ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/interfacial/interfacial.bib
Revision: 3721
Committed: Sat Feb 5 00:02:11 2011 UTC (14 years, 11 months ago) by skuang
Original Path: interfacial/interfacial.bib
File size: 93379 byte(s)
Log Message:
add force field papers

File Contents

# User Rev Content
1 skuang 3719 %% This BibTeX bibliography file was created using BibDesk.
2     %% http://bibdesk.sourceforge.net/
3    
4    
5 skuang 3721 %% Created for Shenyu Kuang at 2011-02-04 18:55:09 -0500
6 skuang 3719
7    
8     %% Saved with string encoding Unicode (UTF-8)
9    
10    
11    
12 skuang 3721 @article{OPLSAA,
13     Abstract = {null},
14     Annote = {doi: 10.1021/ja9621760},
15     Author = {Jorgensen, William L. and Maxwell, David S. and Tirado-Rives, Julian},
16     Date = {1996/01/01},
17     Date-Added = {2011-02-04 18:54:58 -0500},
18     Date-Modified = {2011-02-04 18:54:58 -0500},
19     Do = {10.1021/ja9621760},
20     Isbn = {0002-7863},
21     Journal = {Journal of the American Chemical Society},
22     M3 = {doi: 10.1021/ja9621760},
23     Month = {01},
24     Number = {45},
25     Pages = {11225--11236},
26     Publisher = {American Chemical Society},
27     Title = {Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids},
28     Ty = {JOUR},
29     Url = {http://dx.doi.org/10.1021/ja9621760},
30     Volume = {118},
31     Year = {1996},
32     Year1 = {1996/01/01},
33     Bdsk-Url-1 = {http://dx.doi.org/10.1021/ja9621760}}
34    
35     @article{TraPPE-UA.alkylbenzenes,
36     Author = {Wick, Collin D. and Martin, Marcus G. and Siepmann, J. Ilja},
37     Date-Added = {2011-02-04 18:31:46 -0500},
38     Date-Modified = {2011-02-04 18:32:22 -0500},
39     Doi = {10.1021/jp001044x},
40     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp001044x},
41     Journal = {The Journal of Physical Chemistry B},
42     Number = {33},
43     Pages = {8008-8016},
44     Title = {Transferable Potentials for Phase Equilibria. 4. United-Atom Description of Linear and Branched Alkenes and Alkylbenzenes},
45     Url = {http://pubs.acs.org/doi/abs/10.1021/jp001044x},
46     Volume = {104},
47     Year = {2000},
48     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp001044x},
49     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp001044x}}
50    
51     @article{TraPPE-UA.alkanes,
52     Author = {Martin, Marcus G. and Siepmann, J. Ilja},
53     Date-Added = {2011-02-04 18:01:31 -0500},
54     Date-Modified = {2011-02-04 18:02:19 -0500},
55     Doi = {10.1021/jp972543+},
56     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp972543%2B},
57     Journal = {The Journal of Physical Chemistry B},
58     Number = {14},
59     Pages = {2569-2577},
60     Title = {Transferable Potentials for Phase Equilibria. 1. United-Atom Description of n-Alkanes},
61     Url = {http://pubs.acs.org/doi/abs/10.1021/jp972543%2B},
62     Volume = {102},
63     Year = {1998},
64     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp972543+},
65     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp972543+}}
66    
67     @article{TraPPE-UA.thiols,
68     Author = {Lubna, Nusrat and Kamath, Ganesh and Potoff, Jeffrey J. and Rai, Neeraj and Siepmann, J. Ilja},
69     Date-Added = {2011-02-04 17:51:03 -0500},
70     Date-Modified = {2011-02-04 17:54:20 -0500},
71     Doi = {10.1021/jp0549125},
72     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp0549125},
73     Journal = {The Journal of Physical Chemistry B},
74     Number = {50},
75     Pages = {24100-24107},
76     Title = {Transferable Potentials for Phase Equilibria. 8. United-Atom Description for Thiols, Sulfides, Disulfides, and Thiophene},
77     Url = {http://pubs.acs.org/doi/abs/10.1021/jp0549125},
78     Volume = {109},
79     Year = {2005},
80     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp0549125},
81     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp0549125}}
82    
83     @article{vlugt:cpc2007154,
84     Author = {Philipp Schapotschnikow and Ren{\'e} Pool and Thijs J.H. Vlugt},
85     Date-Added = {2011-02-01 16:00:11 -0500},
86     Date-Modified = {2011-02-04 18:21:59 -0500},
87     Doi = {DOI: 10.1016/j.cpc.2007.02.028},
88     Issn = {0010-4655},
89     Journal = {Computer Physics Communications},
90     Keywords = {Gold nanocrystals},
91     Note = {Proceedings of the Conference on Computational Physics 2006 - CCP 2006, Conference on Computational Physics 2006},
92     Number = {1-2},
93     Pages = {154 - 157},
94     Title = {Selective adsorption of alkyl thiols on gold in different geometries},
95     Url = {http://www.sciencedirect.com/science/article/B6TJ5-4N3WYP0-1/2/66dbe8892f456c230b9b8fcd9c23f456},
96     Volume = {177},
97     Year = {2007},
98     Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/B6TJ5-4N3WYP0-1/2/66dbe8892f456c230b9b8fcd9c23f456},
99     Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.cpc.2007.02.028}}
100    
101     @article{packmol,
102     Author = {L. Mart\'{\i}nez and R. Andrade and Ernesto G. Birgin and Jos{\'e} Mario Mart\'{\i}nez},
103     Bibsource = {DBLP, http://dblp.uni-trier.de},
104     Date-Added = {2011-02-01 15:13:02 -0500},
105     Date-Modified = {2011-02-01 15:14:25 -0500},
106     Ee = {http://dx.doi.org/10.1002/jcc.21224},
107     Journal = {Journal of Computational Chemistry},
108     Number = {13},
109     Pages = {2157-2164},
110     Title = {PACKMOL: A package for building initial configurations for molecular dynamics simulations},
111     Volume = {30},
112     Year = {2009}}
113    
114     @article{kuang:164101,
115     Author = {Shenyu Kuang and J. Daniel Gezelter},
116     Date-Added = {2011-01-31 17:12:35 -0500},
117     Date-Modified = {2011-01-31 17:12:35 -0500},
118     Doi = {10.1063/1.3499947},
119     Eid = {164101},
120     Journal = {The Journal of Chemical Physics},
121     Keywords = {linear momentum; molecular dynamics method; thermal conductivity; total energy; viscosity},
122     Number = {16},
123     Numpages = {9},
124     Pages = {164101},
125     Publisher = {AIP},
126     Title = {A gentler approach to RNEMD: Nonisotropic velocity scaling for computing thermal conductivity and shear viscosity},
127     Url = {http://link.aip.org/link/?JCP/133/164101/1},
128     Volume = {133},
129     Year = {2010},
130     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/133/164101/1},
131     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.3499947}}
132    
133 skuang 3719 @article{muller:014102,
134     Author = {Thomas J. Muller and Michael Al-Samman and Florian Muller-Plathe},
135     Date-Added = {2010-09-16 19:19:25 -0400},
136     Date-Modified = {2010-09-16 19:19:25 -0400},
137     Doi = {10.1063/1.2943312},
138     Eid = {014102},
139     Journal = {The Journal of Chemical Physics},
140     Keywords = {intramolecular mechanics; Lennard-Jones potential; molecular dynamics method; thermostats; viscosity},
141     Number = {1},
142     Numpages = {8},
143     Pages = {014102},
144     Publisher = {AIP},
145     Title = {The influence of thermostats and manostats on reverse nonequilibrium molecular dynamics calculations of fluid viscosities},
146     Url = {http://link.aip.org/link/?JCP/129/014102/1},
147     Volume = {129},
148     Year = {2008},
149     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/129/014102/1},
150     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.2943312}}
151    
152     @article{wolf:8254,
153     Author = {D. Wolf and P. Keblinski and S. R. Phillpot and J. Eggebrecht},
154     Date-Added = {2010-09-16 19:01:51 -0400},
155     Date-Modified = {2010-09-16 19:01:51 -0400},
156     Doi = {10.1063/1.478738},
157     Journal = {J. Chem. Phys.},
158     Keywords = {POTENTIAL ENERGY; COULOMB FIELD; COULOMB ENERGY; LATTICE PARAMETERS; potential energy functions; lattice dynamics; lattice energy},
159     Number = {17},
160     Pages = {8254-8282},
161     Publisher = {AIP},
162     Title = {Exact method for the simulation of Coulombic systems by spherically truncated, pairwise r[sup -1] summation},
163     Url = {http://link.aip.org/link/?JCP/110/8254/1},
164     Volume = {110},
165     Year = {1999},
166     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/110/8254/1},
167     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.478738}}
168    
169     @article{HeX:1993,
170     Abstract = {A recently developed non-equilibrium molecular dynamics algorithm for
171     heat conduction is used to compute the thermal conductivity, thermal
172     diffusion factor, and heat of transfer in binary Lennard-Jones
173     mixtures. An internal energy flux is established with local source and
174     sink terms for kinetic energy.
