butanethiol self-assembled monolayers on Au(100) using cyclic voltammetry and in situ scanning tunneling microscopy (STM). The butanethiol adlayer shows ordered domains with a striped structure, the stripes running parallel to the main crystallographic axes of the substrate. After modification the surface reveals a 50% coverage of monoatomic high gold islands, but no vacancy islands were observed. Reductive and oxidative desorption of the film, previously studied by electrochemistry, were monitored by STM. },
198     Author = {Loglio, F. and Schweizer, M. and Kolb, D. M.},
199     Date-Added = {2011-07-12 17:52:01 -0400},
200     Date-Modified = {2011-07-12 17:52:01 -0400},
201     Doi = {10.1021/la026493y},
202     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/la026493y},
203     Journal = {Langmuir},
204     Number = {3},
205     Pages = {830-834},
206     Title = {In Situ Characterization of Self-Assembled Butanethiol Monolayers on Au(100) Electrodes},
207     Url = {http://pubs.acs.org/doi/abs/10.1021/la026493y},
208     Volume = {19},
209     Year = {2003},
210     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/la026493y},
211     Bdsk-Url-2 = {http://dx.doi.org/10.1021/la026493y}}
212    
213     @article{doi:10.1021/j100035a033,
214     Author = {McDermott, Christie A. and McDermott, Mark T. and Green, John-Bruce and Porter, Marc D.},
215     Date-Added = {2011-07-12 17:51:55 -0400},
216     Date-Modified = {2011-07-12 17:51:55 -0400},
217     Doi = {10.1021/j100035a033},
218     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/j100035a033},
219 skuang 3755 Journal = {J. Phys. Chem.},
220 skuang 3737 Number = {35},
221     Pages = {13257-13267},
222     Title = {Structural Origins of the Surface Depressions at Alkanethiolate Monolayers on Au(111): A Scanning Tunneling and Atomic Force Microscopic Investigation},
223     Url = {http://pubs.acs.org/doi/abs/10.1021/j100035a033},
224     Volume = {99},
225     Year = {1995},
226     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/j100035a033},
227     Bdsk-Url-2 = {http://dx.doi.org/10.1021/j100035a033}}
228    
229 skuang 3736 @article{hautman:4994,
230     Author = {Joseph Hautman and Michael L. Klein},
231     Date-Added = {2011-07-11 18:27:57 -0400},
232     Date-Modified = {2011-07-11 18:27:57 -0400},
233     Doi = {10.1063/1.457621},
234 skuang 3755 Journal = {J. Chem. Phys.},
235 skuang 3736 Keywords = {MOLECULAR DYNAMICS CALCULATIONS; SIMULATION; MONOLAYERS; THIOLS; ALKYL COMPOUNDS; CHAINS; SURFACE STRUCTURE; GOLD; SUBSTRATES; CHEMISORPTION; SURFACE PROPERTIES},
236     Number = {8},
237     Pages = {4994-5001},
238     Publisher = {AIP},
239     Title = {Simulation of a monolayer of alkyl thiol chains},
240     Url = {http://link.aip.org/link/?JCP/91/4994/1},
241     Volume = {91},
242     Year = {1989},
243     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/91/4994/1},
244     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.457621}}
245    
246     @article{landman:1998,
247     Abstract = { Equilibrium structures and thermodynamic properties of dodecanethiol self-assembled monolayers on small (Au140) and larger (Au1289) gold nanocrystallites were investigated with the use of molecular dynamics simulations. Compact passivating monolayers are formed on the (111) and (100) facets of the nanocrystallites, with adsorption site geometries differing from those found on extended flat Au(111) and Au(100) surfaces, as well as with higher packing densities. At lower temperatures the passivating molecules organize into preferentially oriented molecular bundles with the molecules in the bundles aligned approximately parallel to each other. Thermal disordering starts at T ≳200 K, initiating at the boundaries of the bundles and involving generation of intramolecular conformational (gauche) defects which occur first at bonds near the chains' outer terminus and propagate inward toward the underlying gold nanocrystalline surface as the temperature is increased. The disordering process culminates in melting of the molecular bundles, resulting in a uniform orientational distribution of the molecules around the gold nanocrystallites. From the inflection points in the calculated caloric curves, melting temperatures were determined as 280 and 294 K for the monolayers adsorbed on the smaller and larger gold nanocrystallites, respectively. These temperatures are significantly lower than the melting temperature estimated for a self-assembled monolayer of dodecanethiol adsorbed on an extended Au(111) surface. The theoretically predicted disordering mechanisms and melting scenario, resulting in a temperature-broadened transition, support recent experimental investigations. },
248     Author = {Luedtke, W. D. and Landman, Uzi},
249     Date-Added = {2011-07-11 18:22:20 -0400},
250     Date-Modified = {2011-07-11 18:22:54 -0400},
251     Doi = {10.1021/jp981745i},
252     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp981745i},
253 skuang 3755 Journal = {J. Phys. Chem. B},
254 skuang 3736 Number = {34},
255     Pages = {6566-6572},
256     Title = {Structure and Thermodynamics of Self-Assembled Monolayers on Gold Nanocrystallites},
257     Url = {http://pubs.acs.org/doi/abs/10.1021/jp981745i},
258     Volume = {102},
259     Year = {1998},
260     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp981745i},
261     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp981745i}}
262    
263     @article{hase:2010,
264     Abstract = {Model non-equilibrium molecular dynamics (MD) simulations are presented of heat transfer from a hot Au {111} substrate to an alkylthiolate self-assembled monolayer (H-SAM) to assist in obtaining an atomic-level understanding of experiments by Wang et al. (Z. Wang{,} J. A. Carter{,} A. Lagutchev{,} Y. K. Koh{,} N.-H. Seong{,} D. G. Cahill{,} and D. D. Dlott{,} Science{,} 2007{,} 317{,} 787). Different models are considered to determine how they affect the heat transfer dynamics. They include temperature equilibrated (TE) and temperature gradient (TG) thermostat models for the Au(s) surface{,} and soft and stiff S/Au(s) models for bonding of the S-atoms to the Au(s) surface. A detailed analysis of the non-equilibrium heat transfer at the heterogeneous interface is presented. There is a short time temperature gradient within the top layers of the Au(s) surface. The S-atoms heat rapidly{,} much faster than do the C-atoms in the alkylthiolate chains. A high thermal conductivity in the H-SAM{,} perpendicular to the interface{,} results in nearly identical temperatures for the CH2 and CH3 groups versus time. Thermal-induced disorder is analyzed for the Au(s) substrate{,} the S/Au(s) interface and the H-SAM. Before heat transfer occurs from the hot Au(s) substrate to the H-SAM{,} there is disorder at the S/Au(s) interface and within the alkylthiolate chains arising from heat-induced disorder near the surface of hot Au(s). The short-time rapid heating of the S-atoms enhances this disorder. The increasing disorder of H-SAM chains with time results from both disorder at the Au/S interface and heat transfer to the H-SAM chains.},
265     Author = {Zhang, Yue and Barnes, George L. and Yan, Tianying and Hase, William L.},
266     Date-Added = {2011-07-11 16:02:11 -0400},
267     Date-Modified = {2011-07-11 16:06:39 -0400},
268     Doi = {10.1039/B923858C},
269     Issue = {17},
270     Journal = {Phys. Chem. Chem. Phys.},
271     Pages = {4435-4445},
272     Publisher = {The Royal Society of Chemistry},
273     Title = {Model non-equilibrium molecular dynamics simulations of heat transfer from a hot gold surface to an alkylthiolate self-assembled monolayer},
274     Url = {http://dx.doi.org/10.1039/B923858C},
275     Volume = {12},
276     Year = {2010},
277     Bdsk-Url-1 = {http://dx.doi.org/10.1039/B923858C}}
278    
279     @article{jiang:2002,
280 skuang 3733 Abstract = { A review is presented of this group's recent molecular simulation studies of self-assembled monolayers (SAMs) of alkanethiols on Au(111) surfaces. SAMs are very useful for the systematic alteration of the chemical and structural properties of a surface by varying chain length, tail group and composition. The scientific and technological importance of SAMs cannot be overestimated. The present work has been centred on studies of atomic scale surface properties of SAMs. First, configurational-bias Monte Carlo simulations were performed in both semigrand canonical and canonical ensembles to investigate the preferential adsorption and phase behaviour of mixed SAMs on Au(111) surfaces. Second, a novel hybrid molecular simulation technique was developed to simulate atomic force microscopy (AFM) over experimental timescales. The method combines a dynamic element model for the tip-cantilever system in AFM and a molecular dynamics relaxation approach for the sample. The hybrid simulation technique was applied to investigate atomic scale friction and adhesion properties of SAMs as a function of chain length. Third, dual-control-volume grand canonical molecular dynamics (DCV-GCMD) simulations were performed of transport diffusion of liquid water and methanol through a slit pore with both inner walls consisting of Au(111) surfaces covered by SAMs under a chemical potential gradient. Surface hydrophobicity was adjusted by varying the terminal group of CH3 (hydrophobic) or OH (hydrophilic) of the SAMs. Finally, ab initio quantum chemical calculations were performed on both clusters and periodic systems of methylthiols on Au(111) surfaces. Based on the ab initio results, an accurate force field capable of predicting c(4×2) superlattice structures over a wide range of temepratures for alkanethiols on Au(111) was developed. The extension of current work is discussed briefly. },
281     Author = {JIANG, SHAOYI},
282     Date-Added = {2011-07-08 17:51:59 -0400},
283 skuang 3736 Date-Modified = {2011-07-11 16:11:38 -0400},
284 skuang 3733 Doi = {10.1080/00268970210130948},
285     Eprint = {http://www.tandfonline.com/doi/pdf/10.1080/00268970210130948},
286     Journal = {Molecular Physics},
287     Number = {14},
288     Pages = {2261-2275},
289     Title = {Molecular simulation studies of self-assembled monolayers of alkanethiols on Au(111)},
290     Url = {http://www.tandfonline.com/doi/abs/10.1080/00268970210130948},
291     Volume = {100},
292     Year = {2002},
293     Bdsk-Url-1 = {http://www.tandfonline.com/doi/abs/10.1080/00268970210130948},
294     Bdsk-Url-2 = {http://dx.doi.org/10.1080/00268970210130948}}
295    
296     @article{doi:10.1021/la904855s,
297     Author = {Alper, Joshua and Hamad-Schifferli, Kimberly},
298     Date-Added = {2011-07-08 17:18:53 -0400},
299     Date-Modified = {2011-07-08 17:18:53 -0400},
300     Doi = {10.1021/la904855s},
301     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/la904855s},
302     Journal = {Langmuir},
303     Note = {PMID: 20166728},
304     Number = {6},
305     Pages = {3786-3789},
306     Title = {Effect of Ligands on Thermal Dissipation from Gold Nanorods},
307     Url = {http://pubs.acs.org/doi/abs/10.1021/la904855s},
308     Volume = {26},
309     Year = {2010},
310     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/la904855s},
311     Bdsk-Url-2 = {http://dx.doi.org/10.1021/la904855s}}
312    
313     @article{doi:10.1021/jp8051888,
314     Abstract = { Thermal transport between CTAB passivated gold nanorods and solvent is studied by an optical pump−probe technique. Increasing the free CTAB concentration from 1 mM to 10 mM causes a ∼3× increase in the CTAB layer's effective thermal interface conductance and a corresponding shift in the longitudinal surface plasmon resonance. The transition occurs near the CTAB critical micelle concentration, revealing the importance of the role of free ligand on thermal transport. },
315     Author = {Schmidt, Aaron J. and Alper, Joshua D. and Chiesa, Matteo and Chen, Gang and Das, Sarit K. and Hamad-Schifferli, Kimberly},
316     Date-Added = {2011-07-08 17:04:34 -0400},
317     Date-Modified = {2011-07-08 17:04:34 -0400},
318     Doi = {10.1021/jp8051888},
319     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp8051888},
320 skuang 3755 Journal = {J. Phys. Chem. C},
321 skuang 3733 Number = {35},
322     Pages = {13320-13323},
323     Title = {Probing the Gold Nanorod−Ligand−Solvent Interface by Plasmonic Absorption and Thermal Decay},
324     Url = {http://pubs.acs.org/doi/abs/10.1021/jp8051888},
325     Volume = {112},
326     Year = {2008},
327     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp8051888},
328     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp8051888}}
329    
330     @article{PhysRevB.80.195406,
331     Author = {Juv\'e, Vincent and Scardamaglia, Mattia and Maioli, Paolo and Crut, Aur\'elien and Merabia, Samy and Joly, Laurent and Del Fatti, Natalia and Vall\'ee, Fabrice},
332     Date-Added = {2011-07-08 16:36:39 -0400},
333     Date-Modified = {2011-07-08 16:36:39 -0400},
334     Doi = {10.1103/PhysRevB.80.195406},
335     Journal = {Phys. Rev. B},
336     Month = {Nov},
337     Number = {19},
338     Numpages = {6},
339     Pages = {195406},
340     Publisher = {American Physical Society},
341     Title = {Cooling dynamics and thermal interface resistance of glass-embedded metal nanoparticles},
342     Volume = {80},
343     Year = {2009},
344     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevB.80.195406}}
345    
346     @article{Wang10082007,
347     Abstract = {At the level of individual molecules, familiar concepts of heat transport no longer apply. When large amounts of heat are transported through a molecule, a crucial process in molecular electronic devices, energy is carried by discrete molecular vibrational excitations. We studied heat transport through self-assembled monolayers of long-chain hydrocarbon molecules anchored to a gold substrate by ultrafast heating of the gold with a femtosecond laser pulse. When the heat reached the methyl groups at the chain ends, a nonlinear coherent vibrational spectroscopy technique detected the resulting thermally induced disorder. The flow of heat into the chains was limited by the interface conductance. The leading edge of the heat burst traveled ballistically along the chains at a velocity of 1 kilometer per second. The molecular conductance per chain was 50 picowatts per kelvin.},
