ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/interfacial/interfacial.bib
Revision: 3736
Committed: Mon Jul 11 22:34:42 2011 UTC (14 years, 6 months ago) by skuang
Original Path: interfacial/interfacial.bib
File size: 110090 byte(s)
Log Message:
add a figure. fix some citations.

File Contents

# User Rev Content
1 skuang 3719 %% This BibTeX bibliography file was created using BibDesk.
2     %% http://bibdesk.sourceforge.net/
3    
4    
5 skuang 3736 %% Created for Shenyu Kuang at 2011-07-11 18:28:11 -0400
6 skuang 3719
7    
8     %% Saved with string encoding Unicode (UTF-8)
9    
10    
11    
12 skuang 3736 @article{hautman:4994,
13     Author = {Joseph Hautman and Michael L. Klein},
14     Date-Added = {2011-07-11 18:27:57 -0400},
15     Date-Modified = {2011-07-11 18:27:57 -0400},
16     Doi = {10.1063/1.457621},
17     Journal = {The Journal of Chemical Physics},
18     Keywords = {MOLECULAR DYNAMICS CALCULATIONS; SIMULATION; MONOLAYERS; THIOLS; ALKYL COMPOUNDS; CHAINS; SURFACE STRUCTURE; GOLD; SUBSTRATES; CHEMISORPTION; SURFACE PROPERTIES},
19     Number = {8},
20     Pages = {4994-5001},
21     Publisher = {AIP},
22     Title = {Simulation of a monolayer of alkyl thiol chains},
23     Url = {http://link.aip.org/link/?JCP/91/4994/1},
24     Volume = {91},
25     Year = {1989},
26     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/91/4994/1},
27     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.457621}}
28    
29     @article{landman:1998,
30     Abstract = { Equilibrium structures and thermodynamic properties of dodecanethiol self-assembled monolayers on small (Au140) and larger (Au1289) gold nanocrystallites were investigated with the use of molecular dynamics simulations. Compact passivating monolayers are formed on the (111) and (100) facets of the nanocrystallites, with adsorption site geometries differing from those found on extended flat Au(111) and Au(100) surfaces, as well as with higher packing densities. At lower temperatures the passivating molecules organize into preferentially oriented molecular bundles with the molecules in the bundles aligned approximately parallel to each other. Thermal disordering starts at T ≳200 K, initiating at the boundaries of the bundles and involving generation of intramolecular conformational (gauche) defects which occur first at bonds near the chains' outer terminus and propagate inward toward the underlying gold nanocrystalline surface as the temperature is increased. The disordering process culminates in melting of the molecular bundles, resulting in a uniform orientational distribution of the molecules around the gold nanocrystallites. From the inflection points in the calculated caloric curves, melting temperatures were determined as 280 and 294 K for the monolayers adsorbed on the smaller and larger gold nanocrystallites, respectively. These temperatures are significantly lower than the melting temperature estimated for a self-assembled monolayer of dodecanethiol adsorbed on an extended Au(111) surface. The theoretically predicted disordering mechanisms and melting scenario, resulting in a temperature-broadened transition, support recent experimental investigations. },
31     Author = {Luedtke, W. D. and Landman, Uzi},
32     Date-Added = {2011-07-11 18:22:20 -0400},
33     Date-Modified = {2011-07-11 18:22:54 -0400},
34     Doi = {10.1021/jp981745i},
35     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp981745i},
36     Journal = {The Journal of Physical Chemistry B},
37     Number = {34},
38     Pages = {6566-6572},
39     Title = {Structure and Thermodynamics of Self-Assembled Monolayers on Gold Nanocrystallites},
40     Url = {http://pubs.acs.org/doi/abs/10.1021/jp981745i},
41     Volume = {102},
42     Year = {1998},
43     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp981745i},
44     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp981745i}}
45    
46     @article{hase:2010,
47     Abstract = {Model non-equilibrium molecular dynamics (MD) simulations are presented of heat transfer from a hot Au {111} substrate to an alkylthiolate self-assembled monolayer (H-SAM) to assist in obtaining an atomic-level understanding of experiments by Wang et al. (Z. Wang{,} J. A. Carter{,} A. Lagutchev{,} Y. K. Koh{,} N.-H. Seong{,} D. G. Cahill{,} and D. D. Dlott{,} Science{,} 2007{,} 317{,} 787). Different models are considered to determine how they affect the heat transfer dynamics. They include temperature equilibrated (TE) and temperature gradient (TG) thermostat models for the Au(s) surface{,} and soft and stiff S/Au(s) models for bonding of the S-atoms to the Au(s) surface. A detailed analysis of the non-equilibrium heat transfer at the heterogeneous interface is presented. There is a short time temperature gradient within the top layers of the Au(s) surface. The S-atoms heat rapidly{,} much faster than do the C-atoms in the alkylthiolate chains. A high thermal conductivity in the H-SAM{,} perpendicular to the interface{,} results in nearly identical temperatures for the CH2 and CH3 groups versus time. Thermal-induced disorder is analyzed for the Au(s) substrate{,} the S/Au(s) interface and the H-SAM. Before heat transfer occurs from the hot Au(s) substrate to the H-SAM{,} there is disorder at the S/Au(s) interface and within the alkylthiolate chains arising from heat-induced disorder near the surface of hot Au(s). The short-time rapid heating of the S-atoms enhances this disorder. The increasing disorder of H-SAM chains with time results from both disorder at the Au/S interface and heat transfer to the H-SAM chains.},
48     Author = {Zhang, Yue and Barnes, George L. and Yan, Tianying and Hase, William L.},
49     Date-Added = {2011-07-11 16:02:11 -0400},
50     Date-Modified = {2011-07-11 16:06:39 -0400},
51     Doi = {10.1039/B923858C},
52     Issue = {17},
53     Journal = {Phys. Chem. Chem. Phys.},
54     Pages = {4435-4445},
55     Publisher = {The Royal Society of Chemistry},
56     Title = {Model non-equilibrium molecular dynamics simulations of heat transfer from a hot gold surface to an alkylthiolate self-assembled monolayer},
57     Url = {http://dx.doi.org/10.1039/B923858C},
58     Volume = {12},
59     Year = {2010},
60     Bdsk-Url-1 = {http://dx.doi.org/10.1039/B923858C}}
61    
62     @article{jiang:2002,
63 skuang 3733 Abstract = { A review is presented of this group's recent molecular simulation studies of self-assembled monolayers (SAMs) of alkanethiols on Au(111) surfaces. SAMs are very useful for the systematic alteration of the chemical and structural properties of a surface by varying chain length, tail group and composition. The scientific and technological importance of SAMs cannot be overestimated. The present work has been centred on studies of atomic scale surface properties of SAMs. First, configurational-bias Monte Carlo simulations were performed in both semigrand canonical and canonical ensembles to investigate the preferential adsorption and phase behaviour of mixed SAMs on Au(111) surfaces. Second, a novel hybrid molecular simulation technique was developed to simulate atomic force microscopy (AFM) over experimental timescales. The method combines a dynamic element model for the tip-cantilever system in AFM and a molecular dynamics relaxation approach for the sample. The hybrid simulation technique was applied to investigate atomic scale friction and adhesion properties of SAMs as a function of chain length. Third, dual-control-volume grand canonical molecular dynamics (DCV-GCMD) simulations were performed of transport diffusion of liquid water and methanol through a slit pore with both inner walls consisting of Au(111) surfaces covered by SAMs under a chemical potential gradient. Surface hydrophobicity was adjusted by varying the terminal group of CH3 (hydrophobic) or OH (hydrophilic) of the SAMs. Finally, ab initio quantum chemical calculations were performed on both clusters and periodic systems of methylthiols on Au(111) surfaces. Based on the ab initio results, an accurate force field capable of predicting c(4×2) superlattice structures over a wide range of temepratures for alkanethiols on Au(111) was developed. The extension of current work is discussed briefly. },
64     Author = {JIANG, SHAOYI},
65     Date-Added = {2011-07-08 17:51:59 -0400},
66 skuang 3736 Date-Modified = {2011-07-11 16:11:38 -0400},
67 skuang 3733 Doi = {10.1080/00268970210130948},
68     Eprint = {http://www.tandfonline.com/doi/pdf/10.1080/00268970210130948},
69     Journal = {Molecular Physics},
70     Number = {14},
71     Pages = {2261-2275},
72     Title = {Molecular simulation studies of self-assembled monolayers of alkanethiols on Au(111)},
73     Url = {http://www.tandfonline.com/doi/abs/10.1080/00268970210130948},
74     Volume = {100},
75     Year = {2002},
76     Bdsk-Url-1 = {http://www.tandfonline.com/doi/abs/10.1080/00268970210130948},
77     Bdsk-Url-2 = {http://dx.doi.org/10.1080/00268970210130948}}
78    
79     @article{doi:10.1021/la904855s,
80     Author = {Alper, Joshua and Hamad-Schifferli, Kimberly},
81     Date-Added = {2011-07-08 17:18:53 -0400},
82     Date-Modified = {2011-07-08 17:18:53 -0400},
83     Doi = {10.1021/la904855s},
84     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/la904855s},
85     Journal = {Langmuir},
86     Note = {PMID: 20166728},
87     Number = {6},
88     Pages = {3786-3789},
89     Title = {Effect of Ligands on Thermal Dissipation from Gold Nanorods},
90     Url = {http://pubs.acs.org/doi/abs/10.1021/la904855s},
91     Volume = {26},
92     Year = {2010},
93     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/la904855s},
94     Bdsk-Url-2 = {http://dx.doi.org/10.1021/la904855s}}
95    
96     @article{doi:10.1021/jp8051888,
97     Abstract = { Thermal transport between CTAB passivated gold nanorods and solvent is studied by an optical pump−probe technique. Increasing the free CTAB concentration from 1 mM to 10 mM causes a ∼3× increase in the CTAB layer's effective thermal interface conductance and a corresponding shift in the longitudinal surface plasmon resonance. The transition occurs near the CTAB critical micelle concentration, revealing the importance of the role of free ligand on thermal transport. },
98     Author = {Schmidt, Aaron J. and Alper, Joshua D. and Chiesa, Matteo and Chen, Gang and Das, Sarit K. and Hamad-Schifferli, Kimberly},
99     Date-Added = {2011-07-08 17:04:34 -0400},
100     Date-Modified = {2011-07-08 17:04:34 -0400},
101     Doi = {10.1021/jp8051888},
102     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp8051888},
103     Journal = {The Journal of Physical Chemistry C},
104     Number = {35},
105     Pages = {13320-13323},
106     Title = {Probing the Gold Nanorod−Ligand−Solvent Interface by Plasmonic Absorption and Thermal Decay},
107     Url = {http://pubs.acs.org/doi/abs/10.1021/jp8051888},
108     Volume = {112},
109     Year = {2008},
110     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp8051888},
111     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp8051888}}
112    
113     @article{PhysRevB.80.195406,
114     Author = {Juv\'e, Vincent and Scardamaglia, Mattia and Maioli, Paolo and Crut, Aur\'elien and Merabia, Samy and Joly, Laurent and Del Fatti, Natalia and Vall\'ee, Fabrice},
115     Date-Added = {2011-07-08 16:36:39 -0400},
116     Date-Modified = {2011-07-08 16:36:39 -0400},
117     Doi = {10.1103/PhysRevB.80.195406},
118     Journal = {Phys. Rev. B},
119     Month = {Nov},
120     Number = {19},
121     Numpages = {6},
122     Pages = {195406},
123     Publisher = {American Physical Society},
124     Title = {Cooling dynamics and thermal interface resistance of glass-embedded metal nanoparticles},
125     Volume = {80},
126     Year = {2009},
127     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevB.80.195406}}
128    
129     @article{Wang10082007,
130     Abstract = {At the level of individual molecules, familiar concepts of heat transport no longer apply. When large amounts of heat are transported through a molecule, a crucial process in molecular electronic devices, energy is carried by discrete molecular vibrational excitations. We studied heat transport through self-assembled monolayers of long-chain hydrocarbon molecules anchored to a gold substrate by ultrafast heating of the gold with a femtosecond laser pulse. When the heat reached the methyl groups at the chain ends, a nonlinear coherent vibrational spectroscopy technique detected the resulting thermally induced disorder. The flow of heat into the chains was limited by the interface conductance. The leading edge of the heat burst traveled ballistically along the chains at a velocity of 1 kilometer per second. The molecular conductance per chain was 50 picowatts per kelvin.},
131     Author = {Wang, Zhaohui and Carter, Jeffrey A. and Lagutchev, Alexei and Koh, Yee Kan and Seong, Nak-Hyun and Cahill, David G. and Dlott, Dana D.},
132     Date-Added = {2011-07-08 16:20:05 -0400},
133     Date-Modified = {2011-07-08 16:20:05 -0400},
134     Doi = {10.1126/science.1145220},
135     Eprint = {http://www.sciencemag.org/content/317/5839/787.full.pdf},
136     Journal = {Science},
137     Number = {5839},
138     Pages = {787-790},
139     Title = {Ultrafast Flash Thermal Conductance of Molecular Chains},
140     Url = {http://www.sciencemag.org/content/317/5839/787.abstract},
141     Volume = {317},