175     Simulations of isotope mixtures covering a range of densities and mass
176     ratios show that the lighter component prefers the hot side of the
177     system at stationary state. This implies a positive thermal diffusion
178     factor in the definition we have adopted here. The molecular basis for
179     the Soret effect is studied by analysing the energy flux through the
180     system. In all cases we found that there is a difference in the
181     relative contributions when we compare the hot and cold sides of the
182     system. The contribution from the lighter component is predominantly
183     flux of kinetic energy, and this contribution increases from the cold
184     to the hot side. The contribution from the heavier component is
185     predominantly energy transfer through molecular interactions, and it
186     increases from the hot to the cold side. This explains why the thermal
187     diffusion factor is positive; heal is conducted more effectively
188     through the system if the lighter component is enriched at the hot
189     side. Even for very large heat fluxes, we find a linear or almost
190     linear temperature profile through the system, and a constant thermal
191     conductivity. The entropy production per unit volume and unit time
192     increases from the hot to the cold side.},
193     Author = {Hafskjold, B and Ikeshoji, T and Ratkje, SK},
194     Date-Added = {2010-09-15 16:52:45 -0400},
195     Date-Modified = {2010-09-15 16:54:23 -0400},
196     Issn = {{0026-8976}},
197     Journal = {Mol. Phys.},
198     Month = {DEC},
199     Number = {6},
200     Pages = {1389-1412},
201     Title = {ON THE MOLECULAR MECHANISM OF THERMAL-DIFFUSION IN LIQUIDS},
202     Unique-Id = {ISI:A1993MQ34500009},
203     Volume = {80},
204 skuang 3721 Year = {1993}}
205 skuang 3719
206     @article{HeX:1994,
207     Abstract = {This paper presents a new algorithm for non-equilibrium molecular
208     dynamics, where a temperature gradient is established in a system with
209     periodic boundary conditions. At each time step in the simulation, a
210     fixed amount of energy is supplied to a hot region by scaling the
211     velocity of each particle in it, subject to conservation of total
212     momentum. An equal amount of energy is likewise withdrawn from a cold
213     region at each time step. Between the hot and cold regions is a region
214     through which an energy flux is established. Two configurations of hot
215     and cold regions are proposed. Using a stacked layer structure, the
216     instantaneous local energy flux for a 128-particle Lennard-Jones system
217     in liquid was found to be in good agreement with the macroscopic theory
218     of heat conduction at stationary state, except in and near the hot and
219     cold regions. Thermal conductivity calculated for the 128-particle
220     system was about 10\% smaller than the literature value obtained by
221     molecular dynamics calculations. One run with a 1024-particle system
222     showed an agreement with the literature value within statistical error
223     (1-2\%). Using a unit cell with a cold spherical region at the centre
224     and a hot region in the perimeter of the cube, an initial gaseous state
225     of argon was separated into gas and liquid phases. Energy fluxes due to
226     intermolecular energy transfer and transport of kinetic energy dominate
227     in the liquid and gas phases, respectively.},
228     Author = {Ikeshoji, T and Hafskjold, B},
229     Date-Added = {2010-09-15 16:52:45 -0400},
230     Date-Modified = {2010-09-15 16:54:37 -0400},
231     Issn = {0026-8976},
232     Journal = {Mol. Phys.},
233     Month = {FEB},
234     Number = {2},
235     Pages = {251-261},
236     Title = {NONEQUILIBRIUM MOLECULAR-DYNAMICS CALCULATION OF HEAT-CONDUCTION IN LIQUID AND THROUGH LIQUID-GAS INTERFACE},
237     Unique-Id = {ISI:A1994MY17400001},
238     Volume = {81},
239 skuang 3721 Year = {1994}}
240 skuang 3719
241     @article{plech:195423,
242     Author = {A. Plech and V. Kotaidis and S. Gresillon and C. Dahmen and G. von Plessen},
243     Date-Added = {2010-08-12 11:34:55 -0400},
244     Date-Modified = {2010-08-12 11:34:55 -0400},
245     Eid = {195423},
246     Journal = {Phys. Rev. B},
247     Keywords = {gold; laser materials processing; melting; nanoparticles; time resolved spectra; X-ray scattering; lattice dynamics; high-speed optical techniques; cooling; thermal resistance; thermal conductivity; long-range order},
248     Local-Url = {file://localhost/Users/charles/Documents/Papers/PhysRevB_70_195423.pdf},
249     Number = {19},
250     Numpages = {7},
251     Pages = {195423},
252     Publisher = {APS},
253     Title = {Laser-induced heating and melting of gold nanoparticles studied by time-resolved x-ray scattering},
254     Url = {http://link.aps.org/abstract/PRB/v70/e195423},
255     Volume = {70},
256     Year = {2004},
257     Bdsk-Url-1 = {http://link.aps.org/abstract/PRB/v70/e195423}}
258    
259     @article{Wilson:2002uq,
260     Abstract = {We investigate suspensions of 3-10 nm diameter Au, Pt, and AuPd nanoparticles as probes of thermal transport in fluids and determine approximate values for the thermal conductance G of the particle/fluid interfaces. Subpicosecond lambda=770 nm optical pulses from a Ti:sapphire mode-locked laser are used to heat the particles and interrogate the decay of their temperature through time-resolved changes in optical absorption. The thermal decay of alkanethiol-terminated Au nanoparticles in toluene is partially obscured by other effects; we set a lower limit G>20 MW m(-2)K(-1). The thermal decay of citrate-stabilized Pt nanoparticles in water gives Gapproximate to130 MW m(-2) K-1. AuPd alloy nanoparticles in toluene and stabilized by alkanethiol termination give Gapproximate to5 MW m(-2) K-1. The measured G are within a factor of 2 of theoretical estimates based on the diffuse-mismatch model.},
261     Author = {Wilson, OM and Hu, XY and Cahill, DG and Braun, PV},
262     Date-Added = {2010-08-12 11:31:02 -0400},
263     Date-Modified = {2010-08-12 11:31:02 -0400},
264     Doi = {ARTN 224301},
265     Journal = {Phys. Rev. B},
266     Local-Url = {file://localhost/Users/charles/Documents/Papers/e2243010.pdf},
267     Title = {Colloidal metal particles as probes of nanoscale thermal transport in fluids},
268     Volume = {66},
269     Year = {2002},
270     Bdsk-Url-1 = {http://dx.doi.org/224301}}
271    
272     @article{RevModPhys.61.605,
273     Author = {Swartz, E. T. and Pohl, R. O.},
274     Date-Added = {2010-08-06 17:03:01 -0400},
275     Date-Modified = {2010-08-06 17:03:01 -0400},
276     Doi = {10.1103/RevModPhys.61.605},
277     Journal = {Rev. Mod. Phys.},
278     Month = {Jul},
279     Number = {3},
280     Numpages = {63},
281     Pages = {605--668},
282     Publisher = {American Physical Society},
283     Title = {Thermal boundary resistance},
284     Volume = {61},
285     Year = {1989},
286     Bdsk-Url-1 = {http://dx.doi.org/10.1103/RevModPhys.61.605}}
287    
288     @article{cahill:793,
289     Author = {David G. Cahill and Wayne K. Ford and Kenneth E. Goodson and Gerald D. Mahan and Arun Majumdar and Humphrey J. Maris and Roberto Merlin and Simon R. Phillpot},
290     Date-Added = {2010-08-06 17:02:22 -0400},
291     Date-Modified = {2010-08-06 17:02:22 -0400},
292     Doi = {10.1063/1.1524305},
293     Journal = {J. Applied Phys.},
294     Keywords = {nanostructured materials; reviews; thermal conductivity; interface phenomena; molecular dynamics method; thermal management (packaging); Boltzmann equation; carbon nanotubes; porosity; semiconductor superlattices; thermoreflectance; interface phonons; thermoelectricity; phonon-phonon interactions},
295     Number = {2},
296     Pages = {793-818},
297     Publisher = {AIP},
298     Title = {Nanoscale thermal transport},
299     Url = {http://link.aip.org/link/?JAP/93/793/1},
300     Volume = {93},
301     Year = {2003},
302     Bdsk-Url-1 = {http://link.aip.org/link/?JAP/93/793/1},
303     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.1524305}}
304    
305     @inbook{Hoffman:2001sf,
306     Address = {New York},
307     Annote = {LDR 01107cam 2200253 a 4500
308     001 12358442
309     005 20070910074423.0
310     008 010326s2001 nyua b 001 0 eng
311     906 $a7$bcbc$corignew$d1$eocip$f20$gy-gencatlg
312     925 0 $aacquire$b2 shelf copies$xpolicy default
313     955 $ato ASCD pc23 03-26-01; jp20 03-27-01 to subj; jp99 to SL 03-27-01; jp85 to Dewey 03-27-01; aa01 03-28-01$aps02 2001-10-04 bk rec'd, to CIP ver.;$fpv04 2001-10-31 CIP ver to BCCD$ajp01 2001-12-06 c. 2 to BCCD
314     010 $a 2001028633
315     020 $a0824704436 (acid-free paper)
316     040 $aDLC$cDLC$dDLC
317     050 00 $aQA297$b.H588 2001
318     082 00 $a519.4$221
319     100 1 $aHoffman, Joe D.,$d1934-
320     245 10 $aNumerical methods for engineers and scientists /$cJoe D. Hoffman.
321     250 $a2nd ed., rev. and expanded.
322     260 $aNew York :$bMarcel Dekker,$cc2001.
323     300 $axi, 823 p. :$bill. ;$c26 cm.
324     504 $aIncludes bibliographical references (p. 775-777) and index.
325     650 0 $aNumerical analysis.