348     Author = {Wang, Zhaohui and Carter, Jeffrey A. and Lagutchev, Alexei and Koh, Yee Kan and Seong, Nak-Hyun and Cahill, David G. and Dlott, Dana D.},
349     Date-Added = {2011-07-08 16:20:05 -0400},
350     Date-Modified = {2011-07-08 16:20:05 -0400},
351     Doi = {10.1126/science.1145220},
352     Eprint = {http://www.sciencemag.org/content/317/5839/787.full.pdf},
353     Journal = {Science},
354     Number = {5839},
355     Pages = {787-790},
356     Title = {Ultrafast Flash Thermal Conductance of Molecular Chains},
357     Url = {http://www.sciencemag.org/content/317/5839/787.abstract},
358     Volume = {317},
359     Year = {2007},
360     Bdsk-Url-1 = {http://www.sciencemag.org/content/317/5839/787.abstract},
361     Bdsk-Url-2 = {http://dx.doi.org/10.1126/science.1145220}}
362    
363 skuang 3736 @article{hase:2011,
364 skuang 3733 Abstract = { In a previous article (Phys. Chem. Chem. Phys.2010, 12, 4435), nonequilibrium molecular dynamics (MD) simulations of heat transfer from a hot Au{111} substrate to an alkylthiolate self-assembled monolayer (H-SAM) were presented. The simulations were performed for an H-SAM chain length of eight carbon atoms, and a qualitative agreement with the experiments of Wang et al. (Science2007, 317, 787) was found. Here, simulation results are presented for heat transfer to H-SAM surfaces with carbon chain lengths of 10--20 carbon atoms. Relaxation times for heat transfer are extracted, compared with experiment, and a qualitative agreement is obtained. The same relaxation time is found from either the temperature of the H-SAM or the orientational disorder of the H-SAM versus time. For a simulation model with the Au substrate thermally equilibrated, the relaxation times determined from the simulations are approximately a factor of 4 larger than the experimental values. },
365     Author = {Manikandan, Paranjothy and Carter, Jeffrey A. and Dlott, Dana D. and Hase, William L.},
366     Date-Added = {2011-07-08 13:36:39 -0400},
367 skuang 3736 Date-Modified = {2011-07-11 16:07:01 -0400},
368 skuang 3733 Doi = {10.1021/jp200672e},
369     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp200672e},
370 skuang 3755 Journal = {J. Phys. Chem. C},
371 skuang 3733 Number = {19},
372     Pages = {9622-9628},
373     Title = {Effect of Carbon Chain Length on the Dynamics of Heat Transfer at a Gold/Hydrocarbon Interface: Comparison of Simulation with Experiment},
374     Url = {http://pubs.acs.org/doi/abs/10.1021/jp200672e},
375     Volume = {115},
376     Year = {2011},
377     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp200672e},
378     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp200672e}}
379    
380 skuang 3752 @article{UFF.rappe92,
381 skuang 3729 Author = {Rappe, A. K. and Casewit, C. J. and Colwell, K. S. and Goddard, W. A. and Skiff, W. M.},
382     Date-Added = {2011-06-29 14:04:33 -0400},
383 skuang 3752 Date-Modified = {2011-07-26 18:53:04 -0400},
384 skuang 3729 Doi = {10.1021/ja00051a040},
385     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/ja00051a040},
386     Journal = {Journal of the American Chemical Society},
387     Number = {25},
388     Pages = {10024-10035},
389     Title = {UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations},
390     Url = {http://pubs.acs.org/doi/abs/10.1021/ja00051a040},
391     Volume = {114},
392     Year = {1992},
393     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/ja00051a040},
394     Bdsk-Url-2 = {http://dx.doi.org/10.1021/ja00051a040}}
395    
396 skuang 3724 @article{doi:10.1021/jp034405s,
397     Abstract = { We use the universal force field (UFF) developed by Rapp{\'e} et al. (Rapp{\'e}, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard, W. A.; Skiff, W. M. J. Am. Chem. Soc. 1992, 114, 10024) and the specific classical potentials developed from ab initio calculations for Au−benzenedithiol (BDT) molecule interaction to perform molecular dynamics (MD) simulations of a BDT monolayer on an extended Au(111) surface. The simulation system consists of 100 BDT molecules and three rigid Au layers in a simulation box that is rhombic in the plane of the Au surface. A multiple time scale algorithm, the double-reversible reference system propagator algorithm (double RESPA) based on the Nos{\'e}−Hoover dynamics scheme, and the Ewald summation with a boundary correction term for the treatment of long-range electrostatic interactions in a 2-D slab have been incorporated into the simulation technique. We investigate the local bonding properties of Au−BDT contacts and molecular orientation distributions of BDT molecules. These results show that whereas different basis sets from ab initio calculations may generate different local bonding geometric parameters (the bond length, etc.) the packing structures of BDT molecules maintain approximately the same well-ordered herringbone structure with small peak differences in the probability distributions of global geometric parameters. The methodology developed here opens an avenue for classical simulations of a metal−molecule−metal complex in molecular electronics devices. },
398 skuang 3755 Author = {Leng, Y. and Keffer, David J. and Cummings, Peter T.},
399 skuang 3724 Date-Added = {2011-04-28 11:23:28 -0400},
400     Date-Modified = {2011-04-28 11:23:28 -0400},
401     Doi = {10.1021/jp034405s},
402     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp034405s},
403 skuang 3755 Journal = {J. Phys. Chem. B},
404 skuang 3724 Number = {43},
405     Pages = {11940-11950},
406     Title = {Structure and Dynamics of a Benzenedithiol Monolayer on a Au(111) Surface},
407     Url = {http://pubs.acs.org/doi/abs/10.1021/jp034405s},
408     Volume = {107},
409     Year = {2003},
410     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp034405s},
411     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp034405s}}
412    
413 skuang 3721 @article{OPLSAA,
414     Abstract = {null},
415     Annote = {doi: 10.1021/ja9621760},
416     Author = {Jorgensen, William L. and Maxwell, David S. and Tirado-Rives, Julian},
417     Date = {1996/01/01},
418     Date-Added = {2011-02-04 18:54:58 -0500},
419     Date-Modified = {2011-02-04 18:54:58 -0500},
420     Do = {10.1021/ja9621760},
421     Isbn = {0002-7863},
422 skuang 3755 Journal = {J. Am. Chem. Soc.},
423 skuang 3721 M3 = {doi: 10.1021/ja9621760},
424     Month = {01},
425     Number = {45},
426     Pages = {11225--11236},
427     Publisher = {American Chemical Society},
428     Title = {Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids},
429     Ty = {JOUR},
430     Url = {http://dx.doi.org/10.1021/ja9621760},
431     Volume = {118},
432     Year = {1996},
433     Year1 = {1996/01/01},
434     Bdsk-Url-1 = {http://dx.doi.org/10.1021/ja9621760}}
435    
436     @article{TraPPE-UA.alkylbenzenes,
437     Author = {Wick, Collin D. and Martin, Marcus G. and Siepmann, J. Ilja},
438     Date-Added = {2011-02-04 18:31:46 -0500},
439     Date-Modified = {2011-02-04 18:32:22 -0500},
440     Doi = {10.1021/jp001044x},
441     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp001044x},
442 skuang 3755 Journal = {J. Phys. Chem. B},
443 skuang 3721 Number = {33},
444     Pages = {8008-8016},
445     Title = {Transferable Potentials for Phase Equilibria. 4. United-Atom Description of Linear and Branched Alkenes and Alkylbenzenes},
446     Url = {http://pubs.acs.org/doi/abs/10.1021/jp001044x},
447     Volume = {104},
448     Year = {2000},
449     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp001044x},
450     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp001044x}}
451    
452     @article{TraPPE-UA.alkanes,
453     Author = {Martin, Marcus G. and Siepmann, J. Ilja},
454     Date-Added = {2011-02-04 18:01:31 -0500},
455     Date-Modified = {2011-02-04 18:02:19 -0500},
456     Doi = {10.1021/jp972543+},
457     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp972543%2B},
458 skuang 3755 Journal = {J. Phys. Chem. B},
459 skuang 3721 Number = {14},
460     Pages = {2569-2577},
461     Title = {Transferable Potentials for Phase Equilibria. 1. United-Atom Description of n-Alkanes},
462     Url = {http://pubs.acs.org/doi/abs/10.1021/jp972543%2B},
463     Volume = {102},
464     Year = {1998},
465     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp972543+},
466     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp972543+}}
467    
468     @article{TraPPE-UA.thiols,
469     Author = {Lubna, Nusrat and Kamath, Ganesh and Potoff, Jeffrey J. and Rai, Neeraj and Siepmann, J. Ilja},
470     Date-Added = {2011-02-04 17:51:03 -0500},
471     Date-Modified = {2011-02-04 17:54:20 -0500},
472     Doi = {10.1021/jp0549125},
473     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp0549125},
474 skuang 3755 Journal = {J. Phys. Chem. B},
475 skuang 3721 Number = {50},
476     Pages = {24100-24107},
477     Title = {Transferable Potentials for Phase Equilibria. 8. United-Atom Description for Thiols, Sulfides, Disulfides, and Thiophene},
478     Url = {http://pubs.acs.org/doi/abs/10.1021/jp0549125},
479     Volume = {109},
480     Year = {2005},
481     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp0549125},
482     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp0549125}}
483    
484     @article{vlugt:cpc2007154,
485     Author = {Philipp Schapotschnikow and Ren{\'e} Pool and Thijs J.H. Vlugt},
486     Date-Added = {2011-02-01 16:00:11 -0500},
487     Date-Modified = {2011-02-04 18:21:59 -0500},
488     Doi = {DOI: 10.1016/j.cpc.2007.02.028},
489     Issn = {0010-4655},
490 skuang 3755 Journal = {Comput. Phys. Commun.},
491 skuang 3721 Keywords = {Gold nanocrystals},
492     Note = {Proceedings of the Conference on Computational Physics 2006 - CCP 2006, Conference on Computational Physics 2006},
493     Number = {1-2},
494     Pages = {154 - 157},
495     Title = {Selective adsorption of alkyl thiols on gold in different geometries},
496     Url = {http://www.sciencedirect.com/science/article/B6TJ5-4N3WYP0-1/2/66dbe8892f456c230b9b8fcd9c23f456},
497     Volume = {177},
498     Year = {2007},
499     Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/B6TJ5-4N3WYP0-1/2/66dbe8892f456c230b9b8fcd9c23f456},
500     Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.cpc.2007.02.028}}
501    
502     @article{packmol,
503     Author = {L. Mart\'{\i}nez and R. Andrade and Ernesto G. Birgin and Jos{\'e} Mario Mart\'{\i}nez},
504     Bibsource = {DBLP, http://dblp.uni-trier.de},
505     Date-Added = {2011-02-01 15:13:02 -0500},
506     Date-Modified = {2011-02-01 15:14:25 -0500},
507     Ee = {http://dx.doi.org/10.1002/jcc.21224},
508 skuang 3755 Journal = {J. Comput. Chem.},
509 skuang 3721 Number = {13},
510     Pages = {2157-2164},
511     Title = {PACKMOL: A package for building initial configurations for molecular dynamics simulations},
512     Volume = {30},
513     Year = {2009}}
514    
515     @article{kuang:164101,
516     Author = {Shenyu Kuang and J. Daniel Gezelter},
517     Date-Added = {2011-01-31 17:12:35 -0500},
518     Date-Modified = {2011-01-31 17:12:35 -0500},
519     Doi = {10.1063/1.3499947},
520     Eid = {164101},
521 skuang 3755 Journal = {J. Chem. Phys.},
522 skuang 3721 Keywords = {linear momentum; molecular dynamics method; thermal conductivity; total energy; viscosity},
523     Number = {16},
524     Numpages = {9},
525     Pages = {164101},
526     Publisher = {AIP},
527     Title = {A gentler approach to RNEMD: Nonisotropic velocity scaling for computing thermal conductivity and shear viscosity},
528     Url = {http://link.aip.org/link/?JCP/133/164101/1},
529     Volume = {133},
530     Year = {2010},
531     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/133/164101/1},
532     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.3499947}}
533    
534 skuang 3719 @article{muller:014102,
535     Author = {Thomas J. Muller and Michael Al-Samman and Florian Muller-Plathe},
536     Date-Added = {2010-09-16 19:19:25 -0400},
537     Date-Modified = {2010-09-16 19:19:25 -0400},
538     Doi = {10.1063/1.2943312},
539     Eid = {014102},
540     Journal = {The Journal of Chemical Physics},
541     Keywords = {intramolecular mechanics; Lennard-Jones potential; molecular dynamics method; thermostats; viscosity},
542     Number = {1},
543     Numpages = {8},
544     Pages = {014102},
545     Publisher = {AIP},
546     Title = {The influence of thermostats and manostats on reverse nonequilibrium molecular dynamics calculations of fluid viscosities},
547     Url = {http://link.aip.org/link/?JCP/129/014102/1},
548     Volume = {129},
549     Year = {2008},
550     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/129/014102/1},
551     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.2943312}}
552    
553     @article{wolf:8254,
554     Author = {D. Wolf and P. Keblinski and S. R. Phillpot and J. Eggebrecht},
555     Date-Added = {2010-09-16 19:01:51 -0400},
556     Date-Modified = {2010-09-16 19:01:51 -0400},
557     Doi = {10.1063/1.478738},
558     Journal = {J. Chem. Phys.},
559     Keywords = {POTENTIAL ENERGY; COULOMB FIELD; COULOMB ENERGY; LATTICE PARAMETERS; potential energy functions; lattice dynamics; lattice energy},
560     Number = {17},
561     Pages = {8254-8282},
562     Publisher = {AIP},
563     Title = {Exact method for the simulation of Coulombic systems by spherically truncated, pairwise r[sup -1] summation},
564     Url = {http://link.aip.org/link/?JCP/110/8254/1},
565     Volume = {110},
566     Year = {1999},
567     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/110/8254/1},
568     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.478738}}
569    
570     @article{HeX:1993,
571     Abstract = {A recently developed non-equilibrium molecular dynamics algorithm for
572     heat conduction is used to compute the thermal conductivity, thermal
573     diffusion factor, and heat of transfer in binary Lennard-Jones
574     mixtures. An internal energy flux is established with local source and
575     sink terms for kinetic energy.