142     Year = {2007},
143     Bdsk-Url-1 = {http://www.sciencemag.org/content/317/5839/787.abstract},
144     Bdsk-Url-2 = {http://dx.doi.org/10.1126/science.1145220}}
145    
146 skuang 3736 @article{hase:2011,
147 skuang 3733 Abstract = { In a previous article (Phys. Chem. Chem. Phys.2010, 12, 4435), nonequilibrium molecular dynamics (MD) simulations of heat transfer from a hot Au{111} substrate to an alkylthiolate self-assembled monolayer (H-SAM) were presented. The simulations were performed for an H-SAM chain length of eight carbon atoms, and a qualitative agreement with the experiments of Wang et al. (Science2007, 317, 787) was found. Here, simulation results are presented for heat transfer to H-SAM surfaces with carbon chain lengths of 10--20 carbon atoms. Relaxation times for heat transfer are extracted, compared with experiment, and a qualitative agreement is obtained. The same relaxation time is found from either the temperature of the H-SAM or the orientational disorder of the H-SAM versus time. For a simulation model with the Au substrate thermally equilibrated, the relaxation times determined from the simulations are approximately a factor of 4 larger than the experimental values. },
148     Author = {Manikandan, Paranjothy and Carter, Jeffrey A. and Dlott, Dana D. and Hase, William L.},
149     Date-Added = {2011-07-08 13:36:39 -0400},
150 skuang 3736 Date-Modified = {2011-07-11 16:07:01 -0400},
151 skuang 3733 Doi = {10.1021/jp200672e},
152     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp200672e},
153     Journal = {The Journal of Physical Chemistry C},
154     Number = {19},
155     Pages = {9622-9628},
156     Title = {Effect of Carbon Chain Length on the Dynamics of Heat Transfer at a Gold/Hydrocarbon Interface: Comparison of Simulation with Experiment},
157     Url = {http://pubs.acs.org/doi/abs/10.1021/jp200672e},
158     Volume = {115},
159     Year = {2011},
160     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp200672e},
161     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp200672e}}
162    
163 skuang 3729 @article{doi:10.1021/ja00051a040,
164     Author = {Rappe, A. K. and Casewit, C. J. and Colwell, K. S. and Goddard, W. A. and Skiff, W. M.},
165     Date-Added = {2011-06-29 14:04:33 -0400},
166     Date-Modified = {2011-06-29 14:04:33 -0400},
167     Doi = {10.1021/ja00051a040},
168     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/ja00051a040},
169     Journal = {Journal of the American Chemical Society},
170     Number = {25},
171     Pages = {10024-10035},
172     Title = {UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations},
173     Url = {http://pubs.acs.org/doi/abs/10.1021/ja00051a040},
174     Volume = {114},
175     Year = {1992},
176     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/ja00051a040},
177     Bdsk-Url-2 = {http://dx.doi.org/10.1021/ja00051a040}}
178    
179 skuang 3724 @article{doi:10.1021/jp034405s,
180     Abstract = { We use the universal force field (UFF) developed by Rapp{\'e} et al. (Rapp{\'e}, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard, W. A.; Skiff, W. M. J. Am. Chem. Soc. 1992, 114, 10024) and the specific classical potentials developed from ab initio calculations for Au−benzenedithiol (BDT) molecule interaction to perform molecular dynamics (MD) simulations of a BDT monolayer on an extended Au(111) surface. The simulation system consists of 100 BDT molecules and three rigid Au layers in a simulation box that is rhombic in the plane of the Au surface. A multiple time scale algorithm, the double-reversible reference system propagator algorithm (double RESPA) based on the Nos{\'e}−Hoover dynamics scheme, and the Ewald summation with a boundary correction term for the treatment of long-range electrostatic interactions in a 2-D slab have been incorporated into the simulation technique. We investigate the local bonding properties of Au−BDT contacts and molecular orientation distributions of BDT molecules. These results show that whereas different basis sets from ab initio calculations may generate different local bonding geometric parameters (the bond length, etc.) the packing structures of BDT molecules maintain approximately the same well-ordered herringbone structure with small peak differences in the probability distributions of global geometric parameters. The methodology developed here opens an avenue for classical simulations of a metal−molecule−metal complex in molecular electronics devices. },
181     Author = {Leng and Keffer, David J. and Cummings, Peter T.},
182     Date-Added = {2011-04-28 11:23:28 -0400},
183     Date-Modified = {2011-04-28 11:23:28 -0400},
184     Doi = {10.1021/jp034405s},
185     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp034405s},
186     Journal = {The Journal of Physical Chemistry B},
187     Number = {43},
188     Pages = {11940-11950},
189     Title = {Structure and Dynamics of a Benzenedithiol Monolayer on a Au(111) Surface},
190     Url = {http://pubs.acs.org/doi/abs/10.1021/jp034405s},
191     Volume = {107},
192     Year = {2003},
193     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp034405s},
194     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp034405s}}
195    
196 skuang 3721 @article{OPLSAA,
197     Abstract = {null},
198     Annote = {doi: 10.1021/ja9621760},
199     Author = {Jorgensen, William L. and Maxwell, David S. and Tirado-Rives, Julian},
200     Date = {1996/01/01},
201     Date-Added = {2011-02-04 18:54:58 -0500},
202     Date-Modified = {2011-02-04 18:54:58 -0500},
203     Do = {10.1021/ja9621760},
204     Isbn = {0002-7863},
205     Journal = {Journal of the American Chemical Society},
206     M3 = {doi: 10.1021/ja9621760},
207     Month = {01},
208     Number = {45},
209     Pages = {11225--11236},
210     Publisher = {American Chemical Society},
211     Title = {Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids},
212     Ty = {JOUR},
213     Url = {http://dx.doi.org/10.1021/ja9621760},
214     Volume = {118},
215     Year = {1996},
216     Year1 = {1996/01/01},
217     Bdsk-Url-1 = {http://dx.doi.org/10.1021/ja9621760}}
218    
219     @article{TraPPE-UA.alkylbenzenes,
220     Author = {Wick, Collin D. and Martin, Marcus G. and Siepmann, J. Ilja},
221     Date-Added = {2011-02-04 18:31:46 -0500},
222     Date-Modified = {2011-02-04 18:32:22 -0500},
223     Doi = {10.1021/jp001044x},
224     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp001044x},
225     Journal = {The Journal of Physical Chemistry B},
226     Number = {33},
227     Pages = {8008-8016},
228     Title = {Transferable Potentials for Phase Equilibria. 4. United-Atom Description of Linear and Branched Alkenes and Alkylbenzenes},
229     Url = {http://pubs.acs.org/doi/abs/10.1021/jp001044x},
230     Volume = {104},
231     Year = {2000},
232     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp001044x},
233     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp001044x}}
234    
235     @article{TraPPE-UA.alkanes,
236     Author = {Martin, Marcus G. and Siepmann, J. Ilja},
237     Date-Added = {2011-02-04 18:01:31 -0500},
238     Date-Modified = {2011-02-04 18:02:19 -0500},
239     Doi = {10.1021/jp972543+},
240     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp972543%2B},
241     Journal = {The Journal of Physical Chemistry B},
242     Number = {14},
243     Pages = {2569-2577},
244     Title = {Transferable Potentials for Phase Equilibria. 1. United-Atom Description of n-Alkanes},
245     Url = {http://pubs.acs.org/doi/abs/10.1021/jp972543%2B},
246     Volume = {102},
247     Year = {1998},
248     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp972543+},
249     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp972543+}}
250    
251     @article{TraPPE-UA.thiols,
252     Author = {Lubna, Nusrat and Kamath, Ganesh and Potoff, Jeffrey J. and Rai, Neeraj and Siepmann, J. Ilja},
253     Date-Added = {2011-02-04 17:51:03 -0500},
254     Date-Modified = {2011-02-04 17:54:20 -0500},
255     Doi = {10.1021/jp0549125},
256     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp0549125},
257     Journal = {The Journal of Physical Chemistry B},
258     Number = {50},
259     Pages = {24100-24107},
260     Title = {Transferable Potentials for Phase Equilibria. 8. United-Atom Description for Thiols, Sulfides, Disulfides, and Thiophene},
261     Url = {http://pubs.acs.org/doi/abs/10.1021/jp0549125},
262     Volume = {109},
263     Year = {2005},
264     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp0549125},
265     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp0549125}}
266    
267     @article{vlugt:cpc2007154,
268     Author = {Philipp Schapotschnikow and Ren{\'e} Pool and Thijs J.H. Vlugt},
269     Date-Added = {2011-02-01 16:00:11 -0500},
270     Date-Modified = {2011-02-04 18:21:59 -0500},
271     Doi = {DOI: 10.1016/j.cpc.2007.02.028},
272     Issn = {0010-4655},
273     Journal = {Computer Physics Communications},
274     Keywords = {Gold nanocrystals},
275     Note = {Proceedings of the Conference on Computational Physics 2006 - CCP 2006, Conference on Computational Physics 2006},
276     Number = {1-2},
277     Pages = {154 - 157},
278     Title = {Selective adsorption of alkyl thiols on gold in different geometries},
279     Url = {http://www.sciencedirect.com/science/article/B6TJ5-4N3WYP0-1/2/66dbe8892f456c230b9b8fcd9c23f456},
280     Volume = {177},
281     Year = {2007},
282     Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/B6TJ5-4N3WYP0-1/2/66dbe8892f456c230b9b8fcd9c23f456},
283     Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.cpc.2007.02.028}}
284    
285     @article{packmol,
286     Author = {L. Mart\'{\i}nez and R. Andrade and Ernesto G. Birgin and Jos{\'e} Mario Mart\'{\i}nez},
287     Bibsource = {DBLP, http://dblp.uni-trier.de},
288     Date-Added = {2011-02-01 15:13:02 -0500},
289     Date-Modified = {2011-02-01 15:14:25 -0500},
290     Ee = {http://dx.doi.org/10.1002/jcc.21224},
291     Journal = {Journal of Computational Chemistry},
292     Number = {13},
293     Pages = {2157-2164},
294     Title = {PACKMOL: A package for building initial configurations for molecular dynamics simulations},
295     Volume = {30},
296     Year = {2009}}
297    
298     @article{kuang:164101,
299     Author = {Shenyu Kuang and J. Daniel Gezelter},
300     Date-Added = {2011-01-31 17:12:35 -0500},
301     Date-Modified = {2011-01-31 17:12:35 -0500},
302     Doi = {10.1063/1.3499947},
303     Eid = {164101},
304     Journal = {The Journal of Chemical Physics},
305     Keywords = {linear momentum; molecular dynamics method; thermal conductivity; total energy; viscosity},
306     Number = {16},
307     Numpages = {9},
308     Pages = {164101},
309     Publisher = {AIP},
310     Title = {A gentler approach to RNEMD: Nonisotropic velocity scaling for computing thermal conductivity and shear viscosity},
311     Url = {http://link.aip.org/link/?JCP/133/164101/1},
312     Volume = {133},
313     Year = {2010},
314     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/133/164101/1},
315     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.3499947}}
316    
317 skuang 3719 @article{muller:014102,
318     Author = {Thomas J. Muller and Michael Al-Samman and Florian Muller-Plathe},
319     Date-Added = {2010-09-16 19:19:25 -0400},
320     Date-Modified = {2010-09-16 19:19:25 -0400},
321     Doi = {10.1063/1.2943312},
322     Eid = {014102},
323     Journal = {The Journal of Chemical Physics},
324     Keywords = {intramolecular mechanics; Lennard-Jones potential; molecular dynamics method; thermostats; viscosity},
325     Number = {1},
326     Numpages = {8},
327     Pages = {014102},
328     Publisher = {AIP},
329     Title = {The influence of thermostats and manostats on reverse nonequilibrium molecular dynamics calculations of fluid viscosities},
330     Url = {http://link.aip.org/link/?JCP/129/014102/1},
331     Volume = {129},
332     Year = {2008},
333     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/129/014102/1},
334     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.2943312}}
335    
336     @article{wolf:8254,
337     Author = {D. Wolf and P. Keblinski and S. R. Phillpot and J. Eggebrecht},
338     Date-Added = {2010-09-16 19:01:51 -0400},
339     Date-Modified = {2010-09-16 19:01:51 -0400},
340     Doi = {10.1063/1.478738},
341     Journal = {J. Chem. Phys.},
342     Keywords = {POTENTIAL ENERGY; COULOMB FIELD; COULOMB ENERGY; LATTICE PARAMETERS; potential energy functions; lattice dynamics; lattice energy},
343     Number = {17},
344     Pages = {8254-8282},
345     Publisher = {AIP},
346     Title = {Exact method for the simulation of Coulombic systems by spherically truncated, pairwise r[sup -1] summation},
347     Url = {http://link.aip.org/link/?JCP/110/8254/1},
348     Volume = {110},
349     Year = {1999},
350     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/110/8254/1},
351     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.478738}}
352    
353     @article{HeX:1993,
354     Abstract = {A recently developed non-equilibrium molecular dynamics algorithm for
355     heat conduction is used to compute the thermal conductivity, thermal
356     diffusion factor, and heat of transfer in binary Lennard-Jones
357     mixtures. An internal energy flux is established with local source and
358     sink terms for kinetic energy.