326     856 42 $3Publisher description$uhttp://www.loc.gov/catdir/enhancements/fy0743/2001028633-d.html
327     },
328     Author = {Hoffman, Joe D.},
329     Call-Number = {QA297},
330     Date-Added = {2010-07-15 16:32:02 -0400},
331     Date-Modified = {2010-07-19 16:49:37 -0400},
332     Dewey-Call-Number = {519.4},
333     Edition = {2nd ed., rev. and expanded},
334     Genre = {Numerical analysis},
335     Isbn = {0824704436 (acid-free paper)},
336     Library-Id = {2001028633},
337     Pages = {157},
338     Publisher = {Marcel Dekker},
339     Title = {Numerical methods for engineers and scientists},
340     Url = {http://www.loc.gov/catdir/enhancements/fy0743/2001028633-d.html},
341     Year = {2001},
342     Bdsk-Url-1 = {http://www.loc.gov/catdir/enhancements/fy0743/2001028633-d.html}}
343    
344     @article{Vardeman:2008fk,
345     Abstract = {Using molecular dynamics simulations, we have simulated the rapid cooling experienced by bimetallic nanoparticles following laser excitation at the plasmon resonance and find evidence that glassy beads, specifically Ag-Cu bimetallic particles at the eutectic composition (60\% Ag, 40\% Cu), can be formed during these experiments. The bimetallic nanoparticles are embedded in an implicit solvent with a viscosity tuned to yield cooling curves that match the experimental cooling behavior as closely as possible. Because the nanoparticles have a large surface-to-volume ratio, experimentally realistic cooling rates are accessible via relatively short simulations. The presence of glassy structural features was verified using bond orientational order parameters that are sensitive to the formation of local icosahedral ordering in condensed phases. As the particles cool from the liquid droplet state into glassy beads, a silver-rich monolayer develops on the outer surface and local icosahedra can develop around the silver atoms in this monolayer. However, we observe a strong preference for the local icosahedral ordering around the copper atoms in the particles. As the particles cool, these local icosahedral structures grow to include a larger fraction of the atoms in the nanoparticle, eventually leading to a glassy nanosphere.},
346     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
347     Author = {{Vardeman II}, Charles F. and Gezelter, J. Daniel},
348     Date-Added = {2010-07-13 11:48:22 -0400},
349     Date-Modified = {2010-07-19 16:20:01 -0400},
350     Doi = {DOI 10.1021/jp710063g},
351     Isi = {000253512400021},
352     Isi-Recid = {160903603},
353     Isi-Ref-Recids = {144152922 81445483 98913099 146167982 55512304 50985260 52031423 29272311 151055545 134895634 130292830 101988637 100757730 98524559 123952006 6025131 59492217 2078548 135495737 136941603 90709964 160903604 130558416 113800688 30137926 117888234 63632785 38926953 158293976 135246439 125693419 125789026 155583142 156430464 65888620 130160487 97576420 109490154 150229560 116057234 134425927 142869781 121706070 89390336 119150946 143383743 64066027 171282998 142688207 51429664 84591083 127696312 58160909 155366996 155654757 137551818 128633299 109033408 120457571 171282999 124947095 126857514 49630702 64115284 84689627 71842426 96309965 79034659 92658330 146168029 119238036 144824430 132319357 160903607 171283000 100274448},
354     Journal = {J. Phys. Chem. C},
355     Month = mar,
356     Number = {9},
357     Pages = {3283-3293},
358     Publisher = {AMER CHEMICAL SOC},
359     Times-Cited = {0},
360     Title = {Simulations of laser-induced glass formation in Ag-Cu nanoparticles},
361     Volume = {112},
362     Year = {2008},
363     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000253512400021}}
364    
365     @article{PhysRevB.59.3527,
366     Author = {Qi, Yue and \c{C}a\v{g}in, Tahir and Kimura, Yoshitaka and {Goddard III}, William A.},
367     Date-Added = {2010-07-13 11:44:08 -0400},
368     Date-Modified = {2010-07-13 11:44:08 -0400},
369     Doi = {10.1103/PhysRevB.59.3527},
370     Journal = {Phys. Rev. B},
371     Local-Url = {file://localhost/Users/charles/Documents/Papers/Qi/1999.pdf},
372     Month = {Feb},
373     Number = {5},
374     Numpages = {6},
375     Pages = {3527-3533},
376     Publisher = {American Physical Society},
377     Title = {Molecular-dynamics simulations of glass formation and crystallization in binary liquid metals:\quad{}{C}u-{A}g and {C}u-{N}i},
378     Volume = {59},
379     Year = {1999},
380     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevB.59.3527}}
381    
382     @article{Medasani:2007uq,
383     Abstract = {We employ first-principles and empirical computational methods to study the surface energy and surface stress of silver nanoparticles. The structures, cohesive energies, and lattice contractions of spherical Ag nanoclusters in the size range 0.5-5.5 nm are analyzed using two different theoretical approaches: an ab initio density functional pseudopotential technique combined with the generalized gradient approximation and the embedded atom method. The surface energies and stresses obtained via the embedded atom method are found to be in good agreement with those predicted by the gradient-corrected ab initio density functional formalism. We estimate the surface energy of Ag nanoclusters to be in the range of 1.0-2.2 J/m(2). Our values are close to the bulk surface energy of silver, but are significantly lower than the recently reported value of 7.2 J/m(2) for free Ag nanoparticles derived from the Kelvin equation.},
384     Author = {Medasani, Bharat and Park, Young Ho and Vasiliev, Igor},
385     Date-Added = {2010-07-13 11:43:15 -0400},
386     Date-Modified = {2010-07-13 11:43:15 -0400},
387     Doi = {ARTN 235436},
388     Journal = {Phys. Rev. B},
389     Local-Url = {file://localhost/Users/charles/Documents/Papers/PhysRevB_75_235436.pdf},
390     Title = {Theoretical study of the surface energy, stress, and lattice contraction of silver nanoparticles},
391     Volume = {75},
392     Year = {2007},
393     Bdsk-Url-1 = {http://dx.doi.org/235436}}
394    
395     @article{Wang:2005qy,
396     Abstract = {The surface structures of cubo-octahedral Pt-Mo nanoparticles have been investigated using the Monte Carlo method and modified embedded atom method potentials that we developed for Pt-Mo alloys. The cubo-octahedral Pt-Mo nanoparticles are constructed with disordered fcc configurations, with sizes from 2.5 to 5.0 nm, and with Pt concentrations from 60 to 90 atom \%. The equilibrium Pt-Mo nanoparticle configurations were generated through Monte Carlo simulations allowing both atomic displacements and element exchanges at 600 K. We predict that the Pt atoms weakly segregate to the surfaces of such nanoparticles. The Pt concentrations in the surface are calculated to be 5-14 atom \% higher than the Pt concentrations of the nanoparticles. Moreover, the Pt atoms preferentially segregate to the facet sites of the surface, while the Pt and Mo atoms tend to alternate along the edges and vertexes of these nanoparticles. We found that decreasing the size or increasing the Pt concentration leads to higher Pt concentrations but fewer Pt-Mo pairs in the Pt-Mo nanoparticle surfaces.},
397     Author = {Wang, GF and Van Hove, MA and Ross, PN and Baskes, MI},
398     Date-Added = {2010-07-13 11:42:50 -0400},
399     Date-Modified = {2010-07-13 11:42:50 -0400},
400     Doi = {DOI 10.1021/jp050116n},
401     Journal = {J. Phys. Chem. B},
402     Pages = {11683-11692},
403     Title = {Surface structures of cubo-octahedral Pt-Mo catalyst nanoparticles from Monte Carlo simulations},
404     Volume = {109},
405     Year = {2005},
406     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp050116n}}
407    
408     @article{Chui:2003fk,
409     Abstract = {Molecular dynamics simulations of a platinum nanocluster consisting 250 atoms were performed at different temperatures between 70 K and 298 K. The semi-empirical, many-body Sutton-Chen (SC) potential was used to model the interatomic interaction in the metallic system. Regions of core or bulk-like atoms and surface atoms can be defined from analyses of structures, atomic coordination, and the local density function of atoms as defined in the SC potential. The core atoms in the nanoparticle behave as bulk-like metal atoms with a predominant face centered cubic (fcc) packing. The interface between surface atoms and core atoms is marked by a peak in the local density function and corresponds to near surface atoms. The near surface atoms and surface atoms prefer a hexagonal closed packing (hcp). The temperature and size effects on structures of the nanoparticle and the dynamics of the surface region and the core region are discussed.},
410     Author = {Chui, YH and Chan, KY},