576     Simulations of isotope mixtures covering a range of densities and mass
577     ratios show that the lighter component prefers the hot side of the
578     system at stationary state. This implies a positive thermal diffusion
579     factor in the definition we have adopted here. The molecular basis for
580     the Soret effect is studied by analysing the energy flux through the
581     system. In all cases we found that there is a difference in the
582     relative contributions when we compare the hot and cold sides of the
583     system. The contribution from the lighter component is predominantly
584     flux of kinetic energy, and this contribution increases from the cold
585     to the hot side. The contribution from the heavier component is
586     predominantly energy transfer through molecular interactions, and it
587     increases from the hot to the cold side. This explains why the thermal
588     diffusion factor is positive; heal is conducted more effectively
589     through the system if the lighter component is enriched at the hot
590     side. Even for very large heat fluxes, we find a linear or almost
591     linear temperature profile through the system, and a constant thermal
592     conductivity. The entropy production per unit volume and unit time
593     increases from the hot to the cold side.},
594     Author = {Hafskjold, B and Ikeshoji, T and Ratkje, SK},
595     Date-Added = {2010-09-15 16:52:45 -0400},
596     Date-Modified = {2010-09-15 16:54:23 -0400},
597     Issn = {{0026-8976}},
598     Journal = {Mol. Phys.},
599     Month = {DEC},
600     Number = {6},
601     Pages = {1389-1412},
602     Title = {ON THE MOLECULAR MECHANISM OF THERMAL-DIFFUSION IN LIQUIDS},
603     Unique-Id = {ISI:A1993MQ34500009},
604     Volume = {80},
605 skuang 3721 Year = {1993}}
606 skuang 3719
607     @article{HeX:1994,
608     Abstract = {This paper presents a new algorithm for non-equilibrium molecular
609     dynamics, where a temperature gradient is established in a system with
610     periodic boundary conditions. At each time step in the simulation, a
611     fixed amount of energy is supplied to a hot region by scaling the
612     velocity of each particle in it, subject to conservation of total
613     momentum. An equal amount of energy is likewise withdrawn from a cold
614     region at each time step. Between the hot and cold regions is a region
615     through which an energy flux is established. Two configurations of hot
616     and cold regions are proposed. Using a stacked layer structure, the
617     instantaneous local energy flux for a 128-particle Lennard-Jones system
618     in liquid was found to be in good agreement with the macroscopic theory
619     of heat conduction at stationary state, except in and near the hot and
620     cold regions. Thermal conductivity calculated for the 128-particle
621     system was about 10\% smaller than the literature value obtained by
622     molecular dynamics calculations. One run with a 1024-particle system
623     showed an agreement with the literature value within statistical error
624     (1-2\%). Using a unit cell with a cold spherical region at the centre
625     and a hot region in the perimeter of the cube, an initial gaseous state
626     of argon was separated into gas and liquid phases. Energy fluxes due to
627     intermolecular energy transfer and transport of kinetic energy dominate
628     in the liquid and gas phases, respectively.},
629     Author = {Ikeshoji, T and Hafskjold, B},
630     Date-Added = {2010-09-15 16:52:45 -0400},
631     Date-Modified = {2010-09-15 16:54:37 -0400},
632     Issn = {0026-8976},
633     Journal = {Mol. Phys.},
634     Month = {FEB},
635     Number = {2},
636     Pages = {251-261},
637     Title = {NONEQUILIBRIUM MOLECULAR-DYNAMICS CALCULATION OF HEAT-CONDUCTION IN LIQUID AND THROUGH LIQUID-GAS INTERFACE},
638     Unique-Id = {ISI:A1994MY17400001},
639     Volume = {81},
640 skuang 3721 Year = {1994}}
641 skuang 3719
642     @article{plech:195423,
643     Author = {A. Plech and V. Kotaidis and S. Gresillon and C. Dahmen and G. von Plessen},
644     Date-Added = {2010-08-12 11:34:55 -0400},
645     Date-Modified = {2010-08-12 11:34:55 -0400},
646     Eid = {195423},
647     Journal = {Phys. Rev. B},
648     Keywords = {gold; laser materials processing; melting; nanoparticles; time resolved spectra; X-ray scattering; lattice dynamics; high-speed optical techniques; cooling; thermal resistance; thermal conductivity; long-range order},
649     Local-Url = {file://localhost/Users/charles/Documents/Papers/PhysRevB_70_195423.pdf},
650     Number = {19},
651     Numpages = {7},
652     Pages = {195423},
653     Publisher = {APS},
654     Title = {Laser-induced heating and melting of gold nanoparticles studied by time-resolved x-ray scattering},
655     Url = {http://link.aps.org/abstract/PRB/v70/e195423},
656     Volume = {70},
657     Year = {2004},
658     Bdsk-Url-1 = {http://link.aps.org/abstract/PRB/v70/e195423}}
659    
660     @article{Wilson:2002uq,
661     Abstract = {We investigate suspensions of 3-10 nm diameter Au, Pt, and AuPd nanoparticles as probes of thermal transport in fluids and determine approximate values for the thermal conductance G of the particle/fluid interfaces. Subpicosecond lambda=770 nm optical pulses from a Ti:sapphire mode-locked laser are used to heat the particles and interrogate the decay of their temperature through time-resolved changes in optical absorption. The thermal decay of alkanethiol-terminated Au nanoparticles in toluene is partially obscured by other effects; we set a lower limit G>20 MW m(-2)K(-1). The thermal decay of citrate-stabilized Pt nanoparticles in water gives Gapproximate to130 MW m(-2) K-1. AuPd alloy nanoparticles in toluene and stabilized by alkanethiol termination give Gapproximate to5 MW m(-2) K-1. The measured G are within a factor of 2 of theoretical estimates based on the diffuse-mismatch model.},
662     Author = {Wilson, OM and Hu, XY and Cahill, DG and Braun, PV},
663     Date-Added = {2010-08-12 11:31:02 -0400},
664     Date-Modified = {2010-08-12 11:31:02 -0400},
665     Doi = {ARTN 224301},
666     Journal = {Phys. Rev. B},
667     Local-Url = {file://localhost/Users/charles/Documents/Papers/e2243010.pdf},
668 skuang 3755 Pages = {224301},
669 skuang 3719 Title = {Colloidal metal particles as probes of nanoscale thermal transport in fluids},
670     Volume = {66},
671     Year = {2002},
672     Bdsk-Url-1 = {http://dx.doi.org/224301}}
673    
674     @article{cahill:793,
675     Author = {David G. Cahill and Wayne K. Ford and Kenneth E. Goodson and Gerald D. Mahan and Arun Majumdar and Humphrey J. Maris and Roberto Merlin and Simon R. Phillpot},
676     Date-Added = {2010-08-06 17:02:22 -0400},
677     Date-Modified = {2010-08-06 17:02:22 -0400},
678     Doi = {10.1063/1.1524305},
679 skuang 3755 Journal = {J. Appl. Phys.},
680 skuang 3719 Keywords = {nanostructured materials; reviews; thermal conductivity; interface phenomena; molecular dynamics method; thermal management (packaging); Boltzmann equation; carbon nanotubes; porosity; semiconductor superlattices; thermoreflectance; interface phonons; thermoelectricity; phonon-phonon interactions},
681     Number = {2},
682     Pages = {793-818},
683     Publisher = {AIP},
684     Title = {Nanoscale thermal transport},
685     Url = {http://link.aip.org/link/?JAP/93/793/1},
686     Volume = {93},
687     Year = {2003},
688     Bdsk-Url-1 = {http://link.aip.org/link/?JAP/93/793/1},
689     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.1524305}}
690    
691     @inbook{Hoffman:2001sf,
692     Address = {New York},
693     Annote = {LDR 01107cam 2200253 a 4500
694     001 12358442
695     005 20070910074423.0
696     008 010326s2001 nyua b 001 0 eng
697     906 $a7$bcbc$corignew$d1$eocip$f20$gy-gencatlg
698     925 0 $aacquire$b2 shelf copies$xpolicy default
699     955 $ato ASCD pc23 03-26-01; jp20 03-27-01 to subj; jp99 to SL 03-27-01; jp85 to Dewey 03-27-01; aa01 03-28-01$aps02 2001-10-04 bk rec'd, to CIP ver.;$fpv04 2001-10-31 CIP ver to BCCD$ajp01 2001-12-06 c. 2 to BCCD
700     010 $a 2001028633
701     020 $a0824704436 (acid-free paper)
702     040 $aDLC$cDLC$dDLC
703     050 00 $aQA297$b.H588 2001
704     082 00 $a519.4$221
705     100 1 $aHoffman, Joe D.,$d1934-
706     245 10 $aNumerical methods for engineers and scientists /$cJoe D. Hoffman.
707     250 $a2nd ed., rev. and expanded.
708     260 $aNew York :$bMarcel Dekker,$cc2001.
709     300 $axi, 823 p. :$bill. ;$c26 cm.
710     504 $aIncludes bibliographical references (p. 775-777) and index.
711     650 0 $aNumerical analysis.
712     856 42 $3Publisher description$uhttp://www.loc.gov/catdir/enhancements/fy0743/2001028633-d.html
713     },
714     Author = {Hoffman, Joe D.},
715     Call-Number = {QA297},
716     Date-Added = {2010-07-15 16:32:02 -0400},
717     Date-Modified = {2010-07-19 16:49:37 -0400},
718     Dewey-Call-Number = {519.4},
719     Edition = {2nd ed., rev. and expanded},
720     Genre = {Numerical analysis},
721     Isbn = {0824704436 (acid-free paper)},
722     Library-Id = {2001028633},
723     Pages = {157},
724     Publisher = {Marcel Dekker},
725     Title = {Numerical methods for engineers and scientists},
726     Url = {http://www.loc.gov/catdir/enhancements/fy0743/2001028633-d.html},
727     Year = {2001},
728     Bdsk-Url-1 = {http://www.loc.gov/catdir/enhancements/fy0743/2001028633-d.html}}
729    
730     @article{Vardeman:2008fk,
731     Abstract = {Using molecular dynamics simulations, we have simulated the rapid cooling experienced by bimetallic nanoparticles following laser excitation at the plasmon resonance and find evidence that glassy beads, specifically Ag-Cu bimetallic particles at the eutectic composition (60\% Ag, 40\% Cu), can be formed during these experiments. The bimetallic nanoparticles are embedded in an implicit solvent with a viscosity tuned to yield cooling curves that match the experimental cooling behavior as closely as possible. Because the nanoparticles have a large surface-to-volume ratio, experimentally realistic cooling rates are accessible via relatively short simulations. The presence of glassy structural features was verified using bond orientational order parameters that are sensitive to the formation of local icosahedral ordering in condensed phases. As the particles cool from the liquid droplet state into glassy beads, a silver-rich monolayer develops on the outer surface and local icosahedra can develop around the silver atoms in this monolayer. However, we observe a strong preference for the local icosahedral ordering around the copper atoms in the particles. As the particles cool, these local icosahedral structures grow to include a larger fraction of the atoms in the nanoparticle, eventually leading to a glassy nanosphere.},
732     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
733     Author = {{Vardeman II}, Charles F. and Gezelter, J. Daniel},
734     Date-Added = {2010-07-13 11:48:22 -0400},
735     Date-Modified = {2010-07-19 16:20:01 -0400},
736     Doi = {DOI 10.1021/jp710063g},
737     Isi = {000253512400021},
738     Isi-Recid = {160903603},
739     Isi-Ref-Recids = {144152922 81445483 98913099 146167982 55512304 50985260 52031423 29272311 151055545 134895634 130292830 101988637 100757730 98524559 123952006 6025131 59492217 2078548 135495737 136941603 90709964 160903604 130558416 113800688 30137926 117888234 63632785 38926953 158293976 135246439 125693419 125789026 155583142 156430464 65888620 130160487 97576420 109490154 150229560 116057234 134425927 142869781 121706070 89390336 119150946 143383743 64066027 171282998 142688207 51429664 84591083 127696312 58160909 155366996 155654757 137551818 128633299 109033408 120457571 171282999 124947095 126857514 49630702 64115284 84689627 71842426 96309965 79034659 92658330 146168029 119238036 144824430 132319357 160903607 171283000 100274448},
740     Journal = {J. Phys. Chem. C},
741     Month = mar,
742     Number = {9},
743     Pages = {3283-3293},
744     Publisher = {AMER CHEMICAL SOC},
745     Times-Cited = {0},
746     Title = {Simulations of laser-induced glass formation in Ag-Cu nanoparticles},
747     Volume = {112},
748     Year = {2008},
749     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000253512400021}}
750    
751     @article{PhysRevB.59.3527,
752     Author = {Qi, Yue and \c{C}a\v{g}in, Tahir and Kimura, Yoshitaka and {Goddard III}, William A.},
753     Date-Added = {2010-07-13 11:44:08 -0400},
754     Date-Modified = {2010-07-13 11:44:08 -0400},
755     Doi = {10.1103/PhysRevB.59.3527},
756     Journal = {Phys. Rev. B},
757     Local-Url = {file://localhost/Users/charles/Documents/Papers/Qi/1999.pdf},
758     Month = {Feb},
759     Number = {5},
760     Numpages = {6},
761     Pages = {3527-3533},
762     Publisher = {American Physical Society},
763     Title = {Molecular-dynamics simulations of glass formation and crystallization in binary liquid metals:\quad{}{C}u-{A}g and {C}u-{N}i},
764     Volume = {59},
765     Year = {1999},
766     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevB.59.3527}}
767    
768     @article{Medasani:2007uq,
769     Abstract = {We employ first-principles and empirical computational methods to study the surface energy and surface stress of silver nanoparticles. The structures, cohesive energies, and lattice contractions of spherical Ag nanoclusters in the size range 0.5-5.5 nm are analyzed using two different theoretical approaches: an ab initio density functional pseudopotential technique combined with the generalized gradient approximation and the embedded atom method. The surface energies and stresses obtained via the embedded atom method are found to be in good agreement with those predicted by the gradient-corrected ab initio density functional formalism. We estimate the surface energy of Ag nanoclusters to be in the range of 1.0-2.2 J/m(2). Our values are close to the bulk surface energy of silver, but are significantly lower than the recently reported value of 7.2 J/m(2) for free Ag nanoparticles derived from the Kelvin equation.},
770     Author = {Medasani, Bharat and Park, Young Ho and Vasiliev, Igor},
771     Date-Added = {2010-07-13 11:43:15 -0400},
772     Date-Modified = {2010-07-13 11:43:15 -0400},
773     Doi = {ARTN 235436},
774     Journal = {Phys. Rev. B},
775     Local-Url = {file://localhost/Users/charles/Documents/Papers/PhysRevB_75_235436.pdf},
776     Title = {Theoretical study of the surface energy, stress, and lattice contraction of silver nanoparticles},
777     Volume = {75},
778     Year = {2007},
779     Bdsk-Url-1 = {http://dx.doi.org/235436}}
780    
781     @article{Wang:2005qy,
782     Abstract = {The surface structures of cubo-octahedral Pt-Mo nanoparticles have been investigated using the Monte Carlo method and modified embedded atom method potentials that we developed for Pt-Mo alloys. The cubo-octahedral Pt-Mo nanoparticles are constructed with disordered fcc configurations, with sizes from 2.5 to 5.0 nm, and with Pt concentrations from 60 to 90 atom \%. The equilibrium Pt-Mo nanoparticle configurations were generated through Monte Carlo simulations allowing both atomic displacements and element exchanges at 600 K. We predict that the Pt atoms weakly segregate to the surfaces of such nanoparticles. The Pt concentrations in the surface are calculated to be 5-14 atom \% higher than the Pt concentrations of the nanoparticles. Moreover, the Pt atoms preferentially segregate to the facet sites of the surface, while the Pt and Mo atoms tend to alternate along the edges and vertexes of these nanoparticles. We found that decreasing the size or increasing the Pt concentration leads to higher Pt concentrations but fewer Pt-Mo pairs in the Pt-Mo nanoparticle surfaces.},
783     Author = {Wang, GF and Van Hove, MA and Ross, PN and Baskes, MI},
784     Date-Added = {2010-07-13 11:42:50 -0400},
785     Date-Modified = {2010-07-13 11:42:50 -0400},
786     Doi = {DOI 10.1021/jp050116n},
787     Journal = {J. Phys. Chem. B},
788     Pages = {11683-11692},
789     Title = {Surface structures of cubo-octahedral Pt-Mo catalyst nanoparticles from Monte Carlo simulations},
790     Volume = {109},
791     Year = {2005},
792     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp050116n}}
793    
794     @article{Chui:2003fk,
795     Abstract = {Molecular dynamics simulations of a platinum nanocluster consisting 250 atoms were performed at different temperatures between 70 K and 298 K. The semi-empirical, many-body Sutton-Chen (SC) potential was used to model the interatomic interaction in the metallic system. Regions of core or bulk-like atoms and surface atoms can be defined from analyses of structures, atomic coordination, and the local density function of atoms as defined in the SC potential. The core atoms in the nanoparticle behave as bulk-like metal atoms with a predominant face centered cubic (fcc) packing. The interface between surface atoms and core atoms is marked by a peak in the local density function and corresponds to near surface atoms. The near surface atoms and surface atoms prefer a hexagonal closed packing (hcp). The temperature and size effects on structures of the nanoparticle and the dynamics of the surface region and the core region are discussed.},
796     Author = {Chui, YH and Chan, KY},
797     Date-Added = {2010-07-13 11:42:32 -0400},
798     Date-Modified = {2010-07-13 11:42:32 -0400},