359     Simulations of isotope mixtures covering a range of densities and mass
360     ratios show that the lighter component prefers the hot side of the
361     system at stationary state. This implies a positive thermal diffusion
362     factor in the definition we have adopted here. The molecular basis for
363     the Soret effect is studied by analysing the energy flux through the
364     system. In all cases we found that there is a difference in the
365     relative contributions when we compare the hot and cold sides of the
366     system. The contribution from the lighter component is predominantly
367     flux of kinetic energy, and this contribution increases from the cold
368     to the hot side. The contribution from the heavier component is
369     predominantly energy transfer through molecular interactions, and it
370     increases from the hot to the cold side. This explains why the thermal
371     diffusion factor is positive; heal is conducted more effectively
372     through the system if the lighter component is enriched at the hot
373     side. Even for very large heat fluxes, we find a linear or almost
374     linear temperature profile through the system, and a constant thermal
375     conductivity. The entropy production per unit volume and unit time
376     increases from the hot to the cold side.},
377     Author = {Hafskjold, B and Ikeshoji, T and Ratkje, SK},
378     Date-Added = {2010-09-15 16:52:45 -0400},
379     Date-Modified = {2010-09-15 16:54:23 -0400},
380     Issn = {{0026-8976}},
381     Journal = {Mol. Phys.},
382     Month = {DEC},
383     Number = {6},
384     Pages = {1389-1412},
385     Title = {ON THE MOLECULAR MECHANISM OF THERMAL-DIFFUSION IN LIQUIDS},
386     Unique-Id = {ISI:A1993MQ34500009},
387     Volume = {80},
388 skuang 3721 Year = {1993}}
389 skuang 3719
390     @article{HeX:1994,
391     Abstract = {This paper presents a new algorithm for non-equilibrium molecular
392     dynamics, where a temperature gradient is established in a system with
393     periodic boundary conditions. At each time step in the simulation, a
394     fixed amount of energy is supplied to a hot region by scaling the
395     velocity of each particle in it, subject to conservation of total
396     momentum. An equal amount of energy is likewise withdrawn from a cold
397     region at each time step. Between the hot and cold regions is a region
398     through which an energy flux is established. Two configurations of hot
399     and cold regions are proposed. Using a stacked layer structure, the
400     instantaneous local energy flux for a 128-particle Lennard-Jones system
401     in liquid was found to be in good agreement with the macroscopic theory
402     of heat conduction at stationary state, except in and near the hot and
403     cold regions. Thermal conductivity calculated for the 128-particle
404     system was about 10\% smaller than the literature value obtained by
405     molecular dynamics calculations. One run with a 1024-particle system
406     showed an agreement with the literature value within statistical error
407     (1-2\%). Using a unit cell with a cold spherical region at the centre
408     and a hot region in the perimeter of the cube, an initial gaseous state
409     of argon was separated into gas and liquid phases. Energy fluxes due to
410     intermolecular energy transfer and transport of kinetic energy dominate
411     in the liquid and gas phases, respectively.},
412     Author = {Ikeshoji, T and Hafskjold, B},
413     Date-Added = {2010-09-15 16:52:45 -0400},
414     Date-Modified = {2010-09-15 16:54:37 -0400},
415     Issn = {0026-8976},
416     Journal = {Mol. Phys.},
417     Month = {FEB},
418     Number = {2},
419     Pages = {251-261},
420     Title = {NONEQUILIBRIUM MOLECULAR-DYNAMICS CALCULATION OF HEAT-CONDUCTION IN LIQUID AND THROUGH LIQUID-GAS INTERFACE},
421     Unique-Id = {ISI:A1994MY17400001},
422     Volume = {81},
423 skuang 3721 Year = {1994}}
424 skuang 3719
425     @article{plech:195423,
426     Author = {A. Plech and V. Kotaidis and S. Gresillon and C. Dahmen and G. von Plessen},
427     Date-Added = {2010-08-12 11:34:55 -0400},
428     Date-Modified = {2010-08-12 11:34:55 -0400},
429     Eid = {195423},
430     Journal = {Phys. Rev. B},
431     Keywords = {gold; laser materials processing; melting; nanoparticles; time resolved spectra; X-ray scattering; lattice dynamics; high-speed optical techniques; cooling; thermal resistance; thermal conductivity; long-range order},
432     Local-Url = {file://localhost/Users/charles/Documents/Papers/PhysRevB_70_195423.pdf},
433     Number = {19},
434     Numpages = {7},
435     Pages = {195423},
436     Publisher = {APS},
437     Title = {Laser-induced heating and melting of gold nanoparticles studied by time-resolved x-ray scattering},
438     Url = {http://link.aps.org/abstract/PRB/v70/e195423},
439     Volume = {70},
440     Year = {2004},
441     Bdsk-Url-1 = {http://link.aps.org/abstract/PRB/v70/e195423}}
442    
443     @article{Wilson:2002uq,
444     Abstract = {We investigate suspensions of 3-10 nm diameter Au, Pt, and AuPd nanoparticles as probes of thermal transport in fluids and determine approximate values for the thermal conductance G of the particle/fluid interfaces. Subpicosecond lambda=770 nm optical pulses from a Ti:sapphire mode-locked laser are used to heat the particles and interrogate the decay of their temperature through time-resolved changes in optical absorption. The thermal decay of alkanethiol-terminated Au nanoparticles in toluene is partially obscured by other effects; we set a lower limit G>20 MW m(-2)K(-1). The thermal decay of citrate-stabilized Pt nanoparticles in water gives Gapproximate to130 MW m(-2) K-1. AuPd alloy nanoparticles in toluene and stabilized by alkanethiol termination give Gapproximate to5 MW m(-2) K-1. The measured G are within a factor of 2 of theoretical estimates based on the diffuse-mismatch model.},
445     Author = {Wilson, OM and Hu, XY and Cahill, DG and Braun, PV},
446     Date-Added = {2010-08-12 11:31:02 -0400},
447     Date-Modified = {2010-08-12 11:31:02 -0400},
448     Doi = {ARTN 224301},
449     Journal = {Phys. Rev. B},
450     Local-Url = {file://localhost/Users/charles/Documents/Papers/e2243010.pdf},
451     Title = {Colloidal metal particles as probes of nanoscale thermal transport in fluids},
452     Volume = {66},
453     Year = {2002},
454     Bdsk-Url-1 = {http://dx.doi.org/224301}}
455    
456     @article{RevModPhys.61.605,
457     Author = {Swartz, E. T. and Pohl, R. O.},
458     Date-Added = {2010-08-06 17:03:01 -0400},
459     Date-Modified = {2010-08-06 17:03:01 -0400},
460     Doi = {10.1103/RevModPhys.61.605},
461     Journal = {Rev. Mod. Phys.},
462     Month = {Jul},
463     Number = {3},
464     Numpages = {63},
465     Pages = {605--668},
466     Publisher = {American Physical Society},
467     Title = {Thermal boundary resistance},
468     Volume = {61},
469     Year = {1989},
470     Bdsk-Url-1 = {http://dx.doi.org/10.1103/RevModPhys.61.605}}
471    
472     @article{cahill:793,
473     Author = {David G. Cahill and Wayne K. Ford and Kenneth E. Goodson and Gerald D. Mahan and Arun Majumdar and Humphrey J. Maris and Roberto Merlin and Simon R. Phillpot},
474     Date-Added = {2010-08-06 17:02:22 -0400},
475     Date-Modified = {2010-08-06 17:02:22 -0400},
476     Doi = {10.1063/1.1524305},
477     Journal = {J. Applied Phys.},
478     Keywords = {nanostructured materials; reviews; thermal conductivity; interface phenomena; molecular dynamics method; thermal management (packaging); Boltzmann equation; carbon nanotubes; porosity; semiconductor superlattices; thermoreflectance; interface phonons; thermoelectricity; phonon-phonon interactions},
479     Number = {2},
480     Pages = {793-818},
481     Publisher = {AIP},
482     Title = {Nanoscale thermal transport},
483     Url = {http://link.aip.org/link/?JAP/93/793/1},
484     Volume = {93},
485     Year = {2003},
486     Bdsk-Url-1 = {http://link.aip.org/link/?JAP/93/793/1},
487     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.1524305}}
488    
489     @inbook{Hoffman:2001sf,
490     Address = {New York},
491     Annote = {LDR 01107cam 2200253 a 4500
492     001 12358442
493     005 20070910074423.0
494     008 010326s2001 nyua b 001 0 eng
495     906 $a7$bcbc$corignew$d1$eocip$f20$gy-gencatlg
496     925 0 $aacquire$b2 shelf copies$xpolicy default
497     955 $ato ASCD pc23 03-26-01; jp20 03-27-01 to subj; jp99 to SL 03-27-01; jp85 to Dewey 03-27-01; aa01 03-28-01$aps02 2001-10-04 bk rec'd, to CIP ver.;$fpv04 2001-10-31 CIP ver to BCCD$ajp01 2001-12-06 c. 2 to BCCD
498     010 $a 2001028633
499     020 $a0824704436 (acid-free paper)
500     040 $aDLC$cDLC$dDLC
501     050 00 $aQA297$b.H588 2001
502     082 00 $a519.4$221
503     100 1 $aHoffman, Joe D.,$d1934-
504     245 10 $aNumerical methods for engineers and scientists /$cJoe D. Hoffman.
505     250 $a2nd ed., rev. and expanded.
506     260 $aNew York :$bMarcel Dekker,$cc2001.
507     300 $axi, 823 p. :$bill. ;$c26 cm.
508     504 $aIncludes bibliographical references (p. 775-777) and index.
509     650 0 $aNumerical analysis.
510     856 42 $3Publisher description$uhttp://www.loc.gov/catdir/enhancements/fy0743/2001028633-d.html
511     },
512     Author = {Hoffman, Joe D.},
513     Call-Number = {QA297},
514     Date-Added = {2010-07-15 16:32:02 -0400},
515     Date-Modified = {2010-07-19 16:49:37 -0400},
516     Dewey-Call-Number = {519.4},
517     Edition = {2nd ed., rev. and expanded},
518     Genre = {Numerical analysis},
519     Isbn = {0824704436 (acid-free paper)},
520     Library-Id = {2001028633},
521     Pages = {157},
522     Publisher = {Marcel Dekker},
523     Title = {Numerical methods for engineers and scientists},
524     Url = {http://www.loc.gov/catdir/enhancements/fy0743/2001028633-d.html},
525     Year = {2001},
526     Bdsk-Url-1 = {http://www.loc.gov/catdir/enhancements/fy0743/2001028633-d.html}}
527    
528     @article{Vardeman:2008fk,
529     Abstract = {Using molecular dynamics simulations, we have simulated the rapid cooling experienced by bimetallic nanoparticles following laser excitation at the plasmon resonance and find evidence that glassy beads, specifically Ag-Cu bimetallic particles at the eutectic composition (60\% Ag, 40\% Cu), can be formed during these experiments. The bimetallic nanoparticles are embedded in an implicit solvent with a viscosity tuned to yield cooling curves that match the experimental cooling behavior as closely as possible. Because the nanoparticles have a large surface-to-volume ratio, experimentally realistic cooling rates are accessible via relatively short simulations. The presence of glassy structural features was verified using bond orientational order parameters that are sensitive to the formation of local icosahedral ordering in condensed phases. As the particles cool from the liquid droplet state into glassy beads, a silver-rich monolayer develops on the outer surface and local icosahedra can develop around the silver atoms in this monolayer. However, we observe a strong preference for the local icosahedral ordering around the copper atoms in the particles. As the particles cool, these local icosahedral structures grow to include a larger fraction of the atoms in the nanoparticle, eventually leading to a glassy nanosphere.},
530     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
531     Author = {{Vardeman II}, Charles F. and Gezelter, J. Daniel},
532     Date-Added = {2010-07-13 11:48:22 -0400},
533     Date-Modified = {2010-07-19 16:20:01 -0400},
534     Doi = {DOI 10.1021/jp710063g},
535     Isi = {000253512400021},
536     Isi-Recid = {160903603},
537     Isi-Ref-Recids = {144152922 81445483 98913099 146167982 55512304 50985260 52031423 29272311 151055545 134895634 130292830 101988637 100757730 98524559 123952006 6025131 59492217 2078548 135495737 136941603 90709964 160903604 130558416 113800688 30137926 117888234 63632785 38926953 158293976 135246439 125693419 125789026 155583142 156430464 65888620 130160487 97576420 109490154 150229560 116057234 134425927 142869781 121706070 89390336 119150946 143383743 64066027 171282998 142688207 51429664 84591083 127696312 58160909 155366996 155654757 137551818 128633299 109033408 120457571 171282999 124947095 126857514 49630702 64115284 84689627 71842426 96309965 79034659 92658330 146168029 119238036 144824430 132319357 160903607 171283000 100274448},
538     Journal = {J. Phys. Chem. C},
539     Month = mar,
540     Number = {9},
541     Pages = {3283-3293},
542     Publisher = {AMER CHEMICAL SOC},
543     Times-Cited = {0},
544     Title = {Simulations of laser-induced glass formation in Ag-Cu nanoparticles},
545     Volume = {112},
546     Year = {2008},
547     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000253512400021}}
548    
549     @article{PhysRevB.59.3527,
550     Author = {Qi, Yue and \c{C}a\v{g}in, Tahir and Kimura, Yoshitaka and {Goddard III}, William A.},
551     Date-Added = {2010-07-13 11:44:08 -0400},
552     Date-Modified = {2010-07-13 11:44:08 -0400},
553     Doi = {10.1103/PhysRevB.59.3527},
554     Journal = {Phys. Rev. B},
555     Local-Url = {file://localhost/Users/charles/Documents/Papers/Qi/1999.pdf},
556     Month = {Feb},
557     Number = {5},
558     Numpages = {6},
559     Pages = {3527-3533},
560     Publisher = {American Physical Society},
561     Title = {Molecular-dynamics simulations of glass formation and crystallization in binary liquid metals:\quad{}{C}u-{A}g and {C}u-{N}i},
562     Volume = {59},
563     Year = {1999},
564     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevB.59.3527}}
565    
566     @article{Medasani:2007uq,
567     Abstract = {We employ first-principles and empirical computational methods to study the surface energy and surface stress of silver nanoparticles. The structures, cohesive energies, and lattice contractions of spherical Ag nanoclusters in the size range 0.5-5.5 nm are analyzed using two different theoretical approaches: an ab initio density functional pseudopotential technique combined with the generalized gradient approximation and the embedded atom method. The surface energies and stresses obtained via the embedded atom method are found to be in good agreement with those predicted by the gradient-corrected ab initio density functional formalism. We estimate the surface energy of Ag nanoclusters to be in the range of 1.0-2.2 J/m(2). Our values are close to the bulk surface energy of silver, but are significantly lower than the recently reported value of 7.2 J/m(2) for free Ag nanoparticles derived from the Kelvin equation.},
568     Author = {Medasani, Bharat and Park, Young Ho and Vasiliev, Igor},
569     Date-Added = {2010-07-13 11:43:15 -0400},
570     Date-Modified = {2010-07-13 11:43:15 -0400},
571     Doi = {ARTN 235436},
572     Journal = {Phys. Rev. B},
573     Local-Url = {file://localhost/Users/charles/Documents/Papers/PhysRevB_75_235436.pdf},
574     Title = {Theoretical study of the surface energy, stress, and lattice contraction of silver nanoparticles},
575     Volume = {75},
576     Year = {2007},
577     Bdsk-Url-1 = {http://dx.doi.org/235436}}
578    
579     @article{Wang:2005qy,
580     Abstract = {The surface structures of cubo-octahedral Pt-Mo nanoparticles have been investigated using the Monte Carlo method and modified embedded atom method potentials that we developed for Pt-Mo alloys. The cubo-octahedral Pt-Mo nanoparticles are constructed with disordered fcc configurations, with sizes from 2.5 to 5.0 nm, and with Pt concentrations from 60 to 90 atom \%. The equilibrium Pt-Mo nanoparticle configurations were generated through Monte Carlo simulations allowing both atomic displacements and element exchanges at 600 K. We predict that the Pt atoms weakly segregate to the surfaces of such nanoparticles. The Pt concentrations in the surface are calculated to be 5-14 atom \% higher than the Pt concentrations of the nanoparticles. Moreover, the Pt atoms preferentially segregate to the facet sites of the surface, while the Pt and Mo atoms tend to alternate along the edges and vertexes of these nanoparticles. We found that decreasing the size or increasing the Pt concentration leads to higher Pt concentrations but fewer Pt-Mo pairs in the Pt-Mo nanoparticle surfaces.},
581     Author = {Wang, GF and Van Hove, MA and Ross, PN and Baskes, MI},
582     Date-Added = {2010-07-13 11:42:50 -0400},
583     Date-Modified = {2010-07-13 11:42:50 -0400},
584     Doi = {DOI 10.1021/jp050116n},
585     Journal = {J. Phys. Chem. B},
586     Pages = {11683-11692},
587     Title = {Surface structures of cubo-octahedral Pt-Mo catalyst nanoparticles from Monte Carlo simulations},
588     Volume = {109},
589     Year = {2005},
590     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp050116n}}
591    
592     @article{Chui:2003fk,
593     Abstract = {Molecular dynamics simulations of a platinum nanocluster consisting 250 atoms were performed at different temperatures between 70 K and 298 K. The semi-empirical, many-body Sutton-Chen (SC) potential was used to model the interatomic interaction in the metallic system. Regions of core or bulk-like atoms and surface atoms can be defined from analyses of structures, atomic coordination, and the local density function of atoms as defined in the SC potential. The core atoms in the nanoparticle behave as bulk-like metal atoms with a predominant face centered cubic (fcc) packing. The interface between surface atoms and core atoms is marked by a peak in the local density function and corresponds to near surface atoms. The near surface atoms and surface atoms prefer a hexagonal closed packing (hcp). The temperature and size effects on structures of the nanoparticle and the dynamics of the surface region and the core region are discussed.},