411     Date-Added = {2010-07-13 11:42:32 -0400},
412     Date-Modified = {2010-07-13 11:42:32 -0400},
413     Doi = {DOI 10.1039/b302122j},
414     Journal = {Phys. Chem. Chem. Phys.},
415     Pages = {2869-2874},
416     Title = {Analyses of surface and core atoms in a platinum nanoparticle},
417     Volume = {5},
418     Year = {2003},
419     Bdsk-Url-1 = {http://dx.doi.org/10.1039/b302122j}}
420    
421     @article{Sankaranarayanan:2005lr,
422     Abstract = {Bimetallic nanoclusters are of interest because of their utility in catalysis and sensors, The thermal characteristics of bimetallic Pt-Pd nanoclusters of different sizes and compositions were investigated through molecular dynamics simulations using quantum Sutton-Chen (QSC) many-body potentials, Monte Carlo simulations employing the bond order simulation model were used to generate minimum energy configurations, which were utilized as the starting point for molecular dynamics simulations. The calculated initial configurations of the Pt-Pd system consisted of surface segregated Pd atoms and a Pt-rich core, Melting characteristics were studied by following the changes in potential energy and heat capacity as functions of temperature, Structural changes accompanying the thermal evolution were studied by the bond order parameter method. The Pt-Pd clusters exhibited a two-stage melting: surface melting of the external Pd atoms followed by homogeneous melting of the Pt core. These transitions were found to depend on the composition and size of the nanocluster. Melting temperatures of the nanoclusters were found to be much lower than those of bulk Pt and Pd. Bulk melting temperatures of Pd and Pt simulated using periodic boundary conditions compare well with experimental values, thus providing justification for the use of QSC potentials in these simulations. Deformation parameters were calculated to characterize the structural evolution resulting from diffusion of Pd and Pt atoms, The results indicate that in Pd-Pt clusters, Pd atoms prefer to remain at the surface even after melting. In addition, Pt also tends to diffuse to the surface after melting due to reduction of its surface energy with temperature. This mixing pattern is different from those reported in some of the earlier Studies on melting of bimetallics.},
423     Author = {Sankaranarayanan, SKRS and Bhethanabotla, VR and Joseph, B},
424     Date-Added = {2010-07-13 11:42:13 -0400},
425     Date-Modified = {2010-07-13 11:42:13 -0400},
426     Doi = {ARTN 195415},
427     Journal = {Phys. Rev. B},
428     Title = {Molecular dynamics simulation study of the melting of Pd-Pt nanoclusters},
429     Volume = {71},
430     Year = {2005},
431     Bdsk-Url-1 = {http://dx.doi.org/195415}}
432    
433     @article{Vardeman-II:2001jn,
434     Author = {C.~F. {Vardeman II} and J.~D. Gezelter},
435     Date-Added = {2010-07-13 11:41:50 -0400},
436     Date-Modified = {2010-07-13 11:41:50 -0400},
437     Journal = {J. Phys. Chem. A},
438     Local-Url = {file://localhost/Users/charles/Documents/Papers/Vardeman%20II/2001.pdf},
439     Number = {12},
440     Pages = {2568},
441     Title = {Comparing models for diffusion in supercooled liquids: The eutectic composition of the {A}g-{C}u alloy},
442     Volume = {105},
443     Year = {2001}}
444    
445     @article{ShibataT._ja026764r,
446     Author = {Shibata, T. and Bunker, B.A. and Zhang, Z. and Meisel, D. and Vardeman, C.F. and Gezelter, J.D.},
447     Date-Added = {2010-07-13 11:41:36 -0400},
448     Date-Modified = {2010-07-13 11:41:36 -0400},
449     Journal = {J. Amer. Chem. Soc.},
450     Local-Url = {file://localhost/Users/charles/Documents/Papers/ja026764r.pdf},
451     Number = {40},
452     Pages = {11989-11996},
453     Title = {Size-Dependent Spontaneous Alloying of {A}u-{A}g Nanoparticles},
454     Url = {http://dx.doi.org/10.1021/ja026764r},
455     Volume = {124},
456     Year = {2002},
457     Bdsk-Url-1 = {http://dx.doi.org/10.1021/ja026764r}}
458    
459     @article{Chen90,
460     Author = {A.~P. Sutton and J. Chen},
461     Date-Added = {2010-07-13 11:40:48 -0400},
462     Date-Modified = {2010-07-13 11:40:48 -0400},
463     Journal = {Phil. Mag. Lett.},
464     Pages = {139-146},
465     Title = {Long-Range Finnis Sinclair Potentials},
466     Volume = 61,
467     Year = {1990}}
468    
469     @article{PhysRevB.33.7983,
470     Author = {Foiles, S. M. and Baskes, M. I. and Daw, M. S.},
471     Date-Added = {2010-07-13 11:40:28 -0400},
472     Date-Modified = {2010-07-13 11:40:28 -0400},
473     Doi = {10.1103/PhysRevB.33.7983},
474     Journal = {Phys. Rev. B},
475     Local-Url = {file://localhost/Users/charles/Documents/Papers/p7983_1.pdf},
476     Month = {Jun},
477     Number = {12},
478     Numpages = {8},
479     Pages = {7983-7991},
480     Publisher = {American Physical Society},
481     Title = {Embedded-atom-method functions for the fcc metals {C}u, {A}g, {A}u, {N}i, {P}d, {P}t, and their alloys},
482     Volume = {33},
483     Year = {1986},
484     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevB.33.7983}}
485    
486     @article{hoover85,
487     Author = {W.~G. Hoover},
488     Date-Added = {2010-07-13 11:24:30 -0400},
489     Date-Modified = {2010-07-13 11:24:30 -0400},
490     Journal = pra,
491     Pages = 1695,
492     Title = {Canonical dynamics: Equilibrium phase-space distributions},
493     Volume = 31,
494     Year = 1985}
495    
496     @article{melchionna93,
497     Author = {S. Melchionna and G. Ciccotti and B.~L. Holian},
498     Date-Added = {2010-07-13 11:22:17 -0400},
499     Date-Modified = {2010-07-13 11:22:17 -0400},
500     Journal = {Mol. Phys.},
501     Pages = {533-544},
502     Title = {Hoover {\sc npt} dynamics for systems varying in shape and size},
503     Volume = 78,
504     Year = 1993}
505    
506     @misc{openmd,
507     Author = {J. Daniel Gezelter and Shenyu Kuang and James Marr and Kelsey Stocker and Chunlei Li and Charles F. Vardeman and Teng Lin and Christopher J. Fennell and Xiuquan Sun and Kyle Daily and Yang Zheng and Matthew A. Meineke},
508     Date-Added = {2010-07-13 11:16:00 -0400},
509     Date-Modified = {2010-07-19 16:27:45 -0400},
510     Howpublished = {Available at {\tt http://openmd.net}},
511     Title = {{OpenMD, an open source engine for molecular dynamics}}}
512    
513     @inbook{AshcroftMermin,
514 skuang 3721 Address = {Belmont, CA},
515 skuang 3719 Author = {Neil W. Ashcroft and N.~David Mermin},
516     Date-Added = {2010-07-12 14:26:49 -0400},
517     Date-Modified = {2010-07-22 13:37:20 -0400},
518     Pages = {21},
519     Publisher = {Brooks Cole},
520     Title = {Solid State Physics},
521 skuang 3721 Year = {1976}}
522 skuang 3719
523     @book{WagnerKruse,
524     Address = {Berlin},
525     Author = {W. Wagner and A. Kruse},
526     Date-Added = {2010-07-12 14:10:29 -0400},
527     Date-Modified = {2010-07-12 14:13:44 -0400},
528     Publisher = {Springer-Verlag},
529     Title = {Properties of Water and Steam, the Industrial Standard IAPWS-IF97 for the Thermodynamic Properties and Supplementary Equations for Other Properties},
530 skuang 3721 Year = {1998}}
531 skuang 3719
532     @article{ISI:000266247600008,
533     Abstract = {Temperature dependence of viscosity of butyl-3-methylimidazolium
534     hexafluorophosphate is investigated by non-equilibrium molecular
535     dynamics simulations with cosine-modulated force in the temperature
536     range from 360 to 480K. It is shown that this method is able to
537     correctly predict the shear viscosity. The simulation setting and
538     choice of the force field are discussed in detail. The all-atom force
539     field exhibits a bad convergence and the shear viscosity is
540     overestimated, while the simple united atom model predicts the kinetics
541     very well. The results are compared with the equilibrium molecular
542     dynamics simulations. The relationship between the diffusion
543     coefficient and viscosity is examined by means of the hydrodynamic
544     radii calculated from the Stokes-Einstein equation and the solvation
545     properties are discussed.},
546     Address = {4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND},
547     Affiliation = {Kolafa, J (Reprint Author), Prague Inst Chem Technol, Dept Phys Chem, CR-16628 Prague, Czech Republic. {[}Picalek, Jan; Kolafa, Jiri] Prague Inst Chem Technol, Dept Phys Chem, CR-16628 Prague, Czech Republic.},
548     Author = {Picalek, Jan and Kolafa, Jiri},
549     Author-Email = {jiri.kolafa@vscht.cz},
550     Date-Added = {2010-04-16 13:19:12 -0400},
551     Date-Modified = {2010-04-16 13:19:12 -0400},
552     Doc-Delivery-Number = {448FD},
553     Doi = {10.1080/08927020802680703},