799     Doi = {DOI 10.1039/b302122j},
800     Journal = {Phys. Chem. Chem. Phys.},
801     Pages = {2869-2874},
802     Title = {Analyses of surface and core atoms in a platinum nanoparticle},
803     Volume = {5},
804     Year = {2003},
805     Bdsk-Url-1 = {http://dx.doi.org/10.1039/b302122j}}
806    
807     @article{Sankaranarayanan:2005lr,
808     Abstract = {Bimetallic nanoclusters are of interest because of their utility in catalysis and sensors, The thermal characteristics of bimetallic Pt-Pd nanoclusters of different sizes and compositions were investigated through molecular dynamics simulations using quantum Sutton-Chen (QSC) many-body potentials, Monte Carlo simulations employing the bond order simulation model were used to generate minimum energy configurations, which were utilized as the starting point for molecular dynamics simulations. The calculated initial configurations of the Pt-Pd system consisted of surface segregated Pd atoms and a Pt-rich core, Melting characteristics were studied by following the changes in potential energy and heat capacity as functions of temperature, Structural changes accompanying the thermal evolution were studied by the bond order parameter method. The Pt-Pd clusters exhibited a two-stage melting: surface melting of the external Pd atoms followed by homogeneous melting of the Pt core. These transitions were found to depend on the composition and size of the nanocluster. Melting temperatures of the nanoclusters were found to be much lower than those of bulk Pt and Pd. Bulk melting temperatures of Pd and Pt simulated using periodic boundary conditions compare well with experimental values, thus providing justification for the use of QSC potentials in these simulations. Deformation parameters were calculated to characterize the structural evolution resulting from diffusion of Pd and Pt atoms, The results indicate that in Pd-Pt clusters, Pd atoms prefer to remain at the surface even after melting. In addition, Pt also tends to diffuse to the surface after melting due to reduction of its surface energy with temperature. This mixing pattern is different from those reported in some of the earlier Studies on melting of bimetallics.},
809     Author = {Sankaranarayanan, SKRS and Bhethanabotla, VR and Joseph, B},
810     Date-Added = {2010-07-13 11:42:13 -0400},
811     Date-Modified = {2010-07-13 11:42:13 -0400},
812     Doi = {ARTN 195415},
813     Journal = {Phys. Rev. B},
814     Title = {Molecular dynamics simulation study of the melting of Pd-Pt nanoclusters},
815     Volume = {71},
816     Year = {2005},
817     Bdsk-Url-1 = {http://dx.doi.org/195415}}
818    
819     @article{Vardeman-II:2001jn,
820     Author = {C.~F. {Vardeman II} and J.~D. Gezelter},
821     Date-Added = {2010-07-13 11:41:50 -0400},
822     Date-Modified = {2010-07-13 11:41:50 -0400},
823     Journal = {J. Phys. Chem. A},
824     Local-Url = {file://localhost/Users/charles/Documents/Papers/Vardeman%20II/2001.pdf},
825     Number = {12},
826     Pages = {2568},
827     Title = {Comparing models for diffusion in supercooled liquids: The eutectic composition of the {A}g-{C}u alloy},
828     Volume = {105},
829     Year = {2001}}
830    
831     @article{ShibataT._ja026764r,
832     Author = {Shibata, T. and Bunker, B.A. and Zhang, Z. and Meisel, D. and Vardeman, C.F. and Gezelter, J.D.},
833     Date-Added = {2010-07-13 11:41:36 -0400},
834     Date-Modified = {2010-07-13 11:41:36 -0400},
835     Journal = {J. Amer. Chem. Soc.},
836     Local-Url = {file://localhost/Users/charles/Documents/Papers/ja026764r.pdf},
837     Number = {40},
838     Pages = {11989-11996},
839     Title = {Size-Dependent Spontaneous Alloying of {A}u-{A}g Nanoparticles},
840     Url = {http://dx.doi.org/10.1021/ja026764r},
841     Volume = {124},
842     Year = {2002},
843     Bdsk-Url-1 = {http://dx.doi.org/10.1021/ja026764r}}
844    
845     @article{Chen90,
846     Author = {A.~P. Sutton and J. Chen},
847     Date-Added = {2010-07-13 11:40:48 -0400},
848     Date-Modified = {2010-07-13 11:40:48 -0400},
849 skuang 3755 Journal = {Philos. Mag. Lett.},
850 skuang 3719 Pages = {139-146},
851     Title = {Long-Range Finnis Sinclair Potentials},
852     Volume = 61,
853     Year = {1990}}
854    
855     @article{PhysRevB.33.7983,
856     Author = {Foiles, S. M. and Baskes, M. I. and Daw, M. S.},
857     Date-Added = {2010-07-13 11:40:28 -0400},
858     Date-Modified = {2010-07-13 11:40:28 -0400},
859     Doi = {10.1103/PhysRevB.33.7983},
860     Journal = {Phys. Rev. B},
861     Local-Url = {file://localhost/Users/charles/Documents/Papers/p7983_1.pdf},
862     Month = {Jun},
863     Number = {12},
864     Numpages = {8},
865     Pages = {7983-7991},
866     Publisher = {American Physical Society},
867     Title = {Embedded-atom-method functions for the fcc metals {C}u, {A}g, {A}u, {N}i, {P}d, {P}t, and their alloys},
868     Volume = {33},
869     Year = {1986},
870     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevB.33.7983}}
871    
872     @article{hoover85,
873     Author = {W.~G. Hoover},
874     Date-Added = {2010-07-13 11:24:30 -0400},
875     Date-Modified = {2010-07-13 11:24:30 -0400},
876     Journal = pra,
877     Pages = 1695,
878     Title = {Canonical dynamics: Equilibrium phase-space distributions},
879     Volume = 31,
880     Year = 1985}
881    
882     @article{melchionna93,
883     Author = {S. Melchionna and G. Ciccotti and B.~L. Holian},
884     Date-Added = {2010-07-13 11:22:17 -0400},
885     Date-Modified = {2010-07-13 11:22:17 -0400},
886     Journal = {Mol. Phys.},
887     Pages = {533-544},
888     Title = {Hoover {\sc npt} dynamics for systems varying in shape and size},
889     Volume = 78,
890     Year = 1993}
891    
892     @misc{openmd,
893     Author = {J. Daniel Gezelter and Shenyu Kuang and James Marr and Kelsey Stocker and Chunlei Li and Charles F. Vardeman and Teng Lin and Christopher J. Fennell and Xiuquan Sun and Kyle Daily and Yang Zheng and Matthew A. Meineke},
894     Date-Added = {2010-07-13 11:16:00 -0400},
895     Date-Modified = {2010-07-19 16:27:45 -0400},
896     Howpublished = {Available at {\tt http://openmd.net}},
897     Title = {{OpenMD, an open source engine for molecular dynamics}}}
898    
899     @inbook{AshcroftMermin,
900 skuang 3721 Address = {Belmont, CA},
901 skuang 3719 Author = {Neil W. Ashcroft and N.~David Mermin},
902     Date-Added = {2010-07-12 14:26:49 -0400},
903     Date-Modified = {2010-07-22 13:37:20 -0400},
904     Pages = {21},
905     Publisher = {Brooks Cole},
906     Title = {Solid State Physics},
907 skuang 3721 Year = {1976}}
908 skuang 3719
909     @book{WagnerKruse,
910     Address = {Berlin},
911     Author = {W. Wagner and A. Kruse},
912     Date-Added = {2010-07-12 14:10:29 -0400},
913     Date-Modified = {2010-07-12 14:13:44 -0400},
914     Publisher = {Springer-Verlag},
915     Title = {Properties of Water and Steam, the Industrial Standard IAPWS-IF97 for the Thermodynamic Properties and Supplementary Equations for Other Properties},
916 skuang 3721 Year = {1998}}
917 skuang 3719
918     @article{ISI:000266247600008,
919     Abstract = {Temperature dependence of viscosity of butyl-3-methylimidazolium
920     hexafluorophosphate is investigated by non-equilibrium molecular
921     dynamics simulations with cosine-modulated force in the temperature
922     range from 360 to 480K. It is shown that this method is able to
923     correctly predict the shear viscosity. The simulation setting and
924     choice of the force field are discussed in detail. The all-atom force
925     field exhibits a bad convergence and the shear viscosity is
926     overestimated, while the simple united atom model predicts the kinetics
927     very well. The results are compared with the equilibrium molecular
928     dynamics simulations. The relationship between the diffusion
929     coefficient and viscosity is examined by means of the hydrodynamic
930     radii calculated from the Stokes-Einstein equation and the solvation
931     properties are discussed.},
932     Address = {4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND},
933     Affiliation = {Kolafa, J (Reprint Author), Prague Inst Chem Technol, Dept Phys Chem, CR-16628 Prague, Czech Republic. {[}Picalek, Jan; Kolafa, Jiri] Prague Inst Chem Technol, Dept Phys Chem, CR-16628 Prague, Czech Republic.},
934     Author = {Picalek, Jan and Kolafa, Jiri},
935     Author-Email = {jiri.kolafa@vscht.cz},
936     Date-Added = {2010-04-16 13:19:12 -0400},
937     Date-Modified = {2010-04-16 13:19:12 -0400},
938     Doc-Delivery-Number = {448FD},
939     Doi = {10.1080/08927020802680703},
940     Funding-Acknowledgement = {Czech Science Foundation {[}203/07/1006]; Czech Ministry of Education {[}LC512]},
941     Funding-Text = {We gratefully acknowledge a support from the Czech Science Foundation (project 203/07/1006) and the computing facilities from the Czech Ministry of Education (Center for Biomolecules and Complex Molecular Systems, project LC512).},
942     Issn = {0892-7022},
943     Journal = {Mol. Simul.},
944     Journal-Iso = {Mol. Simul.},
945     Keywords = {room temperature ionic liquids; viscosity; non-equilibrium molecular dynamics; solvation; imidazolium},
946     Keywords-Plus = {1-N-BUTYL-3-METHYLIMIDAZOLIUM HEXAFLUOROPHOSPHATE; PHYSICOCHEMICAL PROPERTIES; COMPUTER-SIMULATION; PHYSICAL-PROPERTIES; IMIDAZOLIUM CATION; FORCE-FIELD; AB-INITIO; TEMPERATURE; CHLORIDE; CONDUCTIVITY},
947     Language = {English},
948     Number = {8},
949     Number-Of-Cited-References = {50},
950     Pages = {685-690},
951     Publisher = {TAYLOR \& FRANCIS LTD},
952     Subject-Category = {Chemistry, Physical; Physics, Atomic, Molecular \& Chemical},
953     Times-Cited = {2},
954     Title = {Shear viscosity of ionic liquids from non-equilibrium molecular dynamics simulation},
955     Type = {Article},
956     Unique-Id = {ISI:000266247600008},
957     Volume = {35},
958     Year = {2009},
959     Bdsk-Url-1 = {http://dx.doi.org/10.1080/08927020802680703%7D}}
960    
961     @article{Vasquez:2004fk,
962     Abstract = {A method for fast calculation of viscosity from molecular dynamics simulation is revisited. The method consists of using a steady-state periodic perturbation. A methodology to choose the amplitude of the external perturbation, which is one of the major practical issues in the original technique of Gosling et al. {$[$}Mol. Phys. 26: 1475 (1973){$]$} is proposed. The amplitude of the perturbation required for fast caculations and the viscosity values for wide ranges of temperature and density of the Lennard-Jones (LJ) model fluid are reported. The viscosity results are in agreement with recent LJ viscosity calculations. Additionally, the simulations demonstrate that the proposed approach is suitable to efficiently generate viscosity data of good quality.},
963     Author = {Vasquez, V. R. and Macedo, E. A. and Zabaloy, M. S.},
964     Date = {2004/11/02/},
965     Date-Added = {2010-04-16 13:18:48 -0400},
966     Date-Modified = {2010-04-16 13:18:48 -0400},
967     Day = {02},
968     Journal = {Int. J. Thermophys.},
969     M3 = {10.1007/s10765-004-7736-3},
970     Month = {11},
971     Number = {6},
972     Pages = {1799--1818},
973     Title = {Lennard-Jones Viscosities in Wide Ranges of Temperature and Density: Fast Calculations Using a Steady--State Periodic Perturbation Method},
974     Ty = {JOUR},
975     Url = {http://dx.doi.org/10.1007/s10765-004-7736-3},
976     Volume = {25},
977     Year = {2004},
978     Bdsk-Url-1 = {http://dx.doi.org/10.1007/s10765-004-7736-3}}
979    
980     @article{hess:209,
981     Author = {Berk Hess},
982     Date-Added = {2010-04-16 12:37:37 -0400},
983     Date-Modified = {2010-04-16 12:37:37 -0400},
984     Doi = {10.1063/1.1421362},
985     Journal = {J. Chem. Phys.},
986     Keywords = {viscosity; molecular dynamics method; liquid theory; shear flow},
987     Number = {1},
988     Pages = {209-217},
989     Publisher = {AIP},
990     Title = {Determining the shear viscosity of model liquids from molecular dynamics simulations},
991     Url = {http://link.aip.org/link/?JCP/116/209/1},
992     Volume = {116},
993     Year = {2002},
994     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/116/209/1},
995     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.1421362}}
996    
997     @article{backer:154503,
998     Author = {J. A. Backer and C. P. Lowe and H. C. J. Hoefsloot and P. D. Iedema},
999     Date-Added = {2010-04-16 12:37:37 -0400},
1000     Date-Modified = {2010-04-16 12:37:37 -0400},
1001     Doi = {10.1063/1.1883163},
1002     Eid = {154503},
1003     Journal = {J. Chem. Phys.},
1004     Keywords = {Poiseuille flow; flow simulation; Lennard-Jones potential; viscosity; boundary layers; computational fluid dynamics},
1005     Number = {15},
1006     Numpages = {6},
1007     Pages = {154503},
1008     Publisher = {AIP},
1009     Title = {Poiseuille flow to measure the viscosity of particle model fluids},
1010     Url = {http://link.aip.org/link/?JCP/122/154503/1},
1011     Volume = {122},
1012     Year = {2005},
1013     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/122/154503/1},
1014     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.1883163}}
1015    
1016     @article{daivis:541,
1017     Author = {Peter J. Daivis and Denis J. Evans},
1018     Date-Added = {2010-04-16 12:05:36 -0400},
1019     Date-Modified = {2010-04-16 12:05:36 -0400},
1020     Doi = {10.1063/1.466970},
1021     Journal = {J. Chem. Phys.},
1022     Keywords = {SHEAR; DECANE; FLOW MODELS; VOLUME; PRESSURE; NONEQUILIBRIUM; MOLECULAR DYNAMICS CALCULATIONS; COMPARATIVE EVALUATIONS; SIMULATION; STRAIN RATE; VISCOSITY; KUBO FORMULA},
1023     Number = {1},
1024     Pages = {541-547},
1025     Publisher = {AIP},
1026     Title = {Comparison of constant pressure and constant volume nonequilibrium simulations of sheared model decane},
1027     Url = {http://link.aip.org/link/?JCP/100/541/1},
1028     Volume = {100},
1029     Year = {1994},
1030     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/100/541/1},
1031     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.466970}}
1032    
1033     @article{mondello:9327,
1034     Author = {Maurizio Mondello and Gary S. Grest},
1035     Date-Added = {2010-04-16 12:05:36 -0400},
1036     Date-Modified = {2010-04-16 12:05:36 -0400},
1037     Doi = {10.1063/1.474002},
1038     Journal = {J. Chem. Phys.},
1039     Keywords = {organic compounds; viscosity; digital simulation; molecular dynamics method},
1040     Number = {22},
1041     Pages = {9327-9336},
1042     Publisher = {AIP},
1043     Title = {Viscosity calculations of [bold n]-alkanes by equilibrium molecular dynamics},
1044     Url = {http://link.aip.org/link/?JCP/106/9327/1},
1045     Volume = {106},
1046     Year = {1997},
1047     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/106/9327/1},
1048     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.474002}}
1049    
1050     @article{ISI:A1988Q205300014,
1051     Address = {ONE GUNDPOWDER SQUARE, LONDON, ENGLAND EC4A 3DE},
1052     Affiliation = {VOGELSANG, R (Reprint Author), RUHR UNIV BOCHUM,UNIV STR 150,D-4630 BOCHUM,FED REP GER. UNIV DUISBURG,THERMODYNAM,D-4100 DUISBURG,FED REP GER.},
1053     Author = {Vogelsang, R and Hoheisel, G and Luckas, M},
1054     Date-Added = {2010-04-14 16:20:24 -0400},
1055     Date-Modified = {2010-04-14 16:20:24 -0400},
1056     Doc-Delivery-Number = {Q2053},
1057     Issn = {0026-8976},
1058     Journal = {Mol. Phys.},
1059     Journal-Iso = {Mol. Phys.},
1060     Language = {English},
1061     Month = {AUG 20},
1062     Number = {6},
1063     Number-Of-Cited-References = {14},
1064     Pages = {1203-1213},
1065     Publisher = {TAYLOR \& FRANCIS LTD},
1066     Subject-Category = {Physics, Atomic, Molecular \& Chemical},
1067     Times-Cited = {12},
1068     Title = {SHEAR VISCOSITY AND THERMAL-CONDUCTIVITY OF THE LENNARD-JONES LIQUID COMPUTED USING MOLECULAR-DYNAMICS AND PREDICTED BY A MEMORY FUNCTION MODEL FOR A LARGE NUMBER OF STATES},
1069     Type = {Article},
1070     Unique-Id = {ISI:A1988Q205300014},
1071     Volume = {64},
1072     Year = {1988}}
1073    
1074     @article{ISI:000261835100054,
1075     Abstract = {Transport properties of liquid methanol and ethanol are predicted by
1076     molecular dynamics simulation. The molecular models for the alcohols
1077     are rigid, nonpolarizable, and of united-atom type. They were developed
1078     in preceding work using experimental vapor-liquid equilibrium data
1079     only. Self- and Maxwell-Stefan diffusion coefficients as well as the
1080     shear viscosity of methanol, ethanol, and their binary mixture are
1081     determined using equilibrium molecular dynamics and the Green-Kubo
1082     formalism. Nonequilibrium molecular dynamics is used for predicting the
1083     thermal conductivity of the two pure substances. The transport
1084     properties of the fluids are calculated over a wide temperature range
1085     at ambient pressure and compared with experimental and simulation data
1086     from the literature. Overall, a very good agreement with the experiment
1087     is found. For instance, the self-diffusion coefficient and the shear
1088     viscosity are predicted with average deviations of less than 8\% for
1089     the pure alcohols and 12\% for the mixture. The predicted thermal
1090     conductivity agrees on average within 5\% with the experimental data.