594     Author = {Chui, YH and Chan, KY},
595     Date-Added = {2010-07-13 11:42:32 -0400},
596     Date-Modified = {2010-07-13 11:42:32 -0400},
597     Doi = {DOI 10.1039/b302122j},
598     Journal = {Phys. Chem. Chem. Phys.},
599     Pages = {2869-2874},
600     Title = {Analyses of surface and core atoms in a platinum nanoparticle},
601     Volume = {5},
602     Year = {2003},
603     Bdsk-Url-1 = {http://dx.doi.org/10.1039/b302122j}}
604    
605     @article{Sankaranarayanan:2005lr,
606     Abstract = {Bimetallic nanoclusters are of interest because of their utility in catalysis and sensors, The thermal characteristics of bimetallic Pt-Pd nanoclusters of different sizes and compositions were investigated through molecular dynamics simulations using quantum Sutton-Chen (QSC) many-body potentials, Monte Carlo simulations employing the bond order simulation model were used to generate minimum energy configurations, which were utilized as the starting point for molecular dynamics simulations. The calculated initial configurations of the Pt-Pd system consisted of surface segregated Pd atoms and a Pt-rich core, Melting characteristics were studied by following the changes in potential energy and heat capacity as functions of temperature, Structural changes accompanying the thermal evolution were studied by the bond order parameter method. The Pt-Pd clusters exhibited a two-stage melting: surface melting of the external Pd atoms followed by homogeneous melting of the Pt core. These transitions were found to depend on the composition and size of the nanocluster. Melting temperatures of the nanoclusters were found to be much lower than those of bulk Pt and Pd. Bulk melting temperatures of Pd and Pt simulated using periodic boundary conditions compare well with experimental values, thus providing justification for the use of QSC potentials in these simulations. Deformation parameters were calculated to characterize the structural evolution resulting from diffusion of Pd and Pt atoms, The results indicate that in Pd-Pt clusters, Pd atoms prefer to remain at the surface even after melting. In addition, Pt also tends to diffuse to the surface after melting due to reduction of its surface energy with temperature. This mixing pattern is different from those reported in some of the earlier Studies on melting of bimetallics.},
607     Author = {Sankaranarayanan, SKRS and Bhethanabotla, VR and Joseph, B},
608     Date-Added = {2010-07-13 11:42:13 -0400},
609     Date-Modified = {2010-07-13 11:42:13 -0400},
610     Doi = {ARTN 195415},
611     Journal = {Phys. Rev. B},
612     Title = {Molecular dynamics simulation study of the melting of Pd-Pt nanoclusters},
613     Volume = {71},
614     Year = {2005},
615     Bdsk-Url-1 = {http://dx.doi.org/195415}}
616    
617     @article{Vardeman-II:2001jn,
618     Author = {C.~F. {Vardeman II} and J.~D. Gezelter},
619     Date-Added = {2010-07-13 11:41:50 -0400},
620     Date-Modified = {2010-07-13 11:41:50 -0400},
621     Journal = {J. Phys. Chem. A},
622     Local-Url = {file://localhost/Users/charles/Documents/Papers/Vardeman%20II/2001.pdf},
623     Number = {12},
624     Pages = {2568},
625     Title = {Comparing models for diffusion in supercooled liquids: The eutectic composition of the {A}g-{C}u alloy},
626     Volume = {105},
627     Year = {2001}}
628    
629     @article{ShibataT._ja026764r,
630     Author = {Shibata, T. and Bunker, B.A. and Zhang, Z. and Meisel, D. and Vardeman, C.F. and Gezelter, J.D.},
631     Date-Added = {2010-07-13 11:41:36 -0400},
632     Date-Modified = {2010-07-13 11:41:36 -0400},
633     Journal = {J. Amer. Chem. Soc.},
634     Local-Url = {file://localhost/Users/charles/Documents/Papers/ja026764r.pdf},
635     Number = {40},
636     Pages = {11989-11996},
637     Title = {Size-Dependent Spontaneous Alloying of {A}u-{A}g Nanoparticles},
638     Url = {http://dx.doi.org/10.1021/ja026764r},
639     Volume = {124},
640     Year = {2002},
641     Bdsk-Url-1 = {http://dx.doi.org/10.1021/ja026764r}}
642    
643     @article{Chen90,
644     Author = {A.~P. Sutton and J. Chen},
645     Date-Added = {2010-07-13 11:40:48 -0400},
646     Date-Modified = {2010-07-13 11:40:48 -0400},
647     Journal = {Phil. Mag. Lett.},
648     Pages = {139-146},
649     Title = {Long-Range Finnis Sinclair Potentials},
650     Volume = 61,
651     Year = {1990}}
652    
653     @article{PhysRevB.33.7983,
654     Author = {Foiles, S. M. and Baskes, M. I. and Daw, M. S.},
655     Date-Added = {2010-07-13 11:40:28 -0400},
656     Date-Modified = {2010-07-13 11:40:28 -0400},
657     Doi = {10.1103/PhysRevB.33.7983},
658     Journal = {Phys. Rev. B},
659     Local-Url = {file://localhost/Users/charles/Documents/Papers/p7983_1.pdf},
660     Month = {Jun},
661     Number = {12},
662     Numpages = {8},
663     Pages = {7983-7991},
664     Publisher = {American Physical Society},
665     Title = {Embedded-atom-method functions for the fcc metals {C}u, {A}g, {A}u, {N}i, {P}d, {P}t, and their alloys},
666     Volume = {33},
667     Year = {1986},
668     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevB.33.7983}}
669    
670     @article{hoover85,
671     Author = {W.~G. Hoover},
672     Date-Added = {2010-07-13 11:24:30 -0400},
673     Date-Modified = {2010-07-13 11:24:30 -0400},
674     Journal = pra,
675     Pages = 1695,
676     Title = {Canonical dynamics: Equilibrium phase-space distributions},
677     Volume = 31,
678     Year = 1985}
679    
680     @article{melchionna93,
681     Author = {S. Melchionna and G. Ciccotti and B.~L. Holian},
682     Date-Added = {2010-07-13 11:22:17 -0400},
683     Date-Modified = {2010-07-13 11:22:17 -0400},
684     Journal = {Mol. Phys.},
685     Pages = {533-544},
686     Title = {Hoover {\sc npt} dynamics for systems varying in shape and size},
687     Volume = 78,
688     Year = 1993}
689    
690     @misc{openmd,
691     Author = {J. Daniel Gezelter and Shenyu Kuang and James Marr and Kelsey Stocker and Chunlei Li and Charles F. Vardeman and Teng Lin and Christopher J. Fennell and Xiuquan Sun and Kyle Daily and Yang Zheng and Matthew A. Meineke},
692     Date-Added = {2010-07-13 11:16:00 -0400},
693     Date-Modified = {2010-07-19 16:27:45 -0400},
694     Howpublished = {Available at {\tt http://openmd.net}},
695     Title = {{OpenMD, an open source engine for molecular dynamics}}}
696    
697     @inbook{AshcroftMermin,
698 skuang 3721 Address = {Belmont, CA},
699 skuang 3719 Author = {Neil W. Ashcroft and N.~David Mermin},
700     Date-Added = {2010-07-12 14:26:49 -0400},
701     Date-Modified = {2010-07-22 13:37:20 -0400},
702     Pages = {21},
703     Publisher = {Brooks Cole},
704     Title = {Solid State Physics},
705 skuang 3721 Year = {1976}}
706 skuang 3719
707     @book{WagnerKruse,
708     Address = {Berlin},
709     Author = {W. Wagner and A. Kruse},
710     Date-Added = {2010-07-12 14:10:29 -0400},
711     Date-Modified = {2010-07-12 14:13:44 -0400},
712     Publisher = {Springer-Verlag},
713     Title = {Properties of Water and Steam, the Industrial Standard IAPWS-IF97 for the Thermodynamic Properties and Supplementary Equations for Other Properties},
714 skuang 3721 Year = {1998}}
715 skuang 3719
716     @article{ISI:000266247600008,
717     Abstract = {Temperature dependence of viscosity of butyl-3-methylimidazolium
718     hexafluorophosphate is investigated by non-equilibrium molecular
719     dynamics simulations with cosine-modulated force in the temperature
720     range from 360 to 480K. It is shown that this method is able to
721     correctly predict the shear viscosity. The simulation setting and
722     choice of the force field are discussed in detail. The all-atom force
723     field exhibits a bad convergence and the shear viscosity is
724     overestimated, while the simple united atom model predicts the kinetics
725     very well. The results are compared with the equilibrium molecular
726     dynamics simulations. The relationship between the diffusion
727     coefficient and viscosity is examined by means of the hydrodynamic
728     radii calculated from the Stokes-Einstein equation and the solvation
729     properties are discussed.},
730     Address = {4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND},
731     Affiliation = {Kolafa, J (Reprint Author), Prague Inst Chem Technol, Dept Phys Chem, CR-16628 Prague, Czech Republic. {[}Picalek, Jan; Kolafa, Jiri] Prague Inst Chem Technol, Dept Phys Chem, CR-16628 Prague, Czech Republic.},
732     Author = {Picalek, Jan and Kolafa, Jiri},
733     Author-Email = {jiri.kolafa@vscht.cz},
734     Date-Added = {2010-04-16 13:19:12 -0400},
735     Date-Modified = {2010-04-16 13:19:12 -0400},
736     Doc-Delivery-Number = {448FD},
737     Doi = {10.1080/08927020802680703},
738     Funding-Acknowledgement = {Czech Science Foundation {[}203/07/1006]; Czech Ministry of Education {[}LC512]},
739     Funding-Text = {We gratefully acknowledge a support from the Czech Science Foundation (project 203/07/1006) and the computing facilities from the Czech Ministry of Education (Center for Biomolecules and Complex Molecular Systems, project LC512).},
740     Issn = {0892-7022},
741     Journal = {Mol. Simul.},
742     Journal-Iso = {Mol. Simul.},
743     Keywords = {room temperature ionic liquids; viscosity; non-equilibrium molecular dynamics; solvation; imidazolium},
744     Keywords-Plus = {1-N-BUTYL-3-METHYLIMIDAZOLIUM HEXAFLUOROPHOSPHATE; PHYSICOCHEMICAL PROPERTIES; COMPUTER-SIMULATION; PHYSICAL-PROPERTIES; IMIDAZOLIUM CATION; FORCE-FIELD; AB-INITIO; TEMPERATURE; CHLORIDE; CONDUCTIVITY},
745     Language = {English},
746     Number = {8},
747     Number-Of-Cited-References = {50},
748     Pages = {685-690},
749     Publisher = {TAYLOR \& FRANCIS LTD},
750     Subject-Category = {Chemistry, Physical; Physics, Atomic, Molecular \& Chemical},
751     Times-Cited = {2},
752     Title = {Shear viscosity of ionic liquids from non-equilibrium molecular dynamics simulation},
753     Type = {Article},
754     Unique-Id = {ISI:000266247600008},
755     Volume = {35},
756     Year = {2009},
757     Bdsk-Url-1 = {http://dx.doi.org/10.1080/08927020802680703%7D}}
758    
759     @article{Vasquez:2004fk,
760     Abstract = {A method for fast calculation of viscosity from molecular dynamics simulation is revisited. The method consists of using a steady-state periodic perturbation. A methodology to choose the amplitude of the external perturbation, which is one of the major practical issues in the original technique of Gosling et al. {$[$}Mol. Phys. 26: 1475 (1973){$]$} is proposed. The amplitude of the perturbation required for fast caculations and the viscosity values for wide ranges of temperature and density of the Lennard-Jones (LJ) model fluid are reported. The viscosity results are in agreement with recent LJ viscosity calculations. Additionally, the simulations demonstrate that the proposed approach is suitable to efficiently generate viscosity data of good quality.},
761     Author = {Vasquez, V. R. and Macedo, E. A. and Zabaloy, M. S.},
762     Date = {2004/11/02/},
763     Date-Added = {2010-04-16 13:18:48 -0400},
764     Date-Modified = {2010-04-16 13:18:48 -0400},
765     Day = {02},
766     Journal = {Int. J. Thermophys.},
767     M3 = {10.1007/s10765-004-7736-3},
768     Month = {11},
769     Number = {6},
770     Pages = {1799--1818},
771     Title = {Lennard-Jones Viscosities in Wide Ranges of Temperature and Density: Fast Calculations Using a Steady--State Periodic Perturbation Method},
772     Ty = {JOUR},
773     Url = {http://dx.doi.org/10.1007/s10765-004-7736-3},
774     Volume = {25},
775     Year = {2004},
776     Bdsk-Url-1 = {http://dx.doi.org/10.1007/s10765-004-7736-3}}
777    
778     @article{hess:209,
779     Author = {Berk Hess},
780     Date-Added = {2010-04-16 12:37:37 -0400},
781     Date-Modified = {2010-04-16 12:37:37 -0400},
782     Doi = {10.1063/1.1421362},
783     Journal = {J. Chem. Phys.},
784     Keywords = {viscosity; molecular dynamics method; liquid theory; shear flow},
785     Number = {1},
786     Pages = {209-217},
787     Publisher = {AIP},
788     Title = {Determining the shear viscosity of model liquids from molecular dynamics simulations},
789     Url = {http://link.aip.org/link/?JCP/116/209/1},
790     Volume = {116},
791     Year = {2002},
792     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/116/209/1},
793     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.1421362}}
794    
795     @article{backer:154503,
796     Author = {J. A. Backer and C. P. Lowe and H. C. J. Hoefsloot and P. D. Iedema},
797     Date-Added = {2010-04-16 12:37:37 -0400},
798     Date-Modified = {2010-04-16 12:37:37 -0400},
799     Doi = {10.1063/1.1883163},
800     Eid = {154503},
801     Journal = {J. Chem. Phys.},
802     Keywords = {Poiseuille flow; flow simulation; Lennard-Jones potential; viscosity; boundary layers; computational fluid dynamics},
803     Number = {15},
804     Numpages = {6},
805     Pages = {154503},
806     Publisher = {AIP},
807     Title = {Poiseuille flow to measure the viscosity of particle model fluids},
808     Url = {http://link.aip.org/link/?JCP/122/154503/1},
809     Volume = {122},
810     Year = {2005},
811     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/122/154503/1},
812     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.1883163}}
813    
814     @article{daivis:541,
815     Author = {Peter J. Daivis and Denis J. Evans},
816     Date-Added = {2010-04-16 12:05:36 -0400},
817     Date-Modified = {2010-04-16 12:05:36 -0400},
818     Doi = {10.1063/1.466970},
819     Journal = {J. Chem. Phys.},
820     Keywords = {SHEAR; DECANE; FLOW MODELS; VOLUME; PRESSURE; NONEQUILIBRIUM; MOLECULAR DYNAMICS CALCULATIONS; COMPARATIVE EVALUATIONS; SIMULATION; STRAIN RATE; VISCOSITY; KUBO FORMULA},
821     Number = {1},
822     Pages = {541-547},
823     Publisher = {AIP},
824     Title = {Comparison of constant pressure and constant volume nonequilibrium simulations of sheared model decane},
825     Url = {http://link.aip.org/link/?JCP/100/541/1},
826     Volume = {100},
827     Year = {1994},
828     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/100/541/1},
829     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.466970}}
830    
831     @article{mondello:9327,
832     Author = {Maurizio Mondello and Gary S. Grest},
833     Date-Added = {2010-04-16 12:05:36 -0400},
834     Date-Modified = {2010-04-16 12:05:36 -0400},
835     Doi = {10.1063/1.474002},
836     Journal = {J. Chem. Phys.},
837     Keywords = {organic compounds; viscosity; digital simulation; molecular dynamics method},
838     Number = {22},
839     Pages = {9327-9336},
840     Publisher = {AIP},
841     Title = {Viscosity calculations of [bold n]-alkanes by equilibrium molecular dynamics},
842     Url = {http://link.aip.org/link/?JCP/106/9327/1},
843     Volume = {106},
844     Year = {1997},
845     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/106/9327/1},
846     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.474002}}
847    
848     @article{ISI:A1988Q205300014,
849     Address = {ONE GUNDPOWDER SQUARE, LONDON, ENGLAND EC4A 3DE},
850     Affiliation = {VOGELSANG, R (Reprint Author), RUHR UNIV BOCHUM,UNIV STR 150,D-4630 BOCHUM,FED REP GER. UNIV DUISBURG,THERMODYNAM,D-4100 DUISBURG,FED REP GER.},
851     Author = {Vogelsang, R and Hoheisel, G and Luckas, M},
852     Date-Added = {2010-04-14 16:20:24 -0400},
853     Date-Modified = {2010-04-14 16:20:24 -0400},
854     Doc-Delivery-Number = {Q2053},
855     Issn = {0026-8976},
856     Journal = {Mol. Phys.},
857     Journal-Iso = {Mol. Phys.},
858     Language = {English},
859     Month = {AUG 20},
860     Number = {6},
861     Number-Of-Cited-References = {14},
862     Pages = {1203-1213},
863     Publisher = {TAYLOR \& FRANCIS LTD},
864     Subject-Category = {Physics, Atomic, Molecular \& Chemical},
865     Times-Cited = {12},
866     Title = {SHEAR VISCOSITY AND THERMAL-CONDUCTIVITY OF THE LENNARD-JONES LIQUID COMPUTED USING MOLECULAR-DYNAMICS AND PREDICTED BY A MEMORY FUNCTION MODEL FOR A LARGE NUMBER OF STATES},
867     Type = {Article},
868     Unique-Id = {ISI:A1988Q205300014},
869     Volume = {64},
870     Year = {1988}}
871    
872     @article{ISI:000261835100054,
873     Abstract = {Transport properties of liquid methanol and ethanol are predicted by
874     molecular dynamics simulation. The molecular models for the alcohols
875     are rigid, nonpolarizable, and of united-atom type. They were developed
876     in preceding work using experimental vapor-liquid equilibrium data
877     only. Self- and Maxwell-Stefan diffusion coefficients as well as the
878     shear viscosity of methanol, ethanol, and their binary mixture are
879     determined using equilibrium molecular dynamics and the Green-Kubo
880     formalism. Nonequilibrium molecular dynamics is used for predicting the
881     thermal conductivity of the two pure substances. The transport
882     properties of the fluids are calculated over a wide temperature range
883     at ambient pressure and compared with experimental and simulation data
884     from the literature. Overall, a very good agreement with the experiment
885     is found. For instance, the self-diffusion coefficient and the shear
886     viscosity are predicted with average deviations of less than 8\% for
887     the pure alcohols and 12\% for the mixture. The predicted thermal
888     conductivity agrees on average within 5\% with the experimental data.