554     Funding-Acknowledgement = {Czech Science Foundation {[}203/07/1006]; Czech Ministry of Education {[}LC512]},
555     Funding-Text = {We gratefully acknowledge a support from the Czech Science Foundation (project 203/07/1006) and the computing facilities from the Czech Ministry of Education (Center for Biomolecules and Complex Molecular Systems, project LC512).},
556     Issn = {0892-7022},
557     Journal = {Mol. Simul.},
558     Journal-Iso = {Mol. Simul.},
559     Keywords = {room temperature ionic liquids; viscosity; non-equilibrium molecular dynamics; solvation; imidazolium},
560     Keywords-Plus = {1-N-BUTYL-3-METHYLIMIDAZOLIUM HEXAFLUOROPHOSPHATE; PHYSICOCHEMICAL PROPERTIES; COMPUTER-SIMULATION; PHYSICAL-PROPERTIES; IMIDAZOLIUM CATION; FORCE-FIELD; AB-INITIO; TEMPERATURE; CHLORIDE; CONDUCTIVITY},
561     Language = {English},
562     Number = {8},
563     Number-Of-Cited-References = {50},
564     Pages = {685-690},
565     Publisher = {TAYLOR \& FRANCIS LTD},
566     Subject-Category = {Chemistry, Physical; Physics, Atomic, Molecular \& Chemical},
567     Times-Cited = {2},
568     Title = {Shear viscosity of ionic liquids from non-equilibrium molecular dynamics simulation},
569     Type = {Article},
570     Unique-Id = {ISI:000266247600008},
571     Volume = {35},
572     Year = {2009},
573     Bdsk-Url-1 = {http://dx.doi.org/10.1080/08927020802680703%7D}}
574    
575     @article{Vasquez:2004fk,
576     Abstract = {A method for fast calculation of viscosity from molecular dynamics simulation is revisited. The method consists of using a steady-state periodic perturbation. A methodology to choose the amplitude of the external perturbation, which is one of the major practical issues in the original technique of Gosling et al. {$[$}Mol. Phys. 26: 1475 (1973){$]$} is proposed. The amplitude of the perturbation required for fast caculations and the viscosity values for wide ranges of temperature and density of the Lennard-Jones (LJ) model fluid are reported. The viscosity results are in agreement with recent LJ viscosity calculations. Additionally, the simulations demonstrate that the proposed approach is suitable to efficiently generate viscosity data of good quality.},
577     Author = {Vasquez, V. R. and Macedo, E. A. and Zabaloy, M. S.},
578     Date = {2004/11/02/},
579     Date-Added = {2010-04-16 13:18:48 -0400},
580     Date-Modified = {2010-04-16 13:18:48 -0400},
581     Day = {02},
582     Journal = {Int. J. Thermophys.},
583     M3 = {10.1007/s10765-004-7736-3},
584     Month = {11},
585     Number = {6},
586     Pages = {1799--1818},
587     Title = {Lennard-Jones Viscosities in Wide Ranges of Temperature and Density: Fast Calculations Using a Steady--State Periodic Perturbation Method},
588     Ty = {JOUR},
589     Url = {http://dx.doi.org/10.1007/s10765-004-7736-3},
590     Volume = {25},
591     Year = {2004},
592     Bdsk-Url-1 = {http://dx.doi.org/10.1007/s10765-004-7736-3}}
593    
594     @article{hess:209,
595     Author = {Berk Hess},
596     Date-Added = {2010-04-16 12:37:37 -0400},
597     Date-Modified = {2010-04-16 12:37:37 -0400},
598     Doi = {10.1063/1.1421362},
599     Journal = {J. Chem. Phys.},
600     Keywords = {viscosity; molecular dynamics method; liquid theory; shear flow},
601     Number = {1},
602     Pages = {209-217},
603     Publisher = {AIP},
604     Title = {Determining the shear viscosity of model liquids from molecular dynamics simulations},
605     Url = {http://link.aip.org/link/?JCP/116/209/1},
606     Volume = {116},
607     Year = {2002},
608     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/116/209/1},
609     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.1421362}}
610    
611     @article{backer:154503,
612     Author = {J. A. Backer and C. P. Lowe and H. C. J. Hoefsloot and P. D. Iedema},
613     Date-Added = {2010-04-16 12:37:37 -0400},
614     Date-Modified = {2010-04-16 12:37:37 -0400},
615     Doi = {10.1063/1.1883163},
616     Eid = {154503},
617     Journal = {J. Chem. Phys.},
618     Keywords = {Poiseuille flow; flow simulation; Lennard-Jones potential; viscosity; boundary layers; computational fluid dynamics},
619     Number = {15},
620     Numpages = {6},
621     Pages = {154503},
622     Publisher = {AIP},
623     Title = {Poiseuille flow to measure the viscosity of particle model fluids},
624     Url = {http://link.aip.org/link/?JCP/122/154503/1},
625     Volume = {122},
626     Year = {2005},
627     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/122/154503/1},
628     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.1883163}}
629    
630     @article{daivis:541,
631     Author = {Peter J. Daivis and Denis J. Evans},
632     Date-Added = {2010-04-16 12:05:36 -0400},
633     Date-Modified = {2010-04-16 12:05:36 -0400},
634     Doi = {10.1063/1.466970},
635     Journal = {J. Chem. Phys.},
636     Keywords = {SHEAR; DECANE; FLOW MODELS; VOLUME; PRESSURE; NONEQUILIBRIUM; MOLECULAR DYNAMICS CALCULATIONS; COMPARATIVE EVALUATIONS; SIMULATION; STRAIN RATE; VISCOSITY; KUBO FORMULA},
637     Number = {1},
638     Pages = {541-547},
639     Publisher = {AIP},
640     Title = {Comparison of constant pressure and constant volume nonequilibrium simulations of sheared model decane},
641     Url = {http://link.aip.org/link/?JCP/100/541/1},
642     Volume = {100},
643     Year = {1994},
644     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/100/541/1},
645     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.466970}}
646    
647     @article{mondello:9327,
648     Author = {Maurizio Mondello and Gary S. Grest},
649     Date-Added = {2010-04-16 12:05:36 -0400},
650     Date-Modified = {2010-04-16 12:05:36 -0400},
651     Doi = {10.1063/1.474002},
652     Journal = {J. Chem. Phys.},
653     Keywords = {organic compounds; viscosity; digital simulation; molecular dynamics method},
654     Number = {22},
655     Pages = {9327-9336},
656     Publisher = {AIP},
657     Title = {Viscosity calculations of [bold n]-alkanes by equilibrium molecular dynamics},
658     Url = {http://link.aip.org/link/?JCP/106/9327/1},
659     Volume = {106},
660     Year = {1997},
661     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/106/9327/1},
662     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.474002}}
663    
664     @article{ISI:A1988Q205300014,
665     Address = {ONE GUNDPOWDER SQUARE, LONDON, ENGLAND EC4A 3DE},
666     Affiliation = {VOGELSANG, R (Reprint Author), RUHR UNIV BOCHUM,UNIV STR 150,D-4630 BOCHUM,FED REP GER. UNIV DUISBURG,THERMODYNAM,D-4100 DUISBURG,FED REP GER.},
667     Author = {Vogelsang, R and Hoheisel, G and Luckas, M},
668     Date-Added = {2010-04-14 16:20:24 -0400},
669     Date-Modified = {2010-04-14 16:20:24 -0400},
670     Doc-Delivery-Number = {Q2053},
671     Issn = {0026-8976},
672     Journal = {Mol. Phys.},
673     Journal-Iso = {Mol. Phys.},
674     Language = {English},
675     Month = {AUG 20},
676     Number = {6},
677     Number-Of-Cited-References = {14},
678     Pages = {1203-1213},
679     Publisher = {TAYLOR \& FRANCIS LTD},
680     Subject-Category = {Physics, Atomic, Molecular \& Chemical},
681     Times-Cited = {12},
682     Title = {SHEAR VISCOSITY AND THERMAL-CONDUCTIVITY OF THE LENNARD-JONES LIQUID COMPUTED USING MOLECULAR-DYNAMICS AND PREDICTED BY A MEMORY FUNCTION MODEL FOR A LARGE NUMBER OF STATES},
683     Type = {Article},
684     Unique-Id = {ISI:A1988Q205300014},
685     Volume = {64},
686     Year = {1988}}
687    
688     @article{ISI:000261835100054,
689     Abstract = {Transport properties of liquid methanol and ethanol are predicted by
690     molecular dynamics simulation. The molecular models for the alcohols
691     are rigid, nonpolarizable, and of united-atom type. They were developed
692     in preceding work using experimental vapor-liquid equilibrium data
693     only. Self- and Maxwell-Stefan diffusion coefficients as well as the
694     shear viscosity of methanol, ethanol, and their binary mixture are
695     determined using equilibrium molecular dynamics and the Green-Kubo
696     formalism. Nonequilibrium molecular dynamics is used for predicting the
697     thermal conductivity of the two pure substances. The transport
698     properties of the fluids are calculated over a wide temperature range
699     at ambient pressure and compared with experimental and simulation data
700     from the literature. Overall, a very good agreement with the experiment
701     is found. For instance, the self-diffusion coefficient and the shear
702     viscosity are predicted with average deviations of less than 8\% for
703     the pure alcohols and 12\% for the mixture. The predicted thermal
704     conductivity agrees on average within 5\% with the experimental data.