1091     Additionally, some velocity and shear viscosity autocorrelation
1092     functions are presented and discussed. Radial distribution functions
1093     for ethanol are also presented. The predicted excess volume, excess
1094     enthalpy, and the vapor-liquid equilibrium of the binary mixture
1095     methanol + ethanol are assessed and agree well with experimental data.},
1096     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
1097     Affiliation = {Vrabec, J (Reprint Author), Univ Stuttgart, Inst Thermodynam \& Thermal Proc Engn, D-70550 Stuttgart, Germany. {[}Vrabec, Jadran] Univ Stuttgart, Inst Thermodynam \& Thermal Proc Engn, D-70550 Stuttgart, Germany. {[}Guevara-Carrion, Gabriela; Hasse, Hans] Univ Kaiserslautern, Lab Engn Thermodynam, D-67663 Kaiserslautern, Germany. {[}Nieto-Draghi, Carlos] Inst Francais Petr, F-92852 Rueil Malmaison, France.},
1098     Author = {Guevara-Carrion, Gabriela and Nieto-Draghi, Carlos and Vrabec, Jadran and Hasse, Hans},
1099     Author-Email = {vrabec@itt.uni-stuttgart.de},
1100     Date-Added = {2010-04-14 15:43:29 -0400},
1101     Date-Modified = {2010-04-14 15:43:29 -0400},
1102     Doc-Delivery-Number = {385SY},
1103     Doi = {10.1021/jp805584d},
1104     Issn = {1520-6106},
1105     Journal = {J. Phys. Chem. B},
1106     Journal-Iso = {J. Phys. Chem. B},
1107     Keywords-Plus = {STEFAN DIFFUSION-COEFFICIENTS; MONTE-CARLO CALCULATIONS; ATOM FORCE-FIELD; SELF-DIFFUSION; DYNAMICS SIMULATION; PHASE-EQUILIBRIA; LIQUID METHANOL; TEMPERATURE-DEPENDENCE; COMPUTER-SIMULATION; MONOHYDRIC ALCOHOLS},
1108     Language = {English},
1109     Month = {DEC 25},
1110     Number = {51},
1111     Number-Of-Cited-References = {86},
1112     Pages = {16664-16674},
1113     Publisher = {AMER CHEMICAL SOC},
1114     Subject-Category = {Chemistry, Physical},
1115     Times-Cited = {5},
1116     Title = {Prediction of Transport Properties by Molecular Simulation: Methanol and Ethanol and Their Mixture},
1117     Type = {Article},
1118     Unique-Id = {ISI:000261835100054},
1119     Volume = {112},
1120     Year = {2008},
1121     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp805584d%7D}}
1122    
1123     @article{ISI:000258460400020,
1124     Abstract = {Nonequilibrium molecular dynamics simulations with the nonpolarizable
1125     SPC/E (Berendsen et al., J. Phys. Chem. 1987, 91, 6269) and the
1126     polarizable COS/G2 (Yu and van Gunsteren, J. Chem. Phys. 2004, 121,
1127     9549) force fields have been employed to calculate the thermal
1128     conductivity and other associated properties of methane hydrate over a
1129     temperature range from 30 to 260 K. The calculated results are compared
1130     to experimental data over this same range. The values of the thermal
1131     conductivity calculated with the COS/G2 model are closer to the
1132     experimental values than are those calculated with the nonpolarizable
1133     SPC/E model. The calculations match the temperature trend in the
1134     experimental data at temperatures below 50 K; however, they exhibit a
1135     slight decrease in thermal conductivity at higher temperatures in
1136     comparison to an opposite trend in the experimental data. The
1137     calculated thermal conductivity values are found to be relatively
1138     insensitive to the occupancy of the cages except at low (T <= 50 K)
1139     temperatures, which indicates that the differences between the two
1140     lattice structures may have a more dominant role than generally thought
1141     in explaining the low thermal conductivity of methane hydrate compared
1142     to ice Ih. The introduction of defects into the water lattice is found
1143     to cause a reduction in the thermal conductivity but to have a
1144     negligible impact on its temperature dependence.},
1145     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
1146     Affiliation = {Jordan, KD (Reprint Author), US DOE, Natl Energy Technol Lab, POB 10940, Pittsburgh, PA 15236 USA. {[}Jiang, Hao; Myshakin, Evgeniy M.; Jordan, Kenneth D.; Warzinski, Robert P.] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. {[}Jiang, Hao; Jordan, Kenneth D.] Univ Pittsburgh, Dept Chem, Pittsburgh, PA 15260 USA. {[}Jiang, Hao; Jordan, Kenneth D.] Univ Pittsburgh, Ctr Mol \& Mat Simulat, Pittsburgh, PA 15260 USA. {[}Myshakin, Evgeniy M.] Parsons Project Serv Inc, South Pk, PA 15129 USA.},
1147     Author = {Jiang, Hao and Myshakin, Evgeniy M. and Jordan, Kenneth D. and Warzinski, Robert P.},
1148     Date-Added = {2010-04-14 15:38:14 -0400},
1149     Date-Modified = {2010-04-14 15:38:14 -0400},
1150     Doc-Delivery-Number = {337UG},
1151     Doi = {10.1021/jp802942v},
1152     Funding-Acknowledgement = {E.M.M. ; National Energy Technology Laboratory's Office of Research and Development {[}41817.660.01.03]; ORISE Part-Time Faculty Program ; {[}DE-AM26-04NT41817]; {[}41817.606.06.03]},
1153     Funding-Text = {We thank Drs. John Tse, Niall English, and Alan McGaughey for their comments. H.J. and K.D.J. performed this work under Contract DE-AM26-04NT41817, Subtask 41817.606.06.03, and E.M.M. performed this work under the same contract, Subtask 41817.660.01.03, in support of the National Energy Technology Laboratory's Office of Research and Development. K.D.J. was also supported at NETL by the ORISE Part-Time Faculty Program during the early stages of this work.},
1154     Issn = {1520-6106},
1155     Journal = {J. Phys. Chem. B},
1156     Journal-Iso = {J. Phys. Chem. B},
1157     Keywords-Plus = {LIQUID WATER; CLATHRATE HYDRATE; HEAT-CAPACITY; FORCE-FIELDS; ICE; ANHARMONICITY; SUMMATION; MODELS; SILICA},
1158     Language = {English},
1159     Month = {AUG 21},
1160     Number = {33},
1161     Number-Of-Cited-References = {51},
1162     Pages = {10207-10216},
1163     Publisher = {AMER CHEMICAL SOC},
1164     Subject-Category = {Chemistry, Physical},
1165     Times-Cited = {8},
1166     Title = {Molecular dynamics Simulations of the thermal conductivity of methane hydrate},
1167     Type = {Article},
1168     Unique-Id = {ISI:000258460400020},
1169     Volume = {112},
1170     Year = {2008},
1171     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp802942v%7D}}
1172    
1173     @article{ISI:000184808400018,
1174     Abstract = {A new non-equilibrium molecular dynamics algorithm is presented based
1175     on the original work of Willer-Plathe, (1997, J. chem. Phys., 106,
1176     6082), for the non-equilibrium simulation of heat transport maintaining
1177     fixed the total momentum as well as the total energy of the system. The
1178     presented scheme preserves these properties but, unlike the original
1179     algorithm, is able to deal with multicomponent systems, that is with
1180     particles of different mass independently of their relative
1181     concentration. The main idea behind the new procedure is to consider an
1182     exchange of momentum and energy between the particles in the hot and
1183     cold regions, to maintain the non-equilibrium conditions, as if they
1184     undergo a hypothetical elastic collision. The new algorithm can also be
1185     employed in multicomponent systems for molecular fluids and in a wide
1186     range of thermodynamic conditions.},
1187     Address = {4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND},
1188     Affiliation = {Nieto-Draghi, C (Reprint Author), Univ Rovira \& Virgili, ETSEQ, Dept Engn Quim, Avda Paisos Catalans 26, Tarragona 43007, Spain. Univ Rovira \& Virgili, ETSEQ, Dept Engn Quim, Tarragona 43007, Spain.},
1189     Author = {Nieto-Draghi, C and Avalos, JB},
1190     Date-Added = {2010-04-14 12:48:08 -0400},
1191     Date-Modified = {2010-04-14 12:48:08 -0400},
1192     Doc-Delivery-Number = {712QM},
1193     Doi = {10.1080/0026897031000154338},
1194     Issn = {0026-8976},
1195     Journal = {Mol. Phys.},
1196     Journal-Iso = {Mol. Phys.},
1197     Keywords-Plus = {BINARY-LIQUID MIXTURES; THERMAL-CONDUCTIVITY; MATTER TRANSPORT; WATER},
1198     Language = {English},
1199     Month = {JUL 20},
1200     Number = {14},
1201     Number-Of-Cited-References = {20},
1202     Pages = {2303-2307},
1203     Publisher = {TAYLOR \& FRANCIS LTD},
1204     Subject-Category = {Physics, Atomic, Molecular \& Chemical},
1205     Times-Cited = {13},
1206     Title = {Non-equilibrium momentum exchange algorithm for molecular dynamics simulation of heat flow in multicomponent systems},
1207     Type = {Article},
1208     Unique-Id = {ISI:000184808400018},
1209     Volume = {101},
1210     Year = {2003},
1211     Bdsk-Url-1 = {http://dx.doi.org/10.1080/0026897031000154338%7D}}
1212    
1213     @article{Bedrov:2000-1,
1214     Abstract = {The thermal conductivity of liquid
1215     octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) has been
1216     determined from imposed heat flux non-equilibrium molecular dynamics
1217     (NEMD) simulations using a previously published quantum chemistry-based
1218     atomistic potential. The thermal conductivity was determined in the
1219     temperature domain 550 less than or equal to T less than or equal to
1220     800 K, which corresponds approximately to the existence limits of the
1221     liquid phase of HMX at atmospheric pressure. The NEMD predictions,
1222     which comprise the first reported values for thermal conductivity of
1223     HMX liquid, were found to be consistent with measured values for
1224     crystalline HMX. The thermal conductivity of liquid HMX was found to
1225     exhibit a much weaker temperature dependence than the shear viscosity
1226     and self-diffusion coefficients. (C) 2000 Elsevier Science B.V. All
1227     rights reserved.},
1228     Address = {PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS},
1229     Affiliation = {Bedrov, D (Reprint Author), Univ Utah, Dept Mat Sci \& Engn, 122 S Cent Campus Dr,Room 304, Salt Lake City, UT 84112 USA. Univ Utah, Dept Mat Sci \& Engn, Salt Lake City, UT 84112 USA. Univ Utah, Dept Chem \& Fuels Engn, Salt Lake City, UT 84112 USA. Univ Calif Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.},
1230     Author = {Bedrov, D and Smith, GD and Sewell, TD},
1231     Date-Added = {2010-04-14 12:26:59 -0400},
1232     Date-Modified = {2010-04-14 12:27:52 -0400},
1233     Doc-Delivery-Number = {330PF},
1234     Issn = {0009-2614},
1235     Journal = {Chem. Phys. Lett.},
1236     Journal-Iso = {Chem. Phys. Lett.},
1237     Keywords-Plus = {FORCE-FIELD},
1238     Language = {English},
1239     Month = {JUN 30},
1240     Number = {1-3},
1241     Number-Of-Cited-References = {17},
1242     Pages = {64-68},
1243     Publisher = {ELSEVIER SCIENCE BV},
1244     Subject-Category = {Chemistry, Physical; Physics, Atomic, Molecular \& Chemical},
1245     Times-Cited = {19},
1246     Title = {Thermal conductivity of liquid octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) from molecular dynamics simulations},
1247     Type = {Article},
1248     Unique-Id = {ISI:000087969900011},
1249     Volume = {324},
1250     Year = {2000}}
1251    
1252     @article{ISI:000258840700015,
1253     Abstract = {By using the embedded-atom method (EAM), a series of molecular dynamics
1254     (MD) simulations are carried out to calculate the viscosity and
1255     self-diffusion coefficient of liquid copper from the normal to the
1256     undercooled states. The simulated results are in reasonable agreement
1257     with the experimental values available above the melting temperature
1258     that is also predicted from a solid-liquid-solid sandwich structure.