889     Additionally, some velocity and shear viscosity autocorrelation
890     functions are presented and discussed. Radial distribution functions
891     for ethanol are also presented. The predicted excess volume, excess
892     enthalpy, and the vapor-liquid equilibrium of the binary mixture
893     methanol + ethanol are assessed and agree well with experimental data.},
894     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
895     Affiliation = {Vrabec, J (Reprint Author), Univ Stuttgart, Inst Thermodynam \& Thermal Proc Engn, D-70550 Stuttgart, Germany. {[}Vrabec, Jadran] Univ Stuttgart, Inst Thermodynam \& Thermal Proc Engn, D-70550 Stuttgart, Germany. {[}Guevara-Carrion, Gabriela; Hasse, Hans] Univ Kaiserslautern, Lab Engn Thermodynam, D-67663 Kaiserslautern, Germany. {[}Nieto-Draghi, Carlos] Inst Francais Petr, F-92852 Rueil Malmaison, France.},
896     Author = {Guevara-Carrion, Gabriela and Nieto-Draghi, Carlos and Vrabec, Jadran and Hasse, Hans},
897     Author-Email = {vrabec@itt.uni-stuttgart.de},
898     Date-Added = {2010-04-14 15:43:29 -0400},
899     Date-Modified = {2010-04-14 15:43:29 -0400},
900     Doc-Delivery-Number = {385SY},
901     Doi = {10.1021/jp805584d},
902     Issn = {1520-6106},
903     Journal = {J. Phys. Chem. B},
904     Journal-Iso = {J. Phys. Chem. B},
905     Keywords-Plus = {STEFAN DIFFUSION-COEFFICIENTS; MONTE-CARLO CALCULATIONS; ATOM FORCE-FIELD; SELF-DIFFUSION; DYNAMICS SIMULATION; PHASE-EQUILIBRIA; LIQUID METHANOL; TEMPERATURE-DEPENDENCE; COMPUTER-SIMULATION; MONOHYDRIC ALCOHOLS},
906     Language = {English},
907     Month = {DEC 25},
908     Number = {51},
909     Number-Of-Cited-References = {86},
910     Pages = {16664-16674},
911     Publisher = {AMER CHEMICAL SOC},
912     Subject-Category = {Chemistry, Physical},
913     Times-Cited = {5},
914     Title = {Prediction of Transport Properties by Molecular Simulation: Methanol and Ethanol and Their Mixture},
915     Type = {Article},
916     Unique-Id = {ISI:000261835100054},
917     Volume = {112},
918     Year = {2008},
919     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp805584d%7D}}
920    
921     @article{ISI:000258460400020,
922     Abstract = {Nonequilibrium molecular dynamics simulations with the nonpolarizable
923     SPC/E (Berendsen et al., J. Phys. Chem. 1987, 91, 6269) and the
924     polarizable COS/G2 (Yu and van Gunsteren, J. Chem. Phys. 2004, 121,
925     9549) force fields have been employed to calculate the thermal
926     conductivity and other associated properties of methane hydrate over a
927     temperature range from 30 to 260 K. The calculated results are compared
928     to experimental data over this same range. The values of the thermal
929     conductivity calculated with the COS/G2 model are closer to the
930     experimental values than are those calculated with the nonpolarizable
931     SPC/E model. The calculations match the temperature trend in the
932     experimental data at temperatures below 50 K; however, they exhibit a
933     slight decrease in thermal conductivity at higher temperatures in
934     comparison to an opposite trend in the experimental data. The
935     calculated thermal conductivity values are found to be relatively
936     insensitive to the occupancy of the cages except at low (T <= 50 K)
937     temperatures, which indicates that the differences between the two
938     lattice structures may have a more dominant role than generally thought
939     in explaining the low thermal conductivity of methane hydrate compared
940     to ice Ih. The introduction of defects into the water lattice is found
941     to cause a reduction in the thermal conductivity but to have a
942     negligible impact on its temperature dependence.},
943     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
944     Affiliation = {Jordan, KD (Reprint Author), US DOE, Natl Energy Technol Lab, POB 10940, Pittsburgh, PA 15236 USA. {[}Jiang, Hao; Myshakin, Evgeniy M.; Jordan, Kenneth D.; Warzinski, Robert P.] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. {[}Jiang, Hao; Jordan, Kenneth D.] Univ Pittsburgh, Dept Chem, Pittsburgh, PA 15260 USA. {[}Jiang, Hao; Jordan, Kenneth D.] Univ Pittsburgh, Ctr Mol \& Mat Simulat, Pittsburgh, PA 15260 USA. {[}Myshakin, Evgeniy M.] Parsons Project Serv Inc, South Pk, PA 15129 USA.},
945     Author = {Jiang, Hao and Myshakin, Evgeniy M. and Jordan, Kenneth D. and Warzinski, Robert P.},
946     Date-Added = {2010-04-14 15:38:14 -0400},
947     Date-Modified = {2010-04-14 15:38:14 -0400},
948     Doc-Delivery-Number = {337UG},
949     Doi = {10.1021/jp802942v},
950     Funding-Acknowledgement = {E.M.M. ; National Energy Technology Laboratory's Office of Research and Development {[}41817.660.01.03]; ORISE Part-Time Faculty Program ; {[}DE-AM26-04NT41817]; {[}41817.606.06.03]},
951     Funding-Text = {We thank Drs. John Tse, Niall English, and Alan McGaughey for their comments. H.J. and K.D.J. performed this work under Contract DE-AM26-04NT41817, Subtask 41817.606.06.03, and E.M.M. performed this work under the same contract, Subtask 41817.660.01.03, in support of the National Energy Technology Laboratory's Office of Research and Development. K.D.J. was also supported at NETL by the ORISE Part-Time Faculty Program during the early stages of this work.},
952     Issn = {1520-6106},
953     Journal = {J. Phys. Chem. B},
954     Journal-Iso = {J. Phys. Chem. B},
955     Keywords-Plus = {LIQUID WATER; CLATHRATE HYDRATE; HEAT-CAPACITY; FORCE-FIELDS; ICE; ANHARMONICITY; SUMMATION; MODELS; SILICA},
956     Language = {English},
957     Month = {AUG 21},
958     Number = {33},
959     Number-Of-Cited-References = {51},
960     Pages = {10207-10216},
961     Publisher = {AMER CHEMICAL SOC},
962     Subject-Category = {Chemistry, Physical},
963     Times-Cited = {8},
964     Title = {Molecular dynamics Simulations of the thermal conductivity of methane hydrate},
965     Type = {Article},
966     Unique-Id = {ISI:000258460400020},
967     Volume = {112},
968     Year = {2008},
969     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp802942v%7D}}
970    
971     @article{ISI:000184808400018,
972     Abstract = {A new non-equilibrium molecular dynamics algorithm is presented based
973     on the original work of Willer-Plathe, (1997, J. chem. Phys., 106,
974     6082), for the non-equilibrium simulation of heat transport maintaining
975     fixed the total momentum as well as the total energy of the system. The
976     presented scheme preserves these properties but, unlike the original
977     algorithm, is able to deal with multicomponent systems, that is with
978     particles of different mass independently of their relative
979     concentration. The main idea behind the new procedure is to consider an
980     exchange of momentum and energy between the particles in the hot and
981     cold regions, to maintain the non-equilibrium conditions, as if they
982     undergo a hypothetical elastic collision. The new algorithm can also be
983     employed in multicomponent systems for molecular fluids and in a wide
984     range of thermodynamic conditions.},
985     Address = {4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND},
986     Affiliation = {Nieto-Draghi, C (Reprint Author), Univ Rovira \& Virgili, ETSEQ, Dept Engn Quim, Avda Paisos Catalans 26, Tarragona 43007, Spain. Univ Rovira \& Virgili, ETSEQ, Dept Engn Quim, Tarragona 43007, Spain.},
987     Author = {Nieto-Draghi, C and Avalos, JB},
988     Date-Added = {2010-04-14 12:48:08 -0400},
989     Date-Modified = {2010-04-14 12:48:08 -0400},
990     Doc-Delivery-Number = {712QM},
991     Doi = {10.1080/0026897031000154338},
992     Issn = {0026-8976},
993     Journal = {Mol. Phys.},
994     Journal-Iso = {Mol. Phys.},
995     Keywords-Plus = {BINARY-LIQUID MIXTURES; THERMAL-CONDUCTIVITY; MATTER TRANSPORT; WATER},
996     Language = {English},
997     Month = {JUL 20},
998     Number = {14},
999     Number-Of-Cited-References = {20},
1000     Pages = {2303-2307},
1001     Publisher = {TAYLOR \& FRANCIS LTD},
1002     Subject-Category = {Physics, Atomic, Molecular \& Chemical},
1003     Times-Cited = {13},
1004     Title = {Non-equilibrium momentum exchange algorithm for molecular dynamics simulation of heat flow in multicomponent systems},
1005     Type = {Article},
1006     Unique-Id = {ISI:000184808400018},
1007     Volume = {101},
1008     Year = {2003},
1009     Bdsk-Url-1 = {http://dx.doi.org/10.1080/0026897031000154338%7D}}
1010    
1011     @article{Bedrov:2000-1,
1012     Abstract = {The thermal conductivity of liquid
1013     octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) has been
1014     determined from imposed heat flux non-equilibrium molecular dynamics
1015     (NEMD) simulations using a previously published quantum chemistry-based
1016     atomistic potential. The thermal conductivity was determined in the
1017     temperature domain 550 less than or equal to T less than or equal to
1018     800 K, which corresponds approximately to the existence limits of the
1019     liquid phase of HMX at atmospheric pressure. The NEMD predictions,
1020     which comprise the first reported values for thermal conductivity of
1021     HMX liquid, were found to be consistent with measured values for
1022     crystalline HMX. The thermal conductivity of liquid HMX was found to
1023     exhibit a much weaker temperature dependence than the shear viscosity
1024     and self-diffusion coefficients. (C) 2000 Elsevier Science B.V. All
1025     rights reserved.},
1026     Address = {PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS},
1027     Affiliation = {Bedrov, D (Reprint Author), Univ Utah, Dept Mat Sci \& Engn, 122 S Cent Campus Dr,Room 304, Salt Lake City, UT 84112 USA. Univ Utah, Dept Mat Sci \& Engn, Salt Lake City, UT 84112 USA. Univ Utah, Dept Chem \& Fuels Engn, Salt Lake City, UT 84112 USA. Univ Calif Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.},
1028     Author = {Bedrov, D and Smith, GD and Sewell, TD},
1029     Date-Added = {2010-04-14 12:26:59 -0400},
1030     Date-Modified = {2010-04-14 12:27:52 -0400},
1031     Doc-Delivery-Number = {330PF},
1032     Issn = {0009-2614},
1033     Journal = {Chem. Phys. Lett.},
1034     Journal-Iso = {Chem. Phys. Lett.},
1035     Keywords-Plus = {FORCE-FIELD},
1036     Language = {English},
1037     Month = {JUN 30},
1038     Number = {1-3},
1039     Number-Of-Cited-References = {17},
1040     Pages = {64-68},
1041     Publisher = {ELSEVIER SCIENCE BV},
1042     Subject-Category = {Chemistry, Physical; Physics, Atomic, Molecular \& Chemical},
1043     Times-Cited = {19},
1044     Title = {Thermal conductivity of liquid octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) from molecular dynamics simulations},
1045     Type = {Article},
1046     Unique-Id = {ISI:000087969900011},
1047     Volume = {324},
1048     Year = {2000}}
1049    
1050     @article{ISI:000258840700015,
1051     Abstract = {By using the embedded-atom method (EAM), a series of molecular dynamics
1052     (MD) simulations are carried out to calculate the viscosity and
1053     self-diffusion coefficient of liquid copper from the normal to the
1054     undercooled states. The simulated results are in reasonable agreement
1055     with the experimental values available above the melting temperature
1056     that is also predicted from a solid-liquid-solid sandwich structure.