705     Additionally, some velocity and shear viscosity autocorrelation
706     functions are presented and discussed. Radial distribution functions
707     for ethanol are also presented. The predicted excess volume, excess
708     enthalpy, and the vapor-liquid equilibrium of the binary mixture
709     methanol + ethanol are assessed and agree well with experimental data.},
710     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
711     Affiliation = {Vrabec, J (Reprint Author), Univ Stuttgart, Inst Thermodynam \& Thermal Proc Engn, D-70550 Stuttgart, Germany. {[}Vrabec, Jadran] Univ Stuttgart, Inst Thermodynam \& Thermal Proc Engn, D-70550 Stuttgart, Germany. {[}Guevara-Carrion, Gabriela; Hasse, Hans] Univ Kaiserslautern, Lab Engn Thermodynam, D-67663 Kaiserslautern, Germany. {[}Nieto-Draghi, Carlos] Inst Francais Petr, F-92852 Rueil Malmaison, France.},
712     Author = {Guevara-Carrion, Gabriela and Nieto-Draghi, Carlos and Vrabec, Jadran and Hasse, Hans},
713     Author-Email = {vrabec@itt.uni-stuttgart.de},
714     Date-Added = {2010-04-14 15:43:29 -0400},
715     Date-Modified = {2010-04-14 15:43:29 -0400},
716     Doc-Delivery-Number = {385SY},
717     Doi = {10.1021/jp805584d},
718     Issn = {1520-6106},
719     Journal = {J. Phys. Chem. B},
720     Journal-Iso = {J. Phys. Chem. B},
721     Keywords-Plus = {STEFAN DIFFUSION-COEFFICIENTS; MONTE-CARLO CALCULATIONS; ATOM FORCE-FIELD; SELF-DIFFUSION; DYNAMICS SIMULATION; PHASE-EQUILIBRIA; LIQUID METHANOL; TEMPERATURE-DEPENDENCE; COMPUTER-SIMULATION; MONOHYDRIC ALCOHOLS},
722     Language = {English},
723     Month = {DEC 25},
724     Number = {51},
725     Number-Of-Cited-References = {86},
726     Pages = {16664-16674},
727     Publisher = {AMER CHEMICAL SOC},
728     Subject-Category = {Chemistry, Physical},
729     Times-Cited = {5},
730     Title = {Prediction of Transport Properties by Molecular Simulation: Methanol and Ethanol and Their Mixture},
731     Type = {Article},
732     Unique-Id = {ISI:000261835100054},
733     Volume = {112},
734     Year = {2008},
735     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp805584d%7D}}
736    
737     @article{ISI:000258460400020,
738     Abstract = {Nonequilibrium molecular dynamics simulations with the nonpolarizable
739     SPC/E (Berendsen et al., J. Phys. Chem. 1987, 91, 6269) and the
740     polarizable COS/G2 (Yu and van Gunsteren, J. Chem. Phys. 2004, 121,
741     9549) force fields have been employed to calculate the thermal
742     conductivity and other associated properties of methane hydrate over a
743     temperature range from 30 to 260 K. The calculated results are compared
744     to experimental data over this same range. The values of the thermal
745     conductivity calculated with the COS/G2 model are closer to the
746     experimental values than are those calculated with the nonpolarizable
747     SPC/E model. The calculations match the temperature trend in the
748     experimental data at temperatures below 50 K; however, they exhibit a
749     slight decrease in thermal conductivity at higher temperatures in
750     comparison to an opposite trend in the experimental data. The
751     calculated thermal conductivity values are found to be relatively
752     insensitive to the occupancy of the cages except at low (T <= 50 K)
753     temperatures, which indicates that the differences between the two
754     lattice structures may have a more dominant role than generally thought
755     in explaining the low thermal conductivity of methane hydrate compared
756     to ice Ih. The introduction of defects into the water lattice is found
757     to cause a reduction in the thermal conductivity but to have a
758     negligible impact on its temperature dependence.},
759     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
760     Affiliation = {Jordan, KD (Reprint Author), US DOE, Natl Energy Technol Lab, POB 10940, Pittsburgh, PA 15236 USA. {[}Jiang, Hao; Myshakin, Evgeniy M.; Jordan, Kenneth D.; Warzinski, Robert P.] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. {[}Jiang, Hao; Jordan, Kenneth D.] Univ Pittsburgh, Dept Chem, Pittsburgh, PA 15260 USA. {[}Jiang, Hao; Jordan, Kenneth D.] Univ Pittsburgh, Ctr Mol \& Mat Simulat, Pittsburgh, PA 15260 USA. {[}Myshakin, Evgeniy M.] Parsons Project Serv Inc, South Pk, PA 15129 USA.},
761     Author = {Jiang, Hao and Myshakin, Evgeniy M. and Jordan, Kenneth D. and Warzinski, Robert P.},
762     Date-Added = {2010-04-14 15:38:14 -0400},
763     Date-Modified = {2010-04-14 15:38:14 -0400},
764     Doc-Delivery-Number = {337UG},
765     Doi = {10.1021/jp802942v},
766     Funding-Acknowledgement = {E.M.M. ; National Energy Technology Laboratory's Office of Research and Development {[}41817.660.01.03]; ORISE Part-Time Faculty Program ; {[}DE-AM26-04NT41817]; {[}41817.606.06.03]},
767     Funding-Text = {We thank Drs. John Tse, Niall English, and Alan McGaughey for their comments. H.J. and K.D.J. performed this work under Contract DE-AM26-04NT41817, Subtask 41817.606.06.03, and E.M.M. performed this work under the same contract, Subtask 41817.660.01.03, in support of the National Energy Technology Laboratory's Office of Research and Development. K.D.J. was also supported at NETL by the ORISE Part-Time Faculty Program during the early stages of this work.},
768     Issn = {1520-6106},
769     Journal = {J. Phys. Chem. B},
770     Journal-Iso = {J. Phys. Chem. B},
771     Keywords-Plus = {LIQUID WATER; CLATHRATE HYDRATE; HEAT-CAPACITY; FORCE-FIELDS; ICE; ANHARMONICITY; SUMMATION; MODELS; SILICA},
772     Language = {English},
773     Month = {AUG 21},
774     Number = {33},
775     Number-Of-Cited-References = {51},
776     Pages = {10207-10216},
777     Publisher = {AMER CHEMICAL SOC},
778     Subject-Category = {Chemistry, Physical},
779     Times-Cited = {8},
780     Title = {Molecular dynamics Simulations of the thermal conductivity of methane hydrate},
781     Type = {Article},
782     Unique-Id = {ISI:000258460400020},
783     Volume = {112},
784     Year = {2008},
785     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp802942v%7D}}
786    
787     @article{ISI:000184808400018,
788     Abstract = {A new non-equilibrium molecular dynamics algorithm is presented based
789     on the original work of Willer-Plathe, (1997, J. chem. Phys., 106,
790     6082), for the non-equilibrium simulation of heat transport maintaining
791     fixed the total momentum as well as the total energy of the system. The
792     presented scheme preserves these properties but, unlike the original
793     algorithm, is able to deal with multicomponent systems, that is with
794     particles of different mass independently of their relative
795     concentration. The main idea behind the new procedure is to consider an
796     exchange of momentum and energy between the particles in the hot and
797     cold regions, to maintain the non-equilibrium conditions, as if they
798     undergo a hypothetical elastic collision. The new algorithm can also be
799     employed in multicomponent systems for molecular fluids and in a wide
800     range of thermodynamic conditions.},
801     Address = {4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND},
802     Affiliation = {Nieto-Draghi, C (Reprint Author), Univ Rovira \& Virgili, ETSEQ, Dept Engn Quim, Avda Paisos Catalans 26, Tarragona 43007, Spain. Univ Rovira \& Virgili, ETSEQ, Dept Engn Quim, Tarragona 43007, Spain.},
803     Author = {Nieto-Draghi, C and Avalos, JB},
804     Date-Added = {2010-04-14 12:48:08 -0400},
805     Date-Modified = {2010-04-14 12:48:08 -0400},
806     Doc-Delivery-Number = {712QM},
807     Doi = {10.1080/0026897031000154338},
808     Issn = {0026-8976},
809     Journal = {Mol. Phys.},
810     Journal-Iso = {Mol. Phys.},
811     Keywords-Plus = {BINARY-LIQUID MIXTURES; THERMAL-CONDUCTIVITY; MATTER TRANSPORT; WATER},
812     Language = {English},
813     Month = {JUL 20},
814     Number = {14},
815     Number-Of-Cited-References = {20},
816     Pages = {2303-2307},
817     Publisher = {TAYLOR \& FRANCIS LTD},
818     Subject-Category = {Physics, Atomic, Molecular \& Chemical},
819     Times-Cited = {13},
820     Title = {Non-equilibrium momentum exchange algorithm for molecular dynamics simulation of heat flow in multicomponent systems},
821     Type = {Article},
822     Unique-Id = {ISI:000184808400018},
823     Volume = {101},
824     Year = {2003},
825     Bdsk-Url-1 = {http://dx.doi.org/10.1080/0026897031000154338%7D}}
826    
827     @article{Bedrov:2000-1,
828     Abstract = {The thermal conductivity of liquid
829     octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) has been
830     determined from imposed heat flux non-equilibrium molecular dynamics
831     (NEMD) simulations using a previously published quantum chemistry-based
832     atomistic potential. The thermal conductivity was determined in the
833     temperature domain 550 less than or equal to T less than or equal to
834     800 K, which corresponds approximately to the existence limits of the
835     liquid phase of HMX at atmospheric pressure. The NEMD predictions,
836     which comprise the first reported values for thermal conductivity of
837     HMX liquid, were found to be consistent with measured values for
838     crystalline HMX. The thermal conductivity of liquid HMX was found to
839     exhibit a much weaker temperature dependence than the shear viscosity
840     and self-diffusion coefficients. (C) 2000 Elsevier Science B.V. All
841     rights reserved.},
842     Address = {PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS},
843     Affiliation = {Bedrov, D (Reprint Author), Univ Utah, Dept Mat Sci \& Engn, 122 S Cent Campus Dr,Room 304, Salt Lake City, UT 84112 USA. Univ Utah, Dept Mat Sci \& Engn, Salt Lake City, UT 84112 USA. Univ Utah, Dept Chem \& Fuels Engn, Salt Lake City, UT 84112 USA. Univ Calif Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.},
844     Author = {Bedrov, D and Smith, GD and Sewell, TD},
845     Date-Added = {2010-04-14 12:26:59 -0400},
846     Date-Modified = {2010-04-14 12:27:52 -0400},
847     Doc-Delivery-Number = {330PF},
848     Issn = {0009-2614},
849     Journal = {Chem. Phys. Lett.},
850     Journal-Iso = {Chem. Phys. Lett.},
851     Keywords-Plus = {FORCE-FIELD},
852     Language = {English},
853     Month = {JUN 30},
854     Number = {1-3},
855     Number-Of-Cited-References = {17},
856     Pages = {64-68},
857     Publisher = {ELSEVIER SCIENCE BV},
858     Subject-Category = {Chemistry, Physical; Physics, Atomic, Molecular \& Chemical},
859     Times-Cited = {19},
860     Title = {Thermal conductivity of liquid octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) from molecular dynamics simulations},
861     Type = {Article},
862     Unique-Id = {ISI:000087969900011},
863     Volume = {324},
864     Year = {2000}}
865    
866     @article{ISI:000258840700015,
867     Abstract = {By using the embedded-atom method (EAM), a series of molecular dynamics
868     (MD) simulations are carried out to calculate the viscosity and
869     self-diffusion coefficient of liquid copper from the normal to the
870     undercooled states. The simulated results are in reasonable agreement
871     with the experimental values available above the melting temperature
872     that is also predicted from a solid-liquid-solid sandwich structure.