1259     The relationship between the viscosity and the self-diffusion
1260     coefficient is evaluated. It is found that the Stokes-Einstein and
1261     Sutherland-Einstein relations qualitatively describe this relationship
1262     within the simulation temperature range. However, the predicted
1263     constant from MD simulation is close to 1/(3 pi), which is larger than
1264     the constants of the Stokes-Einstein and Sutherland-Einstein relations.},
1265     Address = {233 SPRING ST, NEW YORK, NY 10013 USA},
1266     Affiliation = {Chen, M (Reprint Author), Tsinghua Univ, Dept Engn Mech, Beijing 100084, Peoples R China. {[}Han, X. J.; Chen, M.; Lue, Y. J.] Tsinghua Univ, Dept Engn Mech, Beijing 100084, Peoples R China.},
1267     Author = {Han, X. J. and Chen, M. and Lue, Y. J.},
1268     Author-Email = {mchen@tsinghua.edu.cn},
1269     Date-Added = {2010-04-14 12:00:38 -0400},
1270     Date-Modified = {2010-04-14 12:00:38 -0400},
1271     Doc-Delivery-Number = {343GH},
1272     Doi = {10.1007/s10765-008-0489-7},
1273     Funding-Acknowledgement = {China Postdoctoral Science Foundation ; National Natural Science Foundation of China {[}50395101, 50371043]},
1274     Funding-Text = {This work was financially supported by China Postdoctoral Science Foundation and the National Natural Science Foundation of China under grant Nos. of 50395101 and 50371043. The computations are carried out at the Tsinghua National Laboratory for Information Science and Technology, China. The authors are grateful to Mr. D. Q. Yu for valuable discussions.},
1275     Issn = {0195-928X},
1276     Journal = {Int. J. Thermophys.},
1277     Journal-Iso = {Int. J. Thermophys.},
1278     Keywords = {copper; molecular simulation; self-diffusion coefficient; viscosity; undercooled},
1279     Keywords-Plus = {EMBEDDED-ATOM MODEL; THERMOPHYSICAL PROPERTIES; COMPUTER-SIMULATION; TRANSITION-METALS; SHEAR VISCOSITY; ALLOYS; TEMPERATURE; DIFFUSION; BINDING; SURFACE},
1280     Language = {English},
1281     Month = {AUG},
1282     Number = {4},
1283     Number-Of-Cited-References = {39},
1284     Pages = {1408-1421},
1285     Publisher = {SPRINGER/PLENUM PUBLISHERS},
1286     Subject-Category = {Thermodynamics; Chemistry, Physical; Mechanics; Physics, Applied},
1287     Times-Cited = {2},
1288     Title = {Transport properties of undercooled liquid copper: A molecular dynamics study},
1289     Type = {Article},
1290     Unique-Id = {ISI:000258840700015},
1291     Volume = {29},
1292     Year = {2008},
1293     Bdsk-Url-1 = {http://dx.doi.org/10.1007/s10765-008-0489-7%7D}}
1294    
1295     @article{Muller-Plathe:2008,
1296     Abstract = {Reverse nonequilibrium molecular dynamics and equilibrium molecular
1297     dynamics simulations were carried out to compute the shear viscosity of
1298     the pure ionic liquid system {[}bmim]{[}PF6] at 300 K. The two methods
1299     yielded consistent results which were also compared to experiments. The
1300     results showed that the reverse nonequilibrium molecular dynamics
1301     (RNEMD) methodology can successfully be applied to computation of
1302     highly viscous ionic liquids. Moreover, this study provides a
1303     validation of the atomistic force-field developed by Bhargava and
1304     Balasubramanian (J. Chem. Phys. 2007, 127, 114510) for dynamic
1305     properties.},
1306     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
1307     Affiliation = {Wei, Z (Reprint Author), Tech Univ Darmstadt, Petersenstr 30, D-64287 Darmstadt, Germany. {[}Wei Zhao; Leroy, Frederic; Mueller-Plathe, Florian] Tech Univ Darmstadt, D-64287 Darmstadt, Germany. {[}Balasubramanian, Sundaram] Indian Inst Sci, Jawaharlal Nehru Ctr Adv Sci Res, Chem \& Phys Mat Unit, Bangalore 560064, Karnataka, India.},
1308     Author = {Wei Zhao and Leroy, Frederic and Balasubramanian, Sundaram and M\"{u}ller-Plathe, Florian},
1309     Author-Email = {w.zhao@theo.chemie.tu-darmstadt.de},
1310     Date-Added = {2010-04-14 11:53:37 -0400},
1311     Date-Modified = {2010-04-14 11:54:20 -0400},
1312     Doc-Delivery-Number = {321VS},
1313     Doi = {10.1021/jp8017869},
1314     Issn = {1520-6106},
1315     Journal = {J. Phys. Chem. B},
1316     Journal-Iso = {J. Phys. Chem. B},
1317     Keywords-Plus = {TRANSPORT-PROPERTIES; FORCE-FIELD; TEMPERATURE; SIMULATION; IMIDAZOLIUM; FLUIDS; MODEL; BIS(TRIFLUOROMETHANESULFONYL)IMIDE; PYRIDINIUM; CHLORIDE},
1318     Language = {English},
1319     Month = {JUL 10},
1320     Number = {27},
1321     Number-Of-Cited-References = {49},
1322     Pages = {8129-8133},
1323     Publisher = {AMER CHEMICAL SOC},
1324     Subject-Category = {Chemistry, Physical},
1325     Times-Cited = {2},
1326     Title = {Shear viscosity of the ionic liquid 1-n-butyl 3-methylimidazolium hexafluorophosphate {[}bmim]{[}PF6] computed by reverse nonequilibrium molecular dynamics},
1327     Type = {Article},
1328     Unique-Id = {ISI:000257335200022},
1329     Volume = {112},
1330     Year = {2008},
1331     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp8017869%7D}}
1332    
1333     @article{Muller-Plathe:2002,
1334     Abstract = {The reverse nonequilibrium molecular dynamics {[}F. Muller-Plathe,
1335     Phys. Rev. E 49, 359 (1999)] presented for the calculation of the shear
1336     viscosity of Lennard-Jones liquids has been extended to atomistic
1337     models of molecular liquids. The method is improved to overcome the
1338     problems due to the detailed molecular models. The new technique is
1339     besides a test with a Lennard-Jones fluid, applied on different
1340     realistic systems: liquid nitrogen, water, and hexane, in order to
1341     cover a large range of interactions and systems/architectures. We show
1342     that all the advantages of the method itemized previously are still
1343     valid, and that it has a very good efficiency and accuracy making it
1344     very competitive. (C) 2002 American Institute of Physics.},
1345     Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
1346     Affiliation = {Bordat, P (Reprint Author), Max Planck Inst Polymer Res, Ackermannweg 10, D-55128 Mainz, Germany. Max Planck Inst Polymer Res, D-55128 Mainz, Germany.},
1347     Author = {Bordat, P and M\"{u}ller-Plathe, F},
1348     Date-Added = {2010-04-14 11:34:42 -0400},
1349     Date-Modified = {2010-04-14 11:35:35 -0400},
1350     Doc-Delivery-Number = {521QV},
1351     Doi = {10.1063/1.1436124},
1352     Issn = {0021-9606},
1353     Journal = {J. Chem. Phys.},
1354     Journal-Iso = {J. Chem. Phys.},
1355     Keywords-Plus = {TRANSPORT-PROPERTIES; PHYSICAL-PROPERTIES; LIQUID ALKANES; N-HEPTADECANE; SIMULATION; WATER; FLOW; MIXTURES; BUTANE; NITROGEN},
1356     Language = {English},
1357     Month = {FEB 22},
1358     Number = {8},
1359     Number-Of-Cited-References = {47},
1360     Pages = {3362-3369},
1361     Publisher = {AMER INST PHYSICS},
1362     Subject-Category = {Physics, Atomic, Molecular \& Chemical},
1363     Times-Cited = {33},
1364     Title = {The shear viscosity of molecular fluids: A calculation by reverse nonequilibrium molecular dynamics},
1365     Type = {Article},
1366     Unique-Id = {ISI:000173853600023},
1367     Volume = {116},
1368     Year = {2002},
1369     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.1436124%7D}}
1370    
1371     @article{ISI:000207079300006,
1372     Abstract = {Non-equilibrium Molecular Dynamics Simulation
1373     methods have been used to study the ability of
1374     Embedded Atom Method models of the metals copper and
1375     gold to reproduce the equilibrium and
1376     non-equilibrium behavior of metals at a stationary
1377     and at a moving solid/liquid interface. The
1378     equilibrium solid/vapor interface was shown to
1379     display a simple termination of the bulk until the
1380     temperature of the solid reaches approximate to 90\%
1381     of the bulk melting point. At and above such
1382     temperatures the systems exhibit a surface
1383     disodering known as surface melting. Non-equilibrium
1384     simulations emulating the action of a picosecond
1385     laser on the metal were performed to determine the
1386     regrowth velocity. For copper, the action of a 20 ps
1387     laser with an absorbed energy of 2-5 mJ/cm(2)
1388     produced a regrowth velocity of 83-100 m/s, in
1389     reasonable agreement with the value obtained by
1390     experiment (>60 m/s). For gold, similar conditions
1391     produced a slower regrowth velocity of 63 m/s at an
1392     absorbed energy of 5 mJ/cm(2). This is almost a
1393     factor of two too low in comparison to experiment
1394     (>100 m/s). The regrowth velocities of the metals
1395     seems unexpectedly close to experiment considering
1396     that the free-electron contribution is ignored in
1397     the Embeeded Atom Method models used.},
1398     Address = {4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND},
1399     Affiliation = {Clancy, P (Reprint Author), Cornell Univ, Sch Chem Engn, Ithaca, NY 14853 USA. {[}Richardson, Clifton F.; Clancy, Paulette] Cornell Univ, Sch Chem Engn, Ithaca, NY 14853 USA.},
1400     Author = {Richardson, Clifton F. and Clancy, Paulette},
1401     Date-Added = {2010-04-07 11:24:36 -0400},
1402     Date-Modified = {2010-04-07 11:24:36 -0400},
1403     Doc-Delivery-Number = {V04SY},
1404     Issn = {0892-7022},
1405     Journal = {Mol. Simul.},
1406     Journal-Iso = {Mol. Simul.},
1407     Keywords = {Non-equilibrium computer simulation; molecular dynamics; crystal growth; Embedded Atom Method models of metals},
1408     Language = {English},
1409     Number = {5-6},
1410     Number-Of-Cited-References = {36},
1411     Pages = {335-355},
1412     Publisher = {TAYLOR \& FRANCIS LTD},
1413     Subject-Category = {Chemistry, Physical; Physics, Atomic, Molecular \& Chemical},
1414     Times-Cited = {7},
1415     Title = {PICOSECOND LASER PROCESSING OF COPPER AND GOLD: A COMPUTER SIMULATION STUDY},
1416     Type = {Article},
1417     Unique-Id = {ISI:000207079300006},
1418     Volume = {7},
1419     Year = {1991}}
1420    
1421     @article{ISI:000167766600035,
1422     Abstract = {Molecular dynamics simulations are used to
1423     investigate the separation of water films adjacent
1424     to a hot metal surface. The simulations clearly show
1425     that the water layers nearest the surface overheat
1426     and undergo explosive boiling. For thick films, the
1427     expansion of the vaporized molecules near the
1428     surface forces the outer water layers to move away
1429     from the surface. These results are of interest for
1430     mass spectrometry of biological molecules, steam
1431     cleaning of surfaces, and medical procedures.},
1432     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
1433     Affiliation = {Garrison, BJ (Reprint Author), Penn State Univ, Dept Chem, University Pk, PA 16802 USA. Penn State Univ, Dept Chem, University Pk, PA 16802 USA. Penn State Univ, Inst Mat Res, University Pk, PA 16802 USA. Univ Virginia, Dept Mat Sci \& Engn, Charlottesville, VA 22903 USA.},
1434     Author = {Dou, YS and Zhigilei, LV and Winograd, N and Garrison, BJ},
1435     Date-Added = {2010-03-11 15:32:14 -0500},
1436     Date-Modified = {2010-03-11 15:32:14 -0500},
1437     Doc-Delivery-Number = {416ED},
1438     Issn = {1089-5639},
1439     Journal = {J. Phys. Chem. A},
1440     Journal-Iso = {J. Phys. Chem. A},
1441     Keywords-Plus = {MOLECULAR-DYNAMICS SIMULATIONS; ASSISTED LASER-DESORPTION; FROZEN AQUEOUS-SOLUTIONS; COMPUTER-SIMULATION; ORGANIC-SOLIDS; VELOCITY DISTRIBUTIONS; PARTICLE BOMBARDMENT; MASS-SPECTROMETRY; PHASE EXPLOSION; LIQUID WATER},
1442     Language = {English},
1443     Month = {MAR 29},
1444     Number = {12},
1445     Number-Of-Cited-References = {65},
1446     Pages = {2748-2755},
1447     Publisher = {AMER CHEMICAL SOC},
1448     Subject-Category = {Chemistry, Physical; Physics, Atomic, Molecular \& Chemical},
1449     Times-Cited = {66},
1450     Title = {Explosive boiling of water films adjacent to heated surfaces: A microscopic description},
1451     Type = {Article},
1452     Unique-Id = {ISI:000167766600035},
1453     Volume = {105},
1454     Year = {2001}}
1455    
1456     @article{Maginn:2010,
1457     Abstract = {The reverse nonequilibrium molecular dynamics
1458     (RNEMD) method calculates the shear viscosity of a
1459     fluid by imposing a nonphysical exchange of momentum
1460     and measuring the resulting shear velocity
1461     gradient. In this study we investigate the range of
1462     momentum flux values over which RNEMD yields usable
1463     (linear) velocity gradients. We find that nonlinear
1464     velocity profiles result primarily from gradients in
1465     fluid temperature and density. The temperature
1466     gradient results from conversion of heat into bulk
1467     kinetic energy, which is transformed back into heat
1468     elsewhere via viscous heating. An expression is
1469     derived to predict the temperature profile resulting
1470     from a specified momentum flux for a given fluid and
1471     simulation cell. Although primarily bounded above,
1472     we also describe milder low-flux limitations. RNEMD
1473     results for a Lennard-Jones fluid agree with
1474     equilibrium molecular dynamics and conventional
1475     nonequilibrium molecular dynamics calculations at
1476     low shear, but RNEMD underpredicts viscosity
1477     relative to conventional NEMD at high shear.},
1478     Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
1479     Affiliation = {Tenney, CM (Reprint Author), Univ Notre Dame, Dept Chem \& Biomol Engn, 182 Fitzpatrick Hall, Notre Dame, IN 46556 USA. {[}Tenney, Craig M.; Maginn, Edward J.] Univ Notre Dame, Dept Chem \& Biomol Engn, Notre Dame, IN 46556 USA.},
1480     Article-Number = {014103},
1481     Author = {Tenney, Craig M. and Maginn, Edward J.},
1482     Author-Email = {ed@nd.edu},
1483     Date-Added = {2010-03-09 13:08:41 -0500},
1484     Date-Modified = {2010-07-19 16:21:35 -0400},
1485     Doc-Delivery-Number = {542DQ},
1486     Doi = {10.1063/1.3276454},
1487     Funding-Acknowledgement = {U.S. Department of Energy {[}DE-FG36-08G088020]},
1488     Funding-Text = {Support for this work was provided by the U.S. Department of Energy (Grant No. DE-FG36-08G088020)},
1489     Issn = {0021-9606},
1490     Journal = {J. Chem. Phys.},
1491     Journal-Iso = {J. Chem. Phys.},
1492     Keywords = {Lennard-Jones potential; molecular dynamics method; Navier-Stokes equations; viscosity},
1493     Keywords-Plus = {CURRENT AUTOCORRELATION-FUNCTION; IONIC LIQUID; SIMULATIONS; TEMPERATURE},
1494     Language = {English},
1495     Month = {JAN 7},
1496     Number = {1},
1497     Number-Of-Cited-References = {20},
1498     Pages = {014103},
1499     Publisher = {AMER INST PHYSICS},
1500     Subject-Category = {Physics, Atomic, Molecular \& Chemical},
1501     Times-Cited = {0},