1057     The relationship between the viscosity and the self-diffusion
1058     coefficient is evaluated. It is found that the Stokes-Einstein and
1059     Sutherland-Einstein relations qualitatively describe this relationship
1060     within the simulation temperature range. However, the predicted
1061     constant from MD simulation is close to 1/(3 pi), which is larger than
1062     the constants of the Stokes-Einstein and Sutherland-Einstein relations.},
1063     Address = {233 SPRING ST, NEW YORK, NY 10013 USA},
1064     Affiliation = {Chen, M (Reprint Author), Tsinghua Univ, Dept Engn Mech, Beijing 100084, Peoples R China. {[}Han, X. J.; Chen, M.; Lue, Y. J.] Tsinghua Univ, Dept Engn Mech, Beijing 100084, Peoples R China.},
1065     Author = {Han, X. J. and Chen, M. and Lue, Y. J.},
1066     Author-Email = {mchen@tsinghua.edu.cn},
1067     Date-Added = {2010-04-14 12:00:38 -0400},
1068     Date-Modified = {2010-04-14 12:00:38 -0400},
1069     Doc-Delivery-Number = {343GH},
1070     Doi = {10.1007/s10765-008-0489-7},
1071     Funding-Acknowledgement = {China Postdoctoral Science Foundation ; National Natural Science Foundation of China {[}50395101, 50371043]},
1072     Funding-Text = {This work was financially supported by China Postdoctoral Science Foundation and the National Natural Science Foundation of China under grant Nos. of 50395101 and 50371043. The computations are carried out at the Tsinghua National Laboratory for Information Science and Technology, China. The authors are grateful to Mr. D. Q. Yu for valuable discussions.},
1073     Issn = {0195-928X},
1074     Journal = {Int. J. Thermophys.},
1075     Journal-Iso = {Int. J. Thermophys.},
1076     Keywords = {copper; molecular simulation; self-diffusion coefficient; viscosity; undercooled},
1077     Keywords-Plus = {EMBEDDED-ATOM MODEL; THERMOPHYSICAL PROPERTIES; COMPUTER-SIMULATION; TRANSITION-METALS; SHEAR VISCOSITY; ALLOYS; TEMPERATURE; DIFFUSION; BINDING; SURFACE},
1078     Language = {English},
1079     Month = {AUG},
1080     Number = {4},
1081     Number-Of-Cited-References = {39},
1082     Pages = {1408-1421},
1083     Publisher = {SPRINGER/PLENUM PUBLISHERS},
1084     Subject-Category = {Thermodynamics; Chemistry, Physical; Mechanics; Physics, Applied},
1085     Times-Cited = {2},
1086     Title = {Transport properties of undercooled liquid copper: A molecular dynamics study},
1087     Type = {Article},
1088     Unique-Id = {ISI:000258840700015},
1089     Volume = {29},
1090     Year = {2008},
1091     Bdsk-Url-1 = {http://dx.doi.org/10.1007/s10765-008-0489-7%7D}}
1092    
1093     @article{Muller-Plathe:2008,
1094     Abstract = {Reverse nonequilibrium molecular dynamics and equilibrium molecular
1095     dynamics simulations were carried out to compute the shear viscosity of
1096     the pure ionic liquid system {[}bmim]{[}PF6] at 300 K. The two methods
1097     yielded consistent results which were also compared to experiments. The
1098     results showed that the reverse nonequilibrium molecular dynamics
1099     (RNEMD) methodology can successfully be applied to computation of
1100     highly viscous ionic liquids. Moreover, this study provides a
1101     validation of the atomistic force-field developed by Bhargava and
1102     Balasubramanian (J. Chem. Phys. 2007, 127, 114510) for dynamic
1103     properties.},
1104     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
1105     Affiliation = {Wei, Z (Reprint Author), Tech Univ Darmstadt, Petersenstr 30, D-64287 Darmstadt, Germany. {[}Wei Zhao; Leroy, Frederic; Mueller-Plathe, Florian] Tech Univ Darmstadt, D-64287 Darmstadt, Germany. {[}Balasubramanian, Sundaram] Indian Inst Sci, Jawaharlal Nehru Ctr Adv Sci Res, Chem \& Phys Mat Unit, Bangalore 560064, Karnataka, India.},
1106     Author = {Wei Zhao and Leroy, Frederic and Balasubramanian, Sundaram and M\"{u}ller-Plathe, Florian},
1107     Author-Email = {w.zhao@theo.chemie.tu-darmstadt.de},
1108     Date-Added = {2010-04-14 11:53:37 -0400},
1109     Date-Modified = {2010-04-14 11:54:20 -0400},
1110     Doc-Delivery-Number = {321VS},
1111     Doi = {10.1021/jp8017869},
1112     Issn = {1520-6106},
1113     Journal = {J. Phys. Chem. B},
1114     Journal-Iso = {J. Phys. Chem. B},
1115     Keywords-Plus = {TRANSPORT-PROPERTIES; FORCE-FIELD; TEMPERATURE; SIMULATION; IMIDAZOLIUM; FLUIDS; MODEL; BIS(TRIFLUOROMETHANESULFONYL)IMIDE; PYRIDINIUM; CHLORIDE},
1116     Language = {English},
1117     Month = {JUL 10},
1118     Number = {27},
1119     Number-Of-Cited-References = {49},
1120     Pages = {8129-8133},
1121     Publisher = {AMER CHEMICAL SOC},
1122     Subject-Category = {Chemistry, Physical},
1123     Times-Cited = {2},
1124     Title = {Shear viscosity of the ionic liquid 1-n-butyl 3-methylimidazolium hexafluorophosphate {[}bmim]{[}PF6] computed by reverse nonequilibrium molecular dynamics},
1125     Type = {Article},
1126     Unique-Id = {ISI:000257335200022},
1127     Volume = {112},
1128     Year = {2008},
1129     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp8017869%7D}}
1130    
1131     @article{Muller-Plathe:2002,
1132     Abstract = {The reverse nonequilibrium molecular dynamics {[}F. Muller-Plathe,
1133     Phys. Rev. E 49, 359 (1999)] presented for the calculation of the shear
1134     viscosity of Lennard-Jones liquids has been extended to atomistic
1135     models of molecular liquids. The method is improved to overcome the
1136     problems due to the detailed molecular models. The new technique is
1137     besides a test with a Lennard-Jones fluid, applied on different
1138     realistic systems: liquid nitrogen, water, and hexane, in order to
1139     cover a large range of interactions and systems/architectures. We show
1140     that all the advantages of the method itemized previously are still
1141     valid, and that it has a very good efficiency and accuracy making it
1142     very competitive. (C) 2002 American Institute of Physics.},
1143     Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
1144     Affiliation = {Bordat, P (Reprint Author), Max Planck Inst Polymer Res, Ackermannweg 10, D-55128 Mainz, Germany. Max Planck Inst Polymer Res, D-55128 Mainz, Germany.},
1145     Author = {Bordat, P and M\"{u}ller-Plathe, F},
1146     Date-Added = {2010-04-14 11:34:42 -0400},
1147     Date-Modified = {2010-04-14 11:35:35 -0400},
1148     Doc-Delivery-Number = {521QV},
1149     Doi = {10.1063/1.1436124},
1150     Issn = {0021-9606},
1151     Journal = {J. Chem. Phys.},
1152     Journal-Iso = {J. Chem. Phys.},
1153     Keywords-Plus = {TRANSPORT-PROPERTIES; PHYSICAL-PROPERTIES; LIQUID ALKANES; N-HEPTADECANE; SIMULATION; WATER; FLOW; MIXTURES; BUTANE; NITROGEN},
1154     Language = {English},
1155     Month = {FEB 22},
1156     Number = {8},
1157     Number-Of-Cited-References = {47},
1158     Pages = {3362-3369},
1159     Publisher = {AMER INST PHYSICS},
1160     Subject-Category = {Physics, Atomic, Molecular \& Chemical},
1161     Times-Cited = {33},
1162     Title = {The shear viscosity of molecular fluids: A calculation by reverse nonequilibrium molecular dynamics},
1163     Type = {Article},
1164     Unique-Id = {ISI:000173853600023},
1165     Volume = {116},
1166     Year = {2002},
1167     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.1436124%7D}}
1168    
1169     @article{ISI:000207079300006,
1170     Abstract = {Non-equilibrium Molecular Dynamics Simulation
1171     methods have been used to study the ability of
1172     Embedded Atom Method models of the metals copper and
1173     gold to reproduce the equilibrium and
1174     non-equilibrium behavior of metals at a stationary
1175     and at a moving solid/liquid interface. The
1176     equilibrium solid/vapor interface was shown to
1177     display a simple termination of the bulk until the
1178     temperature of the solid reaches approximate to 90\%
1179     of the bulk melting point. At and above such
1180     temperatures the systems exhibit a surface
1181     disodering known as surface melting. Non-equilibrium
1182     simulations emulating the action of a picosecond
1183     laser on the metal were performed to determine the
1184     regrowth velocity. For copper, the action of a 20 ps
1185     laser with an absorbed energy of 2-5 mJ/cm(2)
1186     produced a regrowth velocity of 83-100 m/s, in
1187     reasonable agreement with the value obtained by
1188     experiment (>60 m/s). For gold, similar conditions
1189     produced a slower regrowth velocity of 63 m/s at an
1190     absorbed energy of 5 mJ/cm(2). This is almost a
1191     factor of two too low in comparison to experiment
1192     (>100 m/s). The regrowth velocities of the metals
1193     seems unexpectedly close to experiment considering
1194     that the free-electron contribution is ignored in
1195     the Embeeded Atom Method models used.},
1196     Address = {4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND},
1197     Affiliation = {Clancy, P (Reprint Author), Cornell Univ, Sch Chem Engn, Ithaca, NY 14853 USA. {[}Richardson, Clifton F.; Clancy, Paulette] Cornell Univ, Sch Chem Engn, Ithaca, NY 14853 USA.},
1198     Author = {Richardson, Clifton F. and Clancy, Paulette},
1199     Date-Added = {2010-04-07 11:24:36 -0400},
1200     Date-Modified = {2010-04-07 11:24:36 -0400},
1201     Doc-Delivery-Number = {V04SY},
1202     Issn = {0892-7022},
1203     Journal = {Mol. Simul.},
1204     Journal-Iso = {Mol. Simul.},
1205     Keywords = {Non-equilibrium computer simulation; molecular dynamics; crystal growth; Embedded Atom Method models of metals},
1206     Language = {English},
1207     Number = {5-6},
1208     Number-Of-Cited-References = {36},
1209     Pages = {335-355},
1210     Publisher = {TAYLOR \& FRANCIS LTD},
1211     Subject-Category = {Chemistry, Physical; Physics, Atomic, Molecular \& Chemical},
1212     Times-Cited = {7},
1213     Title = {PICOSECOND LASER PROCESSING OF COPPER AND GOLD: A COMPUTER SIMULATION STUDY},
1214     Type = {Article},
1215     Unique-Id = {ISI:000207079300006},
1216     Volume = {7},
1217     Year = {1991}}
1218    
1219     @article{ISI:000167766600035,
1220     Abstract = {Molecular dynamics simulations are used to
1221     investigate the separation of water films adjacent
1222     to a hot metal surface. The simulations clearly show
1223     that the water layers nearest the surface overheat
1224     and undergo explosive boiling. For thick films, the
1225     expansion of the vaporized molecules near the
1226     surface forces the outer water layers to move away
1227     from the surface. These results are of interest for
1228     mass spectrometry of biological molecules, steam
1229     cleaning of surfaces, and medical procedures.},
1230     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
1231     Affiliation = {Garrison, BJ (Reprint Author), Penn State Univ, Dept Chem, University Pk, PA 16802 USA. Penn State Univ, Dept Chem, University Pk, PA 16802 USA. Penn State Univ, Inst Mat Res, University Pk, PA 16802 USA. Univ Virginia, Dept Mat Sci \& Engn, Charlottesville, VA 22903 USA.},
1232     Author = {Dou, YS and Zhigilei, LV and Winograd, N and Garrison, BJ},
1233     Date-Added = {2010-03-11 15:32:14 -0500},
1234     Date-Modified = {2010-03-11 15:32:14 -0500},
1235     Doc-Delivery-Number = {416ED},
1236     Issn = {1089-5639},
1237     Journal = {J. Phys. Chem. A},
1238     Journal-Iso = {J. Phys. Chem. A},
1239     Keywords-Plus = {MOLECULAR-DYNAMICS SIMULATIONS; ASSISTED LASER-DESORPTION; FROZEN AQUEOUS-SOLUTIONS; COMPUTER-SIMULATION; ORGANIC-SOLIDS; VELOCITY DISTRIBUTIONS; PARTICLE BOMBARDMENT; MASS-SPECTROMETRY; PHASE EXPLOSION; LIQUID WATER},
1240     Language = {English},
1241     Month = {MAR 29},
1242     Number = {12},
1243     Number-Of-Cited-References = {65},
1244     Pages = {2748-2755},
1245     Publisher = {AMER CHEMICAL SOC},
1246     Subject-Category = {Chemistry, Physical; Physics, Atomic, Molecular \& Chemical},
1247     Times-Cited = {66},
1248     Title = {Explosive boiling of water films adjacent to heated surfaces: A microscopic description},
1249     Type = {Article},
1250     Unique-Id = {ISI:000167766600035},
1251     Volume = {105},
1252     Year = {2001}}
1253    
1254     @article{Maginn:2010,
1255     Abstract = {The reverse nonequilibrium molecular dynamics
1256     (RNEMD) method calculates the shear viscosity of a
1257     fluid by imposing a nonphysical exchange of momentum
1258     and measuring the resulting shear velocity
1259     gradient. In this study we investigate the range of
1260     momentum flux values over which RNEMD yields usable
1261     (linear) velocity gradients. We find that nonlinear
1262     velocity profiles result primarily from gradients in
1263     fluid temperature and density. The temperature
1264     gradient results from conversion of heat into bulk
1265     kinetic energy, which is transformed back into heat
1266     elsewhere via viscous heating. An expression is
1267     derived to predict the temperature profile resulting
1268     from a specified momentum flux for a given fluid and
1269     simulation cell. Although primarily bounded above,
1270     we also describe milder low-flux limitations. RNEMD
1271     results for a Lennard-Jones fluid agree with
1272     equilibrium molecular dynamics and conventional
1273     nonequilibrium molecular dynamics calculations at
1274     low shear, but RNEMD underpredicts viscosity
1275     relative to conventional NEMD at high shear.},
1276     Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
1277     Affiliation = {Tenney, CM (Reprint Author), Univ Notre Dame, Dept Chem \& Biomol Engn, 182 Fitzpatrick Hall, Notre Dame, IN 46556 USA. {[}Tenney, Craig M.; Maginn, Edward J.] Univ Notre Dame, Dept Chem \& Biomol Engn, Notre Dame, IN 46556 USA.},
1278     Article-Number = {014103},
1279     Author = {Tenney, Craig M. and Maginn, Edward J.},
1280     Author-Email = {ed@nd.edu},
1281     Date-Added = {2010-03-09 13:08:41 -0500},
1282     Date-Modified = {2010-07-19 16:21:35 -0400},
1283     Doc-Delivery-Number = {542DQ},
1284     Doi = {10.1063/1.3276454},
1285     Funding-Acknowledgement = {U.S. Department of Energy {[}DE-FG36-08G088020]},
1286     Funding-Text = {Support for this work was provided by the U.S. Department of Energy (Grant No. DE-FG36-08G088020)},
1287     Issn = {0021-9606},
1288     Journal = {J. Chem. Phys.},
1289     Journal-Iso = {J. Chem. Phys.},
1290     Keywords = {Lennard-Jones potential; molecular dynamics method; Navier-Stokes equations; viscosity},
1291     Keywords-Plus = {CURRENT AUTOCORRELATION-FUNCTION; IONIC LIQUID; SIMULATIONS; TEMPERATURE},
1292     Language = {English},
1293     Month = {JAN 7},
1294     Number = {1},
1295     Number-Of-Cited-References = {20},
1296     Pages = {014103},
1297     Publisher = {AMER INST PHYSICS},
1298     Subject-Category = {Physics, Atomic, Molecular \& Chemical},
1299     Times-Cited = {0},