873     The relationship between the viscosity and the self-diffusion
874     coefficient is evaluated. It is found that the Stokes-Einstein and
875     Sutherland-Einstein relations qualitatively describe this relationship
876     within the simulation temperature range. However, the predicted
877     constant from MD simulation is close to 1/(3 pi), which is larger than
878     the constants of the Stokes-Einstein and Sutherland-Einstein relations.},
879     Address = {233 SPRING ST, NEW YORK, NY 10013 USA},
880     Affiliation = {Chen, M (Reprint Author), Tsinghua Univ, Dept Engn Mech, Beijing 100084, Peoples R China. {[}Han, X. J.; Chen, M.; Lue, Y. J.] Tsinghua Univ, Dept Engn Mech, Beijing 100084, Peoples R China.},
881     Author = {Han, X. J. and Chen, M. and Lue, Y. J.},
882     Author-Email = {mchen@tsinghua.edu.cn},
883     Date-Added = {2010-04-14 12:00:38 -0400},
884     Date-Modified = {2010-04-14 12:00:38 -0400},
885     Doc-Delivery-Number = {343GH},
886     Doi = {10.1007/s10765-008-0489-7},
887     Funding-Acknowledgement = {China Postdoctoral Science Foundation ; National Natural Science Foundation of China {[}50395101, 50371043]},
888     Funding-Text = {This work was financially supported by China Postdoctoral Science Foundation and the National Natural Science Foundation of China under grant Nos. of 50395101 and 50371043. The computations are carried out at the Tsinghua National Laboratory for Information Science and Technology, China. The authors are grateful to Mr. D. Q. Yu for valuable discussions.},
889     Issn = {0195-928X},
890     Journal = {Int. J. Thermophys.},
891     Journal-Iso = {Int. J. Thermophys.},
892     Keywords = {copper; molecular simulation; self-diffusion coefficient; viscosity; undercooled},
893     Keywords-Plus = {EMBEDDED-ATOM MODEL; THERMOPHYSICAL PROPERTIES; COMPUTER-SIMULATION; TRANSITION-METALS; SHEAR VISCOSITY; ALLOYS; TEMPERATURE; DIFFUSION; BINDING; SURFACE},
894     Language = {English},
895     Month = {AUG},
896     Number = {4},
897     Number-Of-Cited-References = {39},
898     Pages = {1408-1421},
899     Publisher = {SPRINGER/PLENUM PUBLISHERS},
900     Subject-Category = {Thermodynamics; Chemistry, Physical; Mechanics; Physics, Applied},
901     Times-Cited = {2},
902     Title = {Transport properties of undercooled liquid copper: A molecular dynamics study},
903     Type = {Article},
904     Unique-Id = {ISI:000258840700015},
905     Volume = {29},
906     Year = {2008},
907     Bdsk-Url-1 = {http://dx.doi.org/10.1007/s10765-008-0489-7%7D}}
908    
909     @article{Muller-Plathe:2008,
910     Abstract = {Reverse nonequilibrium molecular dynamics and equilibrium molecular
911     dynamics simulations were carried out to compute the shear viscosity of
912     the pure ionic liquid system {[}bmim]{[}PF6] at 300 K. The two methods
913     yielded consistent results which were also compared to experiments. The
914     results showed that the reverse nonequilibrium molecular dynamics
915     (RNEMD) methodology can successfully be applied to computation of
916     highly viscous ionic liquids. Moreover, this study provides a
917     validation of the atomistic force-field developed by Bhargava and
918     Balasubramanian (J. Chem. Phys. 2007, 127, 114510) for dynamic
919     properties.},
920     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
921     Affiliation = {Wei, Z (Reprint Author), Tech Univ Darmstadt, Petersenstr 30, D-64287 Darmstadt, Germany. {[}Wei Zhao; Leroy, Frederic; Mueller-Plathe, Florian] Tech Univ Darmstadt, D-64287 Darmstadt, Germany. {[}Balasubramanian, Sundaram] Indian Inst Sci, Jawaharlal Nehru Ctr Adv Sci Res, Chem \& Phys Mat Unit, Bangalore 560064, Karnataka, India.},
922     Author = {Wei Zhao and Leroy, Frederic and Balasubramanian, Sundaram and M\"{u}ller-Plathe, Florian},
923     Author-Email = {w.zhao@theo.chemie.tu-darmstadt.de},
924     Date-Added = {2010-04-14 11:53:37 -0400},
925     Date-Modified = {2010-04-14 11:54:20 -0400},
926     Doc-Delivery-Number = {321VS},
927     Doi = {10.1021/jp8017869},
928     Issn = {1520-6106},
929     Journal = {J. Phys. Chem. B},
930     Journal-Iso = {J. Phys. Chem. B},
931     Keywords-Plus = {TRANSPORT-PROPERTIES; FORCE-FIELD; TEMPERATURE; SIMULATION; IMIDAZOLIUM; FLUIDS; MODEL; BIS(TRIFLUOROMETHANESULFONYL)IMIDE; PYRIDINIUM; CHLORIDE},
932     Language = {English},
933     Month = {JUL 10},
934     Number = {27},
935     Number-Of-Cited-References = {49},
936     Pages = {8129-8133},
937     Publisher = {AMER CHEMICAL SOC},
938     Subject-Category = {Chemistry, Physical},
939     Times-Cited = {2},
940     Title = {Shear viscosity of the ionic liquid 1-n-butyl 3-methylimidazolium hexafluorophosphate {[}bmim]{[}PF6] computed by reverse nonequilibrium molecular dynamics},
941     Type = {Article},
942     Unique-Id = {ISI:000257335200022},
943     Volume = {112},
944     Year = {2008},
945     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp8017869%7D}}
946    
947     @article{Muller-Plathe:2002,
948     Abstract = {The reverse nonequilibrium molecular dynamics {[}F. Muller-Plathe,
949     Phys. Rev. E 49, 359 (1999)] presented for the calculation of the shear
950     viscosity of Lennard-Jones liquids has been extended to atomistic
951     models of molecular liquids. The method is improved to overcome the
952     problems due to the detailed molecular models. The new technique is
953     besides a test with a Lennard-Jones fluid, applied on different
954     realistic systems: liquid nitrogen, water, and hexane, in order to
955     cover a large range of interactions and systems/architectures. We show
956     that all the advantages of the method itemized previously are still
957     valid, and that it has a very good efficiency and accuracy making it
958     very competitive. (C) 2002 American Institute of Physics.},
959     Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
960     Affiliation = {Bordat, P (Reprint Author), Max Planck Inst Polymer Res, Ackermannweg 10, D-55128 Mainz, Germany. Max Planck Inst Polymer Res, D-55128 Mainz, Germany.},
961     Author = {Bordat, P and M\"{u}ller-Plathe, F},
962     Date-Added = {2010-04-14 11:34:42 -0400},
963     Date-Modified = {2010-04-14 11:35:35 -0400},
964     Doc-Delivery-Number = {521QV},
965     Doi = {10.1063/1.1436124},
966     Issn = {0021-9606},
967     Journal = {J. Chem. Phys.},
968     Journal-Iso = {J. Chem. Phys.},
969     Keywords-Plus = {TRANSPORT-PROPERTIES; PHYSICAL-PROPERTIES; LIQUID ALKANES; N-HEPTADECANE; SIMULATION; WATER; FLOW; MIXTURES; BUTANE; NITROGEN},
970     Language = {English},
971     Month = {FEB 22},
972     Number = {8},
973     Number-Of-Cited-References = {47},
974     Pages = {3362-3369},
975     Publisher = {AMER INST PHYSICS},
976     Subject-Category = {Physics, Atomic, Molecular \& Chemical},
977     Times-Cited = {33},
978     Title = {The shear viscosity of molecular fluids: A calculation by reverse nonequilibrium molecular dynamics},
979     Type = {Article},
980     Unique-Id = {ISI:000173853600023},
981     Volume = {116},
982     Year = {2002},
983     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.1436124%7D}}
984    
985     @article{ISI:000207079300006,
986     Abstract = {Non-equilibrium Molecular Dynamics Simulation
987     methods have been used to study the ability of
988     Embedded Atom Method models of the metals copper and
989     gold to reproduce the equilibrium and
990     non-equilibrium behavior of metals at a stationary
991     and at a moving solid/liquid interface. The
992     equilibrium solid/vapor interface was shown to
993     display a simple termination of the bulk until the
994     temperature of the solid reaches approximate to 90\%
995     of the bulk melting point. At and above such
996     temperatures the systems exhibit a surface
997     disodering known as surface melting. Non-equilibrium
998     simulations emulating the action of a picosecond
999     laser on the metal were performed to determine the
1000     regrowth velocity. For copper, the action of a 20 ps
1001     laser with an absorbed energy of 2-5 mJ/cm(2)
1002     produced a regrowth velocity of 83-100 m/s, in
1003     reasonable agreement with the value obtained by
1004     experiment (>60 m/s). For gold, similar conditions
1005     produced a slower regrowth velocity of 63 m/s at an
1006     absorbed energy of 5 mJ/cm(2). This is almost a
1007     factor of two too low in comparison to experiment
1008     (>100 m/s). The regrowth velocities of the metals
1009     seems unexpectedly close to experiment considering
1010     that the free-electron contribution is ignored in
1011     the Embeeded Atom Method models used.},
1012     Address = {4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND},
1013     Affiliation = {Clancy, P (Reprint Author), Cornell Univ, Sch Chem Engn, Ithaca, NY 14853 USA. {[}Richardson, Clifton F.; Clancy, Paulette] Cornell Univ, Sch Chem Engn, Ithaca, NY 14853 USA.},
1014     Author = {Richardson, Clifton F. and Clancy, Paulette},
1015     Date-Added = {2010-04-07 11:24:36 -0400},
1016     Date-Modified = {2010-04-07 11:24:36 -0400},
1017     Doc-Delivery-Number = {V04SY},
1018     Issn = {0892-7022},
1019     Journal = {Mol. Simul.},
1020     Journal-Iso = {Mol. Simul.},