1502     Title = {Limitations and recommendations for the calculation of shear viscosity using reverse nonequilibrium molecular dynamics},
1503     Type = {Article},
1504     Unique-Id = {ISI:000273472300004},
1505     Volume = {132},
1506     Year = {2010},
1507     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.3276454}}
1508    
1509     @article{Clancy:1992,
1510     Abstract = {The regrowth velocity of a crystal from a melt
1511     depends on contributions from the thermal
1512     conductivity, heat gradient, and latent heat. The
1513     relative contributions of these terms to the
1514     regrowth velocity of the pure metals copper and gold
1515     during liquid-phase epitaxy are evaluated. These
1516     results are used to explain how results from
1517     previous nonequilibrium molecular-dynamics
1518     simulations using classical potentials are able to
1519     predict regrowth velocities that are close to the
1520     experimental values. Results from equilibrium
1521     molecular dynamics showing the nature of the
1522     solid-vapor interface of an
1523     embedded-atom-method-modeled Cu57Ni43 alloy at a
1524     temperature corresponding to 62\% of the melting
1525     point are presented. The regrowth of this alloy
1526     following a simulation of a laser-processing
1527     experiment is also given, with use of nonequilibrium
1528     molecular-dynamics techniques. The thermal
1529     conductivity and temperature gradient in the
1530     simulation of the alloy are compared to those for
1531     the pure metals.},
1532     Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA},
1533     Affiliation = {CORNELL UNIV,SCH CHEM ENGN,ITHACA,NY 14853.},
1534     Author = {Richardson, C.~F. and Clancy, P},
1535     Date-Added = {2010-01-12 16:17:33 -0500},
1536     Date-Modified = {2010-04-08 17:18:25 -0400},
1537     Doc-Delivery-Number = {HX378},
1538     Issn = {0163-1829},
1539     Journal = {Phys. Rev. B},
1540     Journal-Iso = {Phys. Rev. B},
1541     Keywords-Plus = {SURFACE SEGREGATION; MOLECULAR-DYNAMICS; TRANSITION-METALS; SOLIDIFICATION; GROWTH; CU; NI},
1542     Language = {English},
1543     Month = {JUN 1},
1544     Number = {21},
1545     Number-Of-Cited-References = {24},
1546     Pages = {12260-12268},
1547     Publisher = {AMERICAN PHYSICAL SOC},
1548     Subject-Category = {Physics, Condensed Matter},
1549     Times-Cited = {11},
1550     Title = {CONTRIBUTION OF THERMAL-CONDUCTIVITY TO THE CRYSTAL-REGROWTH VELOCITY OF EMBEDDED-ATOM-METHOD-MODELED METALS AND METAL-ALLOYS},
1551     Type = {Article},
1552     Unique-Id = {ISI:A1992HX37800010},
1553     Volume = {45},
1554     Year = {1992}}
1555    
1556     @article{Bedrov:2000,
1557     Abstract = {We have applied a new nonequilibrium molecular
1558     dynamics (NEMD) method {[}F. Muller-Plathe,
1559     J. Chem. Phys. 106, 6082 (1997)] previously applied
1560     to monatomic Lennard-Jones fluids in the
1561     determination of the thermal conductivity of
1562     molecular fluids. The method was modified in order
1563     to be applicable to systems with holonomic
1564     constraints. Because the method involves imposing a
1565     known heat flux it is particularly attractive for
1566     systems involving long-range and many-body
1567     interactions where calculation of the microscopic
1568     heat flux is difficult. The predicted thermal
1569     conductivities of liquid n-butane and water using
1570     the imposed-flux NEMD method were found to be in a
1571     good agreement with previous simulations and
1572     experiment. (C) 2000 American Institute of
1573     Physics. {[}S0021-9606(00)50841-1].},
1574     Address = {2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA},
1575     Affiliation = {Bedrov, D (Reprint Author), Univ Utah, Dept Chem \& Fuels Engn, 122 S Cent Campus Dr,Rm 304, Salt Lake City, UT 84112 USA. Univ Utah, Dept Chem \& Fuels Engn, Salt Lake City, UT 84112 USA. Univ Utah, Dept Mat Sci \& Engn, Salt Lake City, UT 84112 USA.},
1576     Author = {Bedrov, D and Smith, GD},
1577     Date-Added = {2009-11-05 18:21:18 -0500},
1578     Date-Modified = {2010-04-14 11:50:48 -0400},
1579     Doc-Delivery-Number = {369BF},
1580     Issn = {0021-9606},
1581     Journal = {J. Chem. Phys.},
1582     Journal-Iso = {J. Chem. Phys.},
1583     Keywords-Plus = {EFFECTIVE PAIR POTENTIALS; TRANSPORT-PROPERTIES; CANONICAL ENSEMBLE; NORMAL-BUTANE; ALGORITHMS; SHAKE; WATER},
1584     Language = {English},
1585     Month = {NOV 8},
1586     Number = {18},
1587     Number-Of-Cited-References = {26},
1588     Pages = {8080-8084},
1589     Publisher = {AMER INST PHYSICS},
1590     Subject-Category = {Physics, Atomic, Molecular \& Chemical},
1591     Times-Cited = {23},
1592     Title = {Thermal conductivity of molecular fluids from molecular dynamics simulations: Application of a new imposed-flux method},
1593     Type = {Article},
1594     Unique-Id = {ISI:000090151400044},
1595     Volume = {113},
1596     Year = {2000}}
1597    
1598     @article{ISI:000231042800044,
1599     Abstract = {The reverse nonequilibrium molecular dynamics
1600     method for thermal conductivities is adapted to the
1601     investigation of molecular fluids. The method
1602     generates a heat flux through the system by suitably
1603     exchanging velocities of particles located in
1604     different regions. From the resulting temperature
1605     gradient, the thermal conductivity is then
1606     calculated. Different variants of the algorithm and
1607     their combinations with other system parameters are
1608     tested: exchange of atomic velocities versus
1609     exchange of molecular center-of-mass velocities,
1610     different exchange frequencies, molecular models
1611     with bond constraints versus models with flexible
1612     bonds, united-atom versus all-atom models, and
1613     presence versus absence of a thermostat. To help
1614     establish the range of applicability, the algorithm
1615     is tested on different models of benzene,
1616     cyclohexane, water, and n-hexane. We find that the
1617     algorithm is robust and that the calculated thermal
1618     conductivities are insensitive to variations in its
1619     control parameters. The force field, in contrast,
1620     has a major influence on the value of the thermal
1621     conductivity. While calculated and experimental
1622     thermal conductivities fall into the same order of
1623     magnitude, in most cases the calculated values are
1624     systematically larger. United-atom force fields seem
1625     to do better than all-atom force fields, possibly
1626     because they remove high-frequency degrees of
1627     freedom from the simulation, which, in nature, are
1628     quantum-mechanical oscillators in their ground state
1629     and do not contribute to heat conduction.},
1630     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
1631     Affiliation = {Zhang, MM (Reprint Author), Int Univ Bremen, POB 750 561, D-28725 Bremen, Germany. Int Univ Bremen, D-28725 Bremen, Germany. Banco Cent Brasil, Desup, Diesp, BR-01310922 Sao Paulo, Brazil.},
1632     Author = {Zhang, MM and Lussetti, E and de Souza, LES and M\"{u}ller-Plathe, F},
1633     Date-Added = {2009-11-05 18:17:33 -0500},
1634     Date-Modified = {2009-11-05 18:17:33 -0500},
1635     Doc-Delivery-Number = {952YQ},
1636     Doi = {10.1021/jp0512255},
1637     Issn = {1520-6106},
1638     Journal = {J. Phys. Chem. B},
1639     Journal-Iso = {J. Phys. Chem. B},
1640     Keywords-Plus = {LENNARD-JONES LIQUIDS; TRANSPORT-COEFFICIENTS; SWOLLEN POLYMERS; SHEAR VISCOSITY; MODEL SYSTEMS; SIMULATION; BENZENE; FLUIDS; POTENTIALS; DIFFUSION},
1641     Language = {English},
1642     Month = {AUG 11},
1643     Number = {31},
1644     Number-Of-Cited-References = {42},
1645     Pages = {15060-15067},
1646     Publisher = {AMER CHEMICAL SOC},
1647     Subject-Category = {Chemistry, Physical},
1648     Times-Cited = {17},
1649     Title = {Thermal conductivities of molecular liquids by reverse nonequilibrium molecular dynamics},
1650     Type = {Article},
1651     Unique-Id = {ISI:000231042800044},
1652     Volume = {109},
1653     Year = {2005},
1654     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp0512255%7D}}
1655    
1656     @article{ISI:A1997YC32200056,
1657     Abstract = {Equilibrium molecular dynamics simulations have
1658     been carried out in the microcanonical ensemble at
1659     300 and 255 K on the extended simple point charge
1660     (SPC/E) model of water {[}Berendsen et al.,
1661     J. Phys. Chem. 91, 6269 (1987)]. In addition to a
1662     number of static and dynamic properties, thermal
1663     conductivity lambda has been calculated via
1664     Green-Kubo integration of the heat current time
1665     correlation functions (CF's) in the atomic and
1666     molecular formalism, at wave number k=0. The
1667     calculated values (0.67 +/- 0.04 W/mK at 300 K and
1668     0.52 +/- 0.03 W/mK at 255 K) are in good agreement
1669     with the experimental data (0.61 W/mK at 300 K and
1670     0.49 W/mK at 255 K). A negative long-time tail of
1671     the heat current CF, more apparent at 255 K, is
1672     responsible for the anomalous decrease of lambda
1673     with temperature. An analysis of the dynamical modes
1674     contributing to lambda has shown that its value is
1675     due to two low-frequency exponential-like modes, a
1676     faster collisional mode, with positive contribution,
1677     and a slower one, which determines the negative
1678     long-time tail. A comparison of the molecular and
1679     atomic spectra of the heat current CF has suggested
1680     that higher-frequency modes should not contribute to
1681     lambda in this temperature range. Generalized
1682     thermal diffusivity D-T(k) decreases as a function
1683     of k, after an initial minor increase at k =
1684     k(min). The k dependence of the generalized
1685     thermodynamic properties has been calculated in the
1686     atomic and molecular formalisms. The observed
1687     differences have been traced back to intramolecular
1688     or intermolecular rotational effects and related to
1689     the partial structure functions. Finally, from the
1690     results we calculated it appears that the SPC/E
1691     model gives results in better agreement with
1692     experimental data than the transferable
1693     intermolecular potential with four points TIP4P
1694     water model {[}Jorgensen et al., J. Chem. Phys. 79,
1695     926 (1983)], with a larger improvement for, e.g.,
1696     diffusion, viscosities, and dielectric properties
1697     and a smaller one for thermal conductivity. The
1698     SPC/E model shares, to a smaller extent, the
1699     insufficient slowing down of dynamics at low
1700     temperature already found for the TIP4P water
1701     model.},
1702     Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA},
1703     Affiliation = {UNIV PISA,DIPARTIMENTO CHIM \& CHIM IND,I-56126 PISA,ITALY. CNR,IST FIS ATOM \& MOL,I-56127 PISA,ITALY.},
1704     Author = {Bertolini, D and Tani, A},
1705     Date-Added = {2009-10-30 15:41:21 -0400},
1706     Date-Modified = {2009-10-30 15:41:21 -0400},
1707     Doc-Delivery-Number = {YC322},
1708     Issn = {1063-651X},
1709     Journal = {Phys. Rev. E},
1710     Journal-Iso = {Phys. Rev. E},
1711     Keywords-Plus = {TIME-CORRELATION-FUNCTIONS; LENNARD-JONES LIQUID; TRANSPORT-PROPERTIES; SUPERCOOLED WATER; DENSITY; SIMULATIONS; RELAXATION; VELOCITY; ELECTRON; FLUIDS},
1712     Language = {English},
1713     Month = {OCT},
1714     Number = {4},
1715     Number-Of-Cited-References = {35},
1716     Pages = {4135-4151},
1717     Publisher = {AMERICAN PHYSICAL SOC},
1718     Subject-Category = {Physics, Fluids \& Plasmas; Physics, Mathematical},
1719     Times-Cited = {18},
1720     Title = {Thermal conductivity of water: Molecular dynamics and generalized hydrodynamics results},
1721     Type = {Article},
1722     Unique-Id = {ISI:A1997YC32200056},
1723     Volume = {56},
1724     Year = {1997}}
1725    
1726     @article{Meineke:2005gd,
1727     Abstract = {OOPSE is a new molecular dynamics simulation program
1728     that is capable of efficiently integrating equations
1729     of motion for atom types with orientational degrees
1730     of freedom (e.g. #sticky# atoms and point
1731     dipoles). Transition metals can also be simulated
1732     using the embedded atom method (EAM) potential
1733     included in the code. Parallel simulations are
1734     carried out using the force-based decomposition
1735     method. Simulations are specified using a very
1736     simple C-based meta-data language. A number of
1737     advanced integrators are included, and the basic
1738     integrator for orientational dynamics provides
1739     substantial improvements over older quaternion-based
1740     schemes.},
1741     Address = {111 RIVER ST, HOBOKEN, NJ 07030 USA},
1742     Author = {Meineke, M. A. and Vardeman, C. F. and Lin, T and Fennell, CJ and Gezelter, J. D.},
1743     Date-Added = {2009-10-01 18:43:03 -0400},
1744     Date-Modified = {2010-04-13 09:11:16 -0400},
1745     Doi = {DOI 10.1002/jcc.20161},
1746     Isi = {000226558200006},
1747     Isi-Recid = {142688207},
1748     Isi-Ref-Recids = {67885400 50663994 64190493 93668415 46699855 89992422 57614458 49016001 61447131 111114169 68770425 52728075 102422498 66381878 32391149 134477335 53221357 9929643 59492217 69681001 99223832 142688208 94600872 91658572 54857943 117365867 69323123 49588888 109970172 101670714 142688209 121603296 94652379 96449138 99938010 112825758 114905670 86802042 121339042 104794914 82674909 72096791 93668384 90513335 142688210 23060767 63731466 109033408 76303716 31384453 97861662 71842426 130707771 125809946 66381889 99676497},
1749 skuang 3755 Journal = {J. Comput. Chem.},
1750 skuang 3719 Keywords = {OOPSE; molecular dynamics},
1751     Month = feb,
1752     Number = {3},
1753     Pages = {252-271},
1754     Publisher = {JOHN WILEY \& SONS INC},
1755     Times-Cited = {9},
1756     Title = {OOPSE: An object-oriented parallel simulation engine for molecular dynamics},
1757     Volume = {26},
1758     Year = {2005},
1759     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000226558200006},
1760     Bdsk-Url-2 = {http://dx.doi.org/10.1002/jcc.20161}}
1761    
1762     @article{ISI:000080382700030,
1763     Abstract = {A nonequilibrium method for calculating the shear
1764     viscosity is presented. It reverses the
1765     cause-and-effect picture customarily used in
1766     nonequilibrium molecular dynamics: the effect, the
1767     momentum flux or stress, is imposed, whereas the
1768     cause, the velocity gradient or shear rate, is
1769     obtained from the simulation. It differs from other
1770     Norton-ensemble methods by the way in which the
1771     steady-state momentum flux is maintained. This