1300     Title = {Limitations and recommendations for the calculation of shear viscosity using reverse nonequilibrium molecular dynamics},
1301     Type = {Article},
1302     Unique-Id = {ISI:000273472300004},
1303     Volume = {132},
1304     Year = {2010},
1305     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.3276454}}
1306    
1307     @article{Clancy:1992,
1308     Abstract = {The regrowth velocity of a crystal from a melt
1309     depends on contributions from the thermal
1310     conductivity, heat gradient, and latent heat. The
1311     relative contributions of these terms to the
1312     regrowth velocity of the pure metals copper and gold
1313     during liquid-phase epitaxy are evaluated. These
1314     results are used to explain how results from
1315     previous nonequilibrium molecular-dynamics
1316     simulations using classical potentials are able to
1317     predict regrowth velocities that are close to the
1318     experimental values. Results from equilibrium
1319     molecular dynamics showing the nature of the
1320     solid-vapor interface of an
1321     embedded-atom-method-modeled Cu57Ni43 alloy at a
1322     temperature corresponding to 62\% of the melting
1323     point are presented. The regrowth of this alloy
1324     following a simulation of a laser-processing
1325     experiment is also given, with use of nonequilibrium
1326     molecular-dynamics techniques. The thermal
1327     conductivity and temperature gradient in the
1328     simulation of the alloy are compared to those for
1329     the pure metals.},
1330     Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA},
1331     Affiliation = {CORNELL UNIV,SCH CHEM ENGN,ITHACA,NY 14853.},
1332     Author = {Richardson, C.~F. and Clancy, P},
1333     Date-Added = {2010-01-12 16:17:33 -0500},
1334     Date-Modified = {2010-04-08 17:18:25 -0400},
1335     Doc-Delivery-Number = {HX378},
1336     Issn = {0163-1829},
1337     Journal = {Phys. Rev. B},
1338     Journal-Iso = {Phys. Rev. B},
1339     Keywords-Plus = {SURFACE SEGREGATION; MOLECULAR-DYNAMICS; TRANSITION-METALS; SOLIDIFICATION; GROWTH; CU; NI},
1340     Language = {English},
1341     Month = {JUN 1},
1342     Number = {21},
1343     Number-Of-Cited-References = {24},
1344     Pages = {12260-12268},
1345     Publisher = {AMERICAN PHYSICAL SOC},
1346     Subject-Category = {Physics, Condensed Matter},
1347     Times-Cited = {11},
1348     Title = {CONTRIBUTION OF THERMAL-CONDUCTIVITY TO THE CRYSTAL-REGROWTH VELOCITY OF EMBEDDED-ATOM-METHOD-MODELED METALS AND METAL-ALLOYS},
1349     Type = {Article},
1350     Unique-Id = {ISI:A1992HX37800010},
1351     Volume = {45},
1352     Year = {1992}}
1353    
1354     @article{Bedrov:2000,
1355     Abstract = {We have applied a new nonequilibrium molecular
1356     dynamics (NEMD) method {[}F. Muller-Plathe,
1357     J. Chem. Phys. 106, 6082 (1997)] previously applied
1358     to monatomic Lennard-Jones fluids in the
1359     determination of the thermal conductivity of
1360     molecular fluids. The method was modified in order
1361     to be applicable to systems with holonomic
1362     constraints. Because the method involves imposing a
1363     known heat flux it is particularly attractive for
1364     systems involving long-range and many-body
1365     interactions where calculation of the microscopic
1366     heat flux is difficult. The predicted thermal
1367     conductivities of liquid n-butane and water using
1368     the imposed-flux NEMD method were found to be in a
1369     good agreement with previous simulations and
1370     experiment. (C) 2000 American Institute of
1371     Physics. {[}S0021-9606(00)50841-1].},
1372     Address = {2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA},
1373     Affiliation = {Bedrov, D (Reprint Author), Univ Utah, Dept Chem \& Fuels Engn, 122 S Cent Campus Dr,Rm 304, Salt Lake City, UT 84112 USA. Univ Utah, Dept Chem \& Fuels Engn, Salt Lake City, UT 84112 USA. Univ Utah, Dept Mat Sci \& Engn, Salt Lake City, UT 84112 USA.},
1374     Author = {Bedrov, D and Smith, GD},
1375     Date-Added = {2009-11-05 18:21:18 -0500},
1376     Date-Modified = {2010-04-14 11:50:48 -0400},
1377     Doc-Delivery-Number = {369BF},
1378     Issn = {0021-9606},
1379     Journal = {J. Chem. Phys.},
1380     Journal-Iso = {J. Chem. Phys.},
1381     Keywords-Plus = {EFFECTIVE PAIR POTENTIALS; TRANSPORT-PROPERTIES; CANONICAL ENSEMBLE; NORMAL-BUTANE; ALGORITHMS; SHAKE; WATER},
1382     Language = {English},
1383     Month = {NOV 8},
1384     Number = {18},
1385     Number-Of-Cited-References = {26},
1386     Pages = {8080-8084},
1387     Publisher = {AMER INST PHYSICS},
1388     Subject-Category = {Physics, Atomic, Molecular \& Chemical},
1389     Times-Cited = {23},
1390     Title = {Thermal conductivity of molecular fluids from molecular dynamics simulations: Application of a new imposed-flux method},
1391     Type = {Article},
1392     Unique-Id = {ISI:000090151400044},
1393     Volume = {113},
1394     Year = {2000}}
1395    
1396     @article{ISI:000231042800044,
1397     Abstract = {The reverse nonequilibrium molecular dynamics
1398     method for thermal conductivities is adapted to the
1399     investigation of molecular fluids. The method
1400     generates a heat flux through the system by suitably
1401     exchanging velocities of particles located in
1402     different regions. From the resulting temperature
1403     gradient, the thermal conductivity is then
1404     calculated. Different variants of the algorithm and
1405     their combinations with other system parameters are
1406     tested: exchange of atomic velocities versus
1407     exchange of molecular center-of-mass velocities,
1408     different exchange frequencies, molecular models
1409     with bond constraints versus models with flexible
1410     bonds, united-atom versus all-atom models, and
1411     presence versus absence of a thermostat. To help
1412     establish the range of applicability, the algorithm
1413     is tested on different models of benzene,
1414     cyclohexane, water, and n-hexane. We find that the
1415     algorithm is robust and that the calculated thermal
1416     conductivities are insensitive to variations in its
1417     control parameters. The force field, in contrast,
1418     has a major influence on the value of the thermal
1419     conductivity. While calculated and experimental
1420     thermal conductivities fall into the same order of
1421     magnitude, in most cases the calculated values are
1422     systematically larger. United-atom force fields seem
1423     to do better than all-atom force fields, possibly
1424     because they remove high-frequency degrees of
1425     freedom from the simulation, which, in nature, are
1426     quantum-mechanical oscillators in their ground state
1427     and do not contribute to heat conduction.},
1428     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
1429     Affiliation = {Zhang, MM (Reprint Author), Int Univ Bremen, POB 750 561, D-28725 Bremen, Germany. Int Univ Bremen, D-28725 Bremen, Germany. Banco Cent Brasil, Desup, Diesp, BR-01310922 Sao Paulo, Brazil.},
1430     Author = {Zhang, MM and Lussetti, E and de Souza, LES and M\"{u}ller-Plathe, F},
1431     Date-Added = {2009-11-05 18:17:33 -0500},
1432     Date-Modified = {2009-11-05 18:17:33 -0500},
1433     Doc-Delivery-Number = {952YQ},
1434     Doi = {10.1021/jp0512255},
1435     Issn = {1520-6106},
1436     Journal = {J. Phys. Chem. B},
1437     Journal-Iso = {J. Phys. Chem. B},
1438     Keywords-Plus = {LENNARD-JONES LIQUIDS; TRANSPORT-COEFFICIENTS; SWOLLEN POLYMERS; SHEAR VISCOSITY; MODEL SYSTEMS; SIMULATION; BENZENE; FLUIDS; POTENTIALS; DIFFUSION},
1439     Language = {English},
1440     Month = {AUG 11},
1441     Number = {31},
1442     Number-Of-Cited-References = {42},
1443     Pages = {15060-15067},
1444     Publisher = {AMER CHEMICAL SOC},
1445     Subject-Category = {Chemistry, Physical},
1446     Times-Cited = {17},
1447     Title = {Thermal conductivities of molecular liquids by reverse nonequilibrium molecular dynamics},
1448     Type = {Article},
1449     Unique-Id = {ISI:000231042800044},
1450     Volume = {109},
1451     Year = {2005},
1452     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp0512255%7D}}
1453    
1454     @article{ISI:A1997YC32200056,
1455     Abstract = {Equilibrium molecular dynamics simulations have
1456     been carried out in the microcanonical ensemble at
1457     300 and 255 K on the extended simple point charge
1458     (SPC/E) model of water {[}Berendsen et al.,
1459     J. Phys. Chem. 91, 6269 (1987)]. In addition to a
1460     number of static and dynamic properties, thermal
1461     conductivity lambda has been calculated via
1462     Green-Kubo integration of the heat current time
1463     correlation functions (CF's) in the atomic and
1464     molecular formalism, at wave number k=0. The
1465     calculated values (0.67 +/- 0.04 W/mK at 300 K and
1466     0.52 +/- 0.03 W/mK at 255 K) are in good agreement
1467     with the experimental data (0.61 W/mK at 300 K and
1468     0.49 W/mK at 255 K). A negative long-time tail of
1469     the heat current CF, more apparent at 255 K, is
1470     responsible for the anomalous decrease of lambda
1471     with temperature. An analysis of the dynamical modes
1472     contributing to lambda has shown that its value is
1473     due to two low-frequency exponential-like modes, a
1474     faster collisional mode, with positive contribution,
1475     and a slower one, which determines the negative
1476     long-time tail. A comparison of the molecular and
1477     atomic spectra of the heat current CF has suggested
1478     that higher-frequency modes should not contribute to
1479     lambda in this temperature range. Generalized
1480     thermal diffusivity D-T(k) decreases as a function
1481     of k, after an initial minor increase at k =
1482     k(min). The k dependence of the generalized
1483     thermodynamic properties has been calculated in the
1484     atomic and molecular formalisms. The observed
1485     differences have been traced back to intramolecular
1486     or intermolecular rotational effects and related to
1487     the partial structure functions. Finally, from the
1488     results we calculated it appears that the SPC/E
1489     model gives results in better agreement with
1490     experimental data than the transferable
1491     intermolecular potential with four points TIP4P
1492     water model {[}Jorgensen et al., J. Chem. Phys. 79,
1493     926 (1983)], with a larger improvement for, e.g.,
1494     diffusion, viscosities, and dielectric properties
1495     and a smaller one for thermal conductivity. The
1496     SPC/E model shares, to a smaller extent, the
1497     insufficient slowing down of dynamics at low
1498     temperature already found for the TIP4P water
1499     model.},
1500     Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA},
1501     Affiliation = {UNIV PISA,DIPARTIMENTO CHIM \& CHIM IND,I-56126 PISA,ITALY. CNR,IST FIS ATOM \& MOL,I-56127 PISA,ITALY.},
1502     Author = {Bertolini, D and Tani, A},
1503     Date-Added = {2009-10-30 15:41:21 -0400},
1504     Date-Modified = {2009-10-30 15:41:21 -0400},
1505     Doc-Delivery-Number = {YC322},
1506     Issn = {1063-651X},
1507     Journal = {Phys. Rev. E},
1508     Journal-Iso = {Phys. Rev. E},
1509     Keywords-Plus = {TIME-CORRELATION-FUNCTIONS; LENNARD-JONES LIQUID; TRANSPORT-PROPERTIES; SUPERCOOLED WATER; DENSITY; SIMULATIONS; RELAXATION; VELOCITY; ELECTRON; FLUIDS},
1510     Language = {English},
1511     Month = {OCT},
1512     Number = {4},
1513     Number-Of-Cited-References = {35},
1514     Pages = {4135-4151},
1515     Publisher = {AMERICAN PHYSICAL SOC},
1516     Subject-Category = {Physics, Fluids \& Plasmas; Physics, Mathematical},
1517     Times-Cited = {18},
1518     Title = {Thermal conductivity of water: Molecular dynamics and generalized hydrodynamics results},
1519     Type = {Article},
1520     Unique-Id = {ISI:A1997YC32200056},
1521     Volume = {56},
1522     Year = {1997}}
1523    
1524     @article{Meineke:2005gd,
1525     Abstract = {OOPSE is a new molecular dynamics simulation program
1526     that is capable of efficiently integrating equations
1527     of motion for atom types with orientational degrees
1528     of freedom (e.g. #sticky# atoms and point
1529     dipoles). Transition metals can also be simulated
1530     using the embedded atom method (EAM) potential
1531     included in the code. Parallel simulations are
1532     carried out using the force-based decomposition
1533     method. Simulations are specified using a very
1534     simple C-based meta-data language. A number of
1535     advanced integrators are included, and the basic
1536     integrator for orientational dynamics provides
1537     substantial improvements over older quaternion-based
1538     schemes.},
1539     Address = {111 RIVER ST, HOBOKEN, NJ 07030 USA},
1540     Author = {Meineke, M. A. and Vardeman, C. F. and Lin, T and Fennell, CJ and Gezelter, J. D.},
1541     Date-Added = {2009-10-01 18:43:03 -0400},
1542     Date-Modified = {2010-04-13 09:11:16 -0400},
1543     Doi = {DOI 10.1002/jcc.20161},
1544     Isi = {000226558200006},
1545     Isi-Recid = {142688207},
1546     Isi-Ref-Recids = {67885400 50663994 64190493 93668415 46699855 89992422 57614458 49016001 61447131 111114169 68770425 52728075 102422498 66381878 32391149 134477335 53221357 9929643 59492217 69681001 99223832 142688208 94600872 91658572 54857943 117365867 69323123 49588888 109970172 101670714 142688209 121603296 94652379 96449138 99938010 112825758 114905670 86802042 121339042 104794914 82674909 72096791 93668384 90513335 142688210 23060767 63731466 109033408 76303716 31384453 97861662 71842426 130707771 125809946 66381889 99676497},
1547     Journal = {J. Comp. Chem.},
1548     Keywords = {OOPSE; molecular dynamics},
1549     Month = feb,
1550     Number = {3},
1551     Pages = {252-271},
1552     Publisher = {JOHN WILEY \& SONS INC},
1553     Times-Cited = {9},
1554     Title = {OOPSE: An object-oriented parallel simulation engine for molecular dynamics},
1555     Volume = {26},
1556     Year = {2005},
1557     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000226558200006},
1558     Bdsk-Url-2 = {http://dx.doi.org/10.1002/jcc.20161}}
1559    
1560     @article{ISI:000080382700030,
1561     Abstract = {A nonequilibrium method for calculating the shear
1562     viscosity is presented. It reverses the
1563     cause-and-effect picture customarily used in
1564     nonequilibrium molecular dynamics: the effect, the
1565     momentum flux or stress, is imposed, whereas the
1566     cause, the velocity gradient or shear rate, is
1567     obtained from the simulation. It differs from other
1568     Norton-ensemble methods by the way in which the
1569     steady-state momentum flux is maintained. This