1021     Keywords = {Non-equilibrium computer simulation; molecular dynamics; crystal growth; Embedded Atom Method models of metals},
1022     Language = {English},
1023     Number = {5-6},
1024     Number-Of-Cited-References = {36},
1025     Pages = {335-355},
1026     Publisher = {TAYLOR \& FRANCIS LTD},
1027     Subject-Category = {Chemistry, Physical; Physics, Atomic, Molecular \& Chemical},
1028     Times-Cited = {7},
1029     Title = {PICOSECOND LASER PROCESSING OF COPPER AND GOLD: A COMPUTER SIMULATION STUDY},
1030     Type = {Article},
1031     Unique-Id = {ISI:000207079300006},
1032     Volume = {7},
1033     Year = {1991}}
1034    
1035     @article{ISI:000167766600035,
1036     Abstract = {Molecular dynamics simulations are used to
1037     investigate the separation of water films adjacent
1038     to a hot metal surface. The simulations clearly show
1039     that the water layers nearest the surface overheat
1040     and undergo explosive boiling. For thick films, the
1041     expansion of the vaporized molecules near the
1042     surface forces the outer water layers to move away
1043     from the surface. These results are of interest for
1044     mass spectrometry of biological molecules, steam
1045     cleaning of surfaces, and medical procedures.},
1046     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
1047     Affiliation = {Garrison, BJ (Reprint Author), Penn State Univ, Dept Chem, University Pk, PA 16802 USA. Penn State Univ, Dept Chem, University Pk, PA 16802 USA. Penn State Univ, Inst Mat Res, University Pk, PA 16802 USA. Univ Virginia, Dept Mat Sci \& Engn, Charlottesville, VA 22903 USA.},
1048     Author = {Dou, YS and Zhigilei, LV and Winograd, N and Garrison, BJ},
1049     Date-Added = {2010-03-11 15:32:14 -0500},
1050     Date-Modified = {2010-03-11 15:32:14 -0500},
1051     Doc-Delivery-Number = {416ED},
1052     Issn = {1089-5639},
1053     Journal = {J. Phys. Chem. A},
1054     Journal-Iso = {J. Phys. Chem. A},
1055     Keywords-Plus = {MOLECULAR-DYNAMICS SIMULATIONS; ASSISTED LASER-DESORPTION; FROZEN AQUEOUS-SOLUTIONS; COMPUTER-SIMULATION; ORGANIC-SOLIDS; VELOCITY DISTRIBUTIONS; PARTICLE BOMBARDMENT; MASS-SPECTROMETRY; PHASE EXPLOSION; LIQUID WATER},
1056     Language = {English},
1057     Month = {MAR 29},
1058     Number = {12},
1059     Number-Of-Cited-References = {65},
1060     Pages = {2748-2755},
1061     Publisher = {AMER CHEMICAL SOC},
1062     Subject-Category = {Chemistry, Physical; Physics, Atomic, Molecular \& Chemical},
1063     Times-Cited = {66},
1064     Title = {Explosive boiling of water films adjacent to heated surfaces: A microscopic description},
1065     Type = {Article},
1066     Unique-Id = {ISI:000167766600035},
1067     Volume = {105},
1068     Year = {2001}}
1069    
1070     @article{Maginn:2010,
1071     Abstract = {The reverse nonequilibrium molecular dynamics
1072     (RNEMD) method calculates the shear viscosity of a
1073     fluid by imposing a nonphysical exchange of momentum
1074     and measuring the resulting shear velocity
1075     gradient. In this study we investigate the range of
1076     momentum flux values over which RNEMD yields usable
1077     (linear) velocity gradients. We find that nonlinear
1078     velocity profiles result primarily from gradients in
1079     fluid temperature and density. The temperature
1080     gradient results from conversion of heat into bulk
1081     kinetic energy, which is transformed back into heat
1082     elsewhere via viscous heating. An expression is
1083     derived to predict the temperature profile resulting
1084     from a specified momentum flux for a given fluid and
1085     simulation cell. Although primarily bounded above,
1086     we also describe milder low-flux limitations. RNEMD
1087     results for a Lennard-Jones fluid agree with
1088     equilibrium molecular dynamics and conventional
1089     nonequilibrium molecular dynamics calculations at
1090     low shear, but RNEMD underpredicts viscosity
1091     relative to conventional NEMD at high shear.},
1092     Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
1093     Affiliation = {Tenney, CM (Reprint Author), Univ Notre Dame, Dept Chem \& Biomol Engn, 182 Fitzpatrick Hall, Notre Dame, IN 46556 USA. {[}Tenney, Craig M.; Maginn, Edward J.] Univ Notre Dame, Dept Chem \& Biomol Engn, Notre Dame, IN 46556 USA.},
1094     Article-Number = {014103},
1095     Author = {Tenney, Craig M. and Maginn, Edward J.},
1096     Author-Email = {ed@nd.edu},
1097     Date-Added = {2010-03-09 13:08:41 -0500},
1098     Date-Modified = {2010-07-19 16:21:35 -0400},
1099     Doc-Delivery-Number = {542DQ},
1100     Doi = {10.1063/1.3276454},
1101     Funding-Acknowledgement = {U.S. Department of Energy {[}DE-FG36-08G088020]},
1102     Funding-Text = {Support for this work was provided by the U.S. Department of Energy (Grant No. DE-FG36-08G088020)},
1103     Issn = {0021-9606},
1104     Journal = {J. Chem. Phys.},
1105     Journal-Iso = {J. Chem. Phys.},
1106     Keywords = {Lennard-Jones potential; molecular dynamics method; Navier-Stokes equations; viscosity},
1107     Keywords-Plus = {CURRENT AUTOCORRELATION-FUNCTION; IONIC LIQUID; SIMULATIONS; TEMPERATURE},
1108     Language = {English},
1109     Month = {JAN 7},
1110     Number = {1},
1111     Number-Of-Cited-References = {20},
1112     Pages = {014103},
1113     Publisher = {AMER INST PHYSICS},
1114     Subject-Category = {Physics, Atomic, Molecular \& Chemical},
1115     Times-Cited = {0},
1116     Title = {Limitations and recommendations for the calculation of shear viscosity using reverse nonequilibrium molecular dynamics},
1117     Type = {Article},
1118     Unique-Id = {ISI:000273472300004},
1119     Volume = {132},
1120     Year = {2010},
1121     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.3276454}}
1122    
1123     @article{Clancy:1992,
1124     Abstract = {The regrowth velocity of a crystal from a melt
1125     depends on contributions from the thermal
1126     conductivity, heat gradient, and latent heat. The
1127     relative contributions of these terms to the
1128     regrowth velocity of the pure metals copper and gold
1129     during liquid-phase epitaxy are evaluated. These
1130     results are used to explain how results from
1131     previous nonequilibrium molecular-dynamics
1132     simulations using classical potentials are able to
1133     predict regrowth velocities that are close to the
1134     experimental values. Results from equilibrium
1135     molecular dynamics showing the nature of the
1136     solid-vapor interface of an
1137     embedded-atom-method-modeled Cu57Ni43 alloy at a
1138     temperature corresponding to 62\% of the melting
1139     point are presented. The regrowth of this alloy
1140     following a simulation of a laser-processing
1141     experiment is also given, with use of nonequilibrium
1142     molecular-dynamics techniques. The thermal
1143     conductivity and temperature gradient in the
1144     simulation of the alloy are compared to those for
1145     the pure metals.},
1146     Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA},
1147     Affiliation = {CORNELL UNIV,SCH CHEM ENGN,ITHACA,NY 14853.},
1148     Author = {Richardson, C.~F. and Clancy, P},
1149     Date-Added = {2010-01-12 16:17:33 -0500},
1150     Date-Modified = {2010-04-08 17:18:25 -0400},
1151     Doc-Delivery-Number = {HX378},
1152     Issn = {0163-1829},
1153     Journal = {Phys. Rev. B},
1154     Journal-Iso = {Phys. Rev. B},
1155     Keywords-Plus = {SURFACE SEGREGATION; MOLECULAR-DYNAMICS; TRANSITION-METALS; SOLIDIFICATION; GROWTH; CU; NI},
1156     Language = {English},
1157     Month = {JUN 1},
1158     Number = {21},
1159     Number-Of-Cited-References = {24},
1160     Pages = {12260-12268},
1161     Publisher = {AMERICAN PHYSICAL SOC},
1162     Subject-Category = {Physics, Condensed Matter},
1163     Times-Cited = {11},
1164     Title = {CONTRIBUTION OF THERMAL-CONDUCTIVITY TO THE CRYSTAL-REGROWTH VELOCITY OF EMBEDDED-ATOM-METHOD-MODELED METALS AND METAL-ALLOYS},
1165     Type = {Article},
1166     Unique-Id = {ISI:A1992HX37800010},
1167     Volume = {45},
1168     Year = {1992}}
1169    
1170     @article{Bedrov:2000,
1171     Abstract = {We have applied a new nonequilibrium molecular
1172     dynamics (NEMD) method {[}F. Muller-Plathe,
1173     J. Chem. Phys. 106, 6082 (1997)] previously applied
1174     to monatomic Lennard-Jones fluids in the
1175     determination of the thermal conductivity of
1176     molecular fluids. The method was modified in order
1177     to be applicable to systems with holonomic
1178     constraints. Because the method involves imposing a
1179     known heat flux it is particularly attractive for
1180     systems involving long-range and many-body
1181     interactions where calculation of the microscopic
1182     heat flux is difficult. The predicted thermal
1183     conductivities of liquid n-butane and water using
1184     the imposed-flux NEMD method were found to be in a
1185     good agreement with previous simulations and
1186     experiment. (C) 2000 American Institute of
1187     Physics. {[}S0021-9606(00)50841-1].},
1188     Address = {2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA},
1189     Affiliation = {Bedrov, D (Reprint Author), Univ Utah, Dept Chem \& Fuels Engn, 122 S Cent Campus Dr,Rm