1772     method involves a simple exchange of particle
1773     momenta, which is easy to implement. Moreover, it
1774     can be made to conserve the total energy as well as
1775     the total linear momentum, so no coupling to an
1776     external temperature bath is needed. The resulting
1777     raw data, the velocity profile, is a robust and
1778     rapidly converging property. The method is tested on
1779     the Lennard-Jones fluid near its triple point. It
1780     yields a viscosity of 3.2-3.3, in Lennard-Jones
1781     reduced units, in agreement with literature
1782     results. {[}S1063-651X(99)03105-0].},
1783     Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA},
1784     Affiliation = {Muller-Plathe, F (Reprint Author), Max Planck Inst Polymerforsch, Ackermannweg 10, D-55128 Mainz, Germany. Max Planck Inst Polymerforsch, D-55128 Mainz, Germany.},
1785     Author = {M\"{u}ller-Plathe, F},
1786     Date-Added = {2009-10-01 14:07:30 -0400},
1787     Date-Modified = {2009-10-01 14:07:30 -0400},
1788     Doc-Delivery-Number = {197TX},
1789     Issn = {1063-651X},
1790     Journal = {Phys. Rev. E},
1791     Journal-Iso = {Phys. Rev. E},
1792     Language = {English},
1793     Month = {MAY},
1794     Number = {5, Part A},
1795     Number-Of-Cited-References = {17},
1796     Pages = {4894-4898},
1797     Publisher = {AMERICAN PHYSICAL SOC},
1798     Subject-Category = {Physics, Fluids \& Plasmas; Physics, Mathematical},
1799     Times-Cited = {57},
1800     Title = {Reversing the perturbation in nonequilibrium molecular dynamics: An easy way to calculate the shear viscosity of fluids},
1801     Type = {Article},
1802     Unique-Id = {ISI:000080382700030},
1803     Volume = {59},
1804     Year = {1999}}
1805    
1806     @article{Maginn:2007,
1807     Abstract = {Atomistic simulations are conducted to examine the
1808     dependence of the viscosity of
1809     1-ethyl-3-methylimidazolium
1810     bis(trifluoromethanesulfonyl)imide on temperature
1811     and water content. A nonequilibrium molecular
1812     dynamics procedure is utilized along with an
1813     established fixed charge force field. It is found
1814     that the simulations quantitatively capture the
1815     temperature dependence of the viscosity as well as
1816     the drop in viscosity that occurs with increasing
1817     water content. Using mixture viscosity models, we
1818     show that the relative drop in viscosity with water
1819     content is actually less than that that would be
1820     predicted for an ideal system. This finding is at
1821     odds with the popular notion that small amounts of
1822     water cause an unusually large drop in the viscosity
1823     of ionic liquids. The simulations suggest that, due
1824     to preferential association of water with anions and
1825     the formation of water clusters, the excess molar
1826     volume is negative. This means that dissolved water
1827     is actually less effective at lowering the viscosity
1828     of these mixtures when compared to a solute obeying
1829     ideal mixing behavior. The use of a nonequilibrium
1830     simulation technique enables diffusive behavior to
1831     be observed on the time scale of the simulations,
1832     and standard equilibrium molecular dynamics resulted
1833     in sub-diffusive behavior even over 2 ns of
1834     simulation time.},
1835     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
1836     Affiliation = {Maginn, EJ (Reprint Author), Univ Notre Dame, Dept Chem \& Biomol Engn, 182 Fitzpatrick Hall, Notre Dame, IN 46556 USA. Univ Notre Dame, Dept Chem \& Biomol Engn, Notre Dame, IN 46556 USA.},
1837     Author = {Kelkar, Manish S. and Maginn, Edward J.},
1838     Author-Email = {ed@nd.edu},
1839     Date-Added = {2009-09-29 17:07:17 -0400},
1840     Date-Modified = {2010-04-14 12:51:02 -0400},
1841     Doc-Delivery-Number = {163VA},
1842     Doi = {10.1021/jp0686893},
1843     Issn = {1520-6106},
1844     Journal = {J. Phys. Chem. B},
1845     Journal-Iso = {J. Phys. Chem. B},
1846     Keywords-Plus = {MOLECULAR-DYNAMICS SIMULATION; MOMENTUM IMPULSE RELAXATION; FORCE-FIELD; TRANSPORT-PROPERTIES; PHYSICAL-PROPERTIES; SIMPLE FLUID; CHLORIDE; MODEL; SALTS; ARCHITECTURE},
1847     Language = {English},
1848     Month = {MAY 10},
1849     Number = {18},
1850     Number-Of-Cited-References = {57},
1851     Pages = {4867-4876},
1852     Publisher = {AMER CHEMICAL SOC},
1853     Subject-Category = {Chemistry, Physical},
1854     Times-Cited = {35},
1855     Title = {Effect of temperature and water content on the shear viscosity of the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide as studied by atomistic simulations},
1856     Type = {Article},
1857     Unique-Id = {ISI:000246190100032},
1858     Volume = {111},
1859     Year = {2007},
1860     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp0686893%7D},
1861     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp0686893}}
1862    
1863     @article{MullerPlathe:1997xw,
1864     Abstract = {A nonequilibrium molecular dynamics method for
1865     calculating the thermal conductivity is
1866     presented. It reverses the usual cause and effect
1867     picture. The ''effect,'' the heat flux, is imposed
1868     on the system and the ''cause,'' the temperature
1869     gradient is obtained from the simulation. Besides
1870     being very simple to implement, the scheme offers
1871     several advantages such as compatibility with
1872     periodic boundary conditions, conservation of total
1873     energy and total linear momentum, and the sampling
1874     of a rapidly converging quantity (temperature
1875     gradient) rather than a slowly converging one (heat
1876     flux). The scheme is tested on the Lennard-Jones
1877     fluid. (C) 1997 American Institute of Physics.},
1878     Address = {WOODBURY},
1879     Author = {M\"{u}ller-Plathe, F.},
1880     Cited-Reference-Count = {13},
1881     Date = {APR 8},
1882     Date-Added = {2009-09-21 16:51:21 -0400},
1883     Date-Modified = {2009-09-21 16:51:21 -0400},
1884     Document-Type = {Article},
1885     Isi = {ISI:A1997WR62000032},
1886     Isi-Document-Delivery-Number = {WR620},
1887     Iso-Source-Abbreviation = {J. Chem. Phys.},
1888     Issn = {0021-9606},
1889     Journal = {J. Chem. Phys.},
1890     Language = {English},
1891     Month = {Apr},
1892     Number = {14},
1893     Page-Count = {4},
1894     Pages = {6082--6085},
1895     Publication-Type = {J},
1896     Publisher = {AMER INST PHYSICS},
1897     Publisher-Address = {CIRCULATION FULFILLMENT DIV, 500 SUNNYSIDE BLVD, WOODBURY, NY 11797-2999},
1898     Reprint-Address = {MullerPlathe, F, MAX PLANCK INST POLYMER RES, D-55128 MAINZ, GERMANY.},
1899     Source = {J CHEM PHYS},
1900     Subject-Category = {Physics, Atomic, Molecular & Chemical},
1901     Times-Cited = {106},
1902     Title = {A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity},
1903     Volume = {106},
1904     Year = {1997}}
1905    
1906     @article{Muller-Plathe:1999ek,
1907     Abstract = {A novel non-equilibrium method for calculating
1908     transport coefficients is presented. It reverses the
1909     experimental cause-and-effect picture, e.g. for the
1910     calculation of viscosities: the effect, the momentum
1911     flux or stress, is imposed, whereas the cause, the
1912     velocity gradient or shear rates, is obtained from
1913     the simulation. It differs from other
1914     Norton-ensemble methods by the way, in which the
1915     steady-state fluxes are maintained. This method
1916     involves a simple exchange of particle momenta,
1917     which is easy to implement and to analyse. Moreover,
1918     it can be made to conserve the total energy as well
1919     as the total linear momentum, so no thermostatting
1920     is needed. The resulting raw data are robust and
1921     rapidly converging. The method is tested on the
1922     calculation of the shear viscosity, the thermal
1923     conductivity and the Soret coefficient (thermal
1924     diffusion) for the Lennard-Jones (LJ) fluid near its
1925     triple point. Possible applications to other
1926     transport coefficients and more complicated systems
1927     are discussed. (C) 1999 Elsevier Science Ltd. All
1928     rights reserved.},
1929     Address = {THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND},
1930     Author = {M\"{u}ller-Plathe, F and Reith, D},
1931     Date-Added = {2009-09-21 16:47:07 -0400},
1932     Date-Modified = {2009-09-21 16:47:07 -0400},
1933     Isi = {000082266500004},
1934     Isi-Recid = {111564960},
1935     Isi-Ref-Recids = {64516210 89773595 53816621 60134000 94875498 60964023 90228608 85968509 86405859 63979644 108048497 87560156 577165 103281654 111564961 83735333 99953572 88476740 110174781 111564963 6599000 75892253},
1936     Journal = {Computational and Theoretical Polymer Science},
1937     Keywords = {viscosity; Ludwig-Soret effect; thermal conductivity; Onsager coefficents; non-equilibrium molecular dynamics},
1938     Number = {3-4},
1939     Pages = {203-209},
1940     Publisher = {ELSEVIER SCI LTD},
1941     Times-Cited = {15},
1942     Title = {Cause and effect reversed in non-equilibrium molecular dynamics: an easy route to transport coefficients},
1943     Volume = {9},
1944     Year = {1999},
1945     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000082266500004}}
1946    
1947     @article{Viscardy:2007lq,
1948     Abstract = {The thermal conductivity is calculated with the
1949     Helfand-moment method in the Lennard-Jones fluid
1950     near the triple point. The Helfand moment of thermal
1951     conductivity is here derived for molecular dynamics
1952     with periodic boundary conditions. Thermal
1953     conductivity is given by a generalized Einstein
1954     relation with this Helfand moment. The authors
1955     compute thermal conductivity by this new method and
1956     compare it with their own values obtained by the
1957     standard Green-Kubo method. The agreement is
1958     excellent. (C) 2007 American Institute of Physics.},
1959     Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
1960     Author = {Viscardy, S. and Servantie, J. and Gaspard, P.},
1961     Date-Added = {2009-09-21 16:37:20 -0400},
1962     Date-Modified = {2010-07-19 16:18:44 -0400},
1963     Doi = {DOI 10.1063/1.2724821},
1964     Isi = {000246453900035},
1965     Isi-Recid = {156192451},
1966     Isi-Ref-Recids = {18794442 84473620 156192452 41891249 90040203 110174972 59859940 47256160 105716249 91804339 93329429 95967319 6199670 1785176 105872066 6325196 65361295 71941152 4307928 23120502 54053395 149068110 4811016 99953572 59859908 132156782 156192449},
1967     Journal = {J. Chem. Phys.},
1968     Month = may,
1969     Number = {18},
1970     Pages = {184513},
1971     Publisher = {AMER INST PHYSICS},
1972     Times-Cited = {3},
1973     Title = {Transport and Helfand moments in the Lennard-Jones fluid. II. Thermal conductivity},
1974     Volume = {126},
1975     Year = {2007},
1976     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000246453900035},
1977     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.2724821}}
1978    
1979     @article{Viscardy:2007bh,
1980     Abstract = {The authors propose a new method, the Helfand-moment
1981     method, to compute the shear viscosity by
1982     equilibrium molecular dynamics in periodic
1983     systems. In this method, the shear viscosity is
1984     written as an Einstein-type relation in terms of the
1985     variance of the so-called Helfand moment. This
1986     quantity is modified in order to satisfy systems
1987     with periodic boundary conditions usually considered
1988     in molecular dynamics. They calculate the shear
1989     viscosity in the Lennard-Jones fluid near the triple
1990     point thanks to this new technique. They show that
1991     the results of the Helfand-moment method are in
1992     excellent agreement with the results of the standard
1993     Green-Kubo method. (C) 2007 American Institute of
1994     Physics.},
1995     Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
1996     Author = {Viscardy, S. and Servantie, J. and Gaspard, P.},
1997     Date-Added = {2009-09-21 16:37:19 -0400},
1998     Date-Modified = {2010-07-19 16:19:03 -0400},
1999     Doi = {DOI 10.1063/1.2724820},
2000     Isi = {000246453900034},
2001     Isi-Recid = {156192449},
2002     Isi-Ref-Recids = {18794442 89109900 84473620 86837966 26564374 23367140 83161139 75750220 90040203 110174972 5885 67722779 91461489 42484251 77907850 93329429 95967319 105716249 6199670 1785176 105872066 6325196 129596740 120782555 51131244 65361295 41141868 4307928 21555860 23120502 563068 120721875 142813985 135942402 4811016 86224873 57621419 85506488 89860062 44796632 51381285 132156779 156192450 132156782 156192451},
2003     Journal = {J. Chem. Phys.},
2004     Month = may,
2005     Number = {18},
2006     Pages = {184512},
2007     Publisher = {AMER INST PHYSICS},
2008     Times-Cited = {1},
2009     Title = {Transport and Helfand moments in the Lennard-Jones fluid. I. Shear viscosity},
2010     Volume = {126},
2011     Year = {2007},
2012     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000246453900034},
2013     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.2724820}}
2014    
2015     @inproceedings{384119,
2016     Address = {New York, NY, USA},
2017     Author = {Fortune, Steven},
2018     Booktitle = {ISSAC '01: Proceedings of the 2001 international symposium on Symbolic and algebraic computation},
2019     Doi = {http://doi.acm.org/10.1145/384101.384119},
2020     Isbn = {1-58113-417-7},
2021     Location = {London, Ontario, Canada},
2022     Pages = {121--128},
2023     Publisher = {ACM},
2024     Title = {Polynomial root finding using iterated Eigenvalue computation},
2025     Year = {2001},
2026     Bdsk-Url-1 = {http://doi.acm.org/10.1145/384101.384119}}
2027    
2028     @article{Fennell06,
2029 skuang 3721 Author = {C.~J. Fennell and J.~D. Gezelter},
2030     Date-Added = {2006-08-24 09:49:57 -0400},
2031     Date-Modified = {2006-08-24 09:49:57 -0400},
2032     Doi = {10.1063/1.2206581},
2033     Journal = {J. Chem. Phys.},
2034     Number = {23},
2035     Pages = {234104(12)},
2036     Rating = {5},
2037     Read = {Yes},
2038     Title = {Is the \uppercase{E}wald summation still necessary? \uppercase{P}airwise alternatives to the accepted standard for long-range electrostatics},
2039     Volume = {124},
2040     Year = {2006},
2041     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.2206581}}
2042 skuang 3719
2043 skuang 3721 @book{Sommese2005,
2044     Address = {Singapore},
2045     Author = {Andrew J. Sommese and Charles W. Wampler},
2046     Publisher = {World Scientific Press},
2047     Title = {The numerical solution of systems of polynomials arising in engineering and science},
2048     Year = 2005}