1570     method involves a simple exchange of particle
1571     momenta, which is easy to implement. Moreover, it
1572     can be made to conserve the total energy as well as
1573     the total linear momentum, so no coupling to an
1574     external temperature bath is needed. The resulting
1575     raw data, the velocity profile, is a robust and
1576     rapidly converging property. The method is tested on
1577     the Lennard-Jones fluid near its triple point. It
1578     yields a viscosity of 3.2-3.3, in Lennard-Jones
1579     reduced units, in agreement with literature
1580     results. {[}S1063-651X(99)03105-0].},
1581     Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA},
1582     Affiliation = {Muller-Plathe, F (Reprint Author), Max Planck Inst Polymerforsch, Ackermannweg 10, D-55128 Mainz, Germany. Max Planck Inst Polymerforsch, D-55128 Mainz, Germany.},
1583     Author = {M\"{u}ller-Plathe, F},
1584     Date-Added = {2009-10-01 14:07:30 -0400},
1585     Date-Modified = {2009-10-01 14:07:30 -0400},
1586     Doc-Delivery-Number = {197TX},
1587     Issn = {1063-651X},
1588     Journal = {Phys. Rev. E},
1589     Journal-Iso = {Phys. Rev. E},
1590     Language = {English},
1591     Month = {MAY},
1592     Number = {5, Part A},
1593     Number-Of-Cited-References = {17},
1594     Pages = {4894-4898},
1595     Publisher = {AMERICAN PHYSICAL SOC},
1596     Subject-Category = {Physics, Fluids \& Plasmas; Physics, Mathematical},
1597     Times-Cited = {57},
1598     Title = {Reversing the perturbation in nonequilibrium molecular dynamics: An easy way to calculate the shear viscosity of fluids},
1599     Type = {Article},
1600     Unique-Id = {ISI:000080382700030},
1601     Volume = {59},
1602     Year = {1999}}
1603    
1604     @article{Maginn:2007,
1605     Abstract = {Atomistic simulations are conducted to examine the
1606     dependence of the viscosity of
1607     1-ethyl-3-methylimidazolium
1608     bis(trifluoromethanesulfonyl)imide on temperature
1609     and water content. A nonequilibrium molecular
1610     dynamics procedure is utilized along with an
1611     established fixed charge force field. It is found
1612     that the simulations quantitatively capture the
1613     temperature dependence of the viscosity as well as
1614     the drop in viscosity that occurs with increasing
1615     water content. Using mixture viscosity models, we
1616     show that the relative drop in viscosity with water
1617     content is actually less than that that would be
1618     predicted for an ideal system. This finding is at
1619     odds with the popular notion that small amounts of
1620     water cause an unusually large drop in the viscosity
1621     of ionic liquids. The simulations suggest that, due
1622     to preferential association of water with anions and
1623     the formation of water clusters, the excess molar
1624     volume is negative. This means that dissolved water
1625     is actually less effective at lowering the viscosity
1626     of these mixtures when compared to a solute obeying
1627     ideal mixing behavior. The use of a nonequilibrium
1628     simulation technique enables diffusive behavior to
1629     be observed on the time scale of the simulations,
1630     and standard equilibrium molecular dynamics resulted
1631     in sub-diffusive behavior even over 2 ns of
1632     simulation time.},
1633     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
1634     Affiliation = {Maginn, EJ (Reprint Author), Univ Notre Dame, Dept Chem \& Biomol Engn, 182 Fitzpatrick Hall, Notre Dame, IN 46556 USA. Univ Notre Dame, Dept Chem \& Biomol Engn, Notre Dame, IN 46556 USA.},
1635     Author = {Kelkar, Manish S. and Maginn, Edward J.},
1636     Author-Email = {ed@nd.edu},
1637     Date-Added = {2009-09-29 17:07:17 -0400},
1638     Date-Modified = {2010-04-14 12:51:02 -0400},
1639     Doc-Delivery-Number = {163VA},
1640     Doi = {10.1021/jp0686893},
1641     Issn = {1520-6106},
1642     Journal = {J. Phys. Chem. B},
1643     Journal-Iso = {J. Phys. Chem. B},
1644     Keywords-Plus = {MOLECULAR-DYNAMICS SIMULATION; MOMENTUM IMPULSE RELAXATION; FORCE-FIELD; TRANSPORT-PROPERTIES; PHYSICAL-PROPERTIES; SIMPLE FLUID; CHLORIDE; MODEL; SALTS; ARCHITECTURE},
1645     Language = {English},
1646     Month = {MAY 10},
1647     Number = {18},
1648     Number-Of-Cited-References = {57},
1649     Pages = {4867-4876},
1650     Publisher = {AMER CHEMICAL SOC},
1651     Subject-Category = {Chemistry, Physical},
1652     Times-Cited = {35},
1653     Title = {Effect of temperature and water content on the shear viscosity of the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide as studied by atomistic simulations},
1654     Type = {Article},
1655     Unique-Id = {ISI:000246190100032},
1656     Volume = {111},
1657     Year = {2007},
1658     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp0686893%7D},
1659     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp0686893}}
1660    
1661     @article{MullerPlathe:1997xw,
1662     Abstract = {A nonequilibrium molecular dynamics method for
1663     calculating the thermal conductivity is
1664     presented. It reverses the usual cause and effect
1665     picture. The ''effect,'' the heat flux, is imposed
1666     on the system and the ''cause,'' the temperature
1667     gradient is obtained from the simulation. Besides
1668     being very simple to implement, the scheme offers
1669     several advantages such as compatibility with
1670     periodic boundary conditions, conservation of total
1671     energy and total linear momentum, and the sampling
1672     of a rapidly converging quantity (temperature
1673     gradient) rather than a slowly converging one (heat
1674     flux). The scheme is tested on the Lennard-Jones
1675     fluid. (C) 1997 American Institute of Physics.},
1676     Address = {WOODBURY},
1677     Author = {M\"{u}ller-Plathe, F.},
1678     Cited-Reference-Count = {13},
1679     Date = {APR 8},
1680     Date-Added = {2009-09-21 16:51:21 -0400},
1681     Date-Modified = {2009-09-21 16:51:21 -0400},
1682     Document-Type = {Article},
1683     Isi = {ISI:A1997WR62000032},
1684     Isi-Document-Delivery-Number = {WR620},
1685     Iso-Source-Abbreviation = {J. Chem. Phys.},
1686     Issn = {0021-9606},
1687     Journal = {J. Chem. Phys.},
1688     Language = {English},
1689     Month = {Apr},
1690     Number = {14},
1691     Page-Count = {4},
1692     Pages = {6082--6085},
1693     Publication-Type = {J},
1694     Publisher = {AMER INST PHYSICS},
1695     Publisher-Address = {CIRCULATION FULFILLMENT DIV, 500 SUNNYSIDE BLVD, WOODBURY, NY 11797-2999},
1696     Reprint-Address = {MullerPlathe, F, MAX PLANCK INST POLYMER RES, D-55128 MAINZ, GERMANY.},
1697     Source = {J CHEM PHYS},
1698     Subject-Category = {Physics, Atomic, Molecular & Chemical},
1699     Times-Cited = {106},
1700     Title = {A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity},
1701     Volume = {106},
1702     Year = {1997}}
1703    
1704     @article{Muller-Plathe:1999ek,
1705     Abstract = {A novel non-equilibrium method for calculating
1706     transport coefficients is presented. It reverses the
1707     experimental cause-and-effect picture, e.g. for the
1708     calculation of viscosities: the effect, the momentum
1709     flux or stress, is imposed, whereas the cause, the
1710     velocity gradient or shear rates, is obtained from
1711     the simulation. It differs from other
1712     Norton-ensemble methods by the way, in which the
1713     steady-state fluxes are maintained. This method
1714     involves a simple exchange of particle momenta,
1715     which is easy to implement and to analyse. Moreover,
1716     it can be made to conserve the total energy as well
1717     as the total linear momentum, so no thermostatting
1718     is needed. The resulting raw data are robust and
1719     rapidly converging. The method is tested on the
1720     calculation of the shear viscosity, the thermal
1721     conductivity and the Soret coefficient (thermal
1722     diffusion) for the Lennard-Jones (LJ) fluid near its
1723     triple point. Possible applications to other
1724     transport coefficients and more complicated systems
1725     are discussed. (C) 1999 Elsevier Science Ltd. All
1726     rights reserved.},
1727     Address = {THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND},
1728     Author = {M\"{u}ller-Plathe, F and Reith, D},
1729     Date-Added = {2009-09-21 16:47:07 -0400},
1730     Date-Modified = {2009-09-21 16:47:07 -0400},
1731     Isi = {000082266500004},
1732     Isi-Recid = {111564960},
1733     Isi-Ref-Recids = {64516210 89773595 53816621 60134000 94875498 60964023 90228608 85968509 86405859 63979644 108048497 87560156 577165 103281654 111564961 83735333 99953572 88476740 110174781 111564963 6599000 75892253},
1734     Journal = {Computational and Theoretical Polymer Science},
1735     Keywords = {viscosity; Ludwig-Soret effect; thermal conductivity; Onsager coefficents; non-equilibrium molecular dynamics},
1736     Number = {3-4},
1737     Pages = {203-209},
1738     Publisher = {ELSEVIER SCI LTD},
1739     Times-Cited = {15},
1740     Title = {Cause and effect reversed in non-equilibrium molecular dynamics: an easy route to transport coefficients},
1741     Volume = {9},
1742     Year = {1999},
1743     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000082266500004}}
1744    
1745     @article{Viscardy:2007lq,
1746     Abstract = {The thermal conductivity is calculated with the
1747     Helfand-moment method in the Lennard-Jones fluid
1748     near the triple point. The Helfand moment of thermal
1749     conductivity is here derived for molecular dynamics
1750     with periodic boundary conditions. Thermal
1751     conductivity is given by a generalized Einstein
1752     relation with this Helfand moment. The authors
1753     compute thermal conductivity by this new method and
1754     compare it with their own values obtained by the
1755     standard Green-Kubo method. The agreement is
1756     excellent. (C) 2007 American Institute of Physics.},
1757     Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
1758     Author = {Viscardy, S. and Servantie, J. and Gaspard, P.},
1759     Date-Added = {2009-09-21 16:37:20 -0400},
1760     Date-Modified = {2010-07-19 16:18:44 -0400},
1761     Doi = {DOI 10.1063/1.2724821},
1762     Isi = {000246453900035},
1763     Isi-Recid = {156192451},
1764     Isi-Ref-Recids = {18794442 84473620 156192452 41891249 90040203 110174972 59859940 47256160 105716249 91804339 93329429 95967319 6199670 1785176 105872066 6325196 65361295 71941152 4307928 23120502 54053395 149068110 4811016 99953572 59859908 132156782 156192449},
1765     Journal = {J. Chem. Phys.},
1766     Month = may,
1767     Number = {18},
1768     Pages = {184513},
1769     Publisher = {AMER INST PHYSICS},
1770     Times-Cited = {3},
1771     Title = {Transport and Helfand moments in the Lennard-Jones fluid. II. Thermal conductivity},
1772     Volume = {126},
1773     Year = {2007},
1774     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000246453900035},
1775     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.2724821}}
1776    
1777     @article{Viscardy:2007bh,
1778     Abstract = {The authors propose a new method, the Helfand-moment
1779     method, to compute the shear viscosity by
1780     equilibrium molecular dynamics in periodic
1781     systems. In this method, the shear viscosity is
1782     written as an Einstein-type relation in terms of the
1783     variance of the so-called Helfand moment. This
1784     quantity is modified in order to satisfy systems
1785     with periodic boundary conditions usually considered
1786     in molecular dynamics. They calculate the shear
1787     viscosity in the Lennard-Jones fluid near the triple
1788     point thanks to this new technique. They show that
1789     the results of the Helfand-moment method are in
1790     excellent agreement with the results of the standard
1791     Green-Kubo method. (C) 2007 American Institute of
1792     Physics.},
1793     Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
1794     Author = {Viscardy, S. and Servantie, J. and Gaspard, P.},
1795     Date-Added = {2009-09-21 16:37:19 -0400},
1796     Date-Modified = {2010-07-19 16:19:03 -0400},
1797     Doi = {DOI 10.1063/1.2724820},
1798     Isi = {000246453900034},
1799     Isi-Recid = {156192449},
1800     Isi-Ref-Recids = {18794442 89109900 84473620 86837966 26564374 23367140 83161139 75750220 90040203 110174972 5885 67722779 91461489 42484251 77907850 93329429 95967319 105716249 6199670 1785176 105872066 6325196 129596740 120782555 51131244 65361295 41141868 4307928 21555860 23120502 563068 120721875 142813985 135942402 4811016 86224873 57621419 85506488 89860062 44796632 51381285 132156779 156192450 132156782 156192451},
1801     Journal = {J. Chem. Phys.},
1802     Month = may,
1803     Number = {18},
1804     Pages = {184512},
1805     Publisher = {AMER INST PHYSICS},
1806     Times-Cited = {1},
1807     Title = {Transport and Helfand moments in the Lennard-Jones fluid. I. Shear viscosity},
1808     Volume = {126},
1809     Year = {2007},
1810     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000246453900034},
1811     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.2724820}}
1812    
1813     @inproceedings{384119,
1814     Address = {New York, NY, USA},
1815     Author = {Fortune, Steven},
1816     Booktitle = {ISSAC '01: Proceedings of the 2001 international symposium on Symbolic and algebraic computation},
1817     Doi = {http://doi.acm.org/10.1145/384101.384119},
1818     Isbn = {1-58113-417-7},
1819     Location = {London, Ontario, Canada},
1820     Pages = {121--128},
1821     Publisher = {ACM},
1822     Title = {Polynomial root finding using iterated Eigenvalue computation},
1823     Year = {2001},
1824     Bdsk-Url-1 = {http://doi.acm.org/10.1145/384101.384119}}
1825    
1826     @article{Fennell06,
1827 skuang 3721 Author = {C.~J. Fennell and J.~D. Gezelter},
1828     Date-Added = {2006-08-24 09:49:57 -0400},
1829     Date-Modified = {2006-08-24 09:49:57 -0400},
1830     Doi = {10.1063/1.2206581},
1831     Journal = {J. Chem. Phys.},
1832     Number = {23},
1833     Pages = {234104(12)},
1834     Rating = {5},
1835     Read = {Yes},
1836     Title = {Is the \uppercase{E}wald summation still necessary? \uppercase{P}airwise alternatives to the accepted standard for long-range electrostatics},
1837     Volume = {124},
1838     Year = {2006},
1839     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.2206581}}
1840 skuang 3719
1841 skuang 3721 @book{Sommese2005,
1842     Address = {Singapore},
1843     Author = {Andrew J. Sommese and Charles W. Wampler},
1844     Publisher = {World Scientific Press},
1845     Title = {The numerical solution of systems of polynomials arising in engineering and science},
1846     Year = 2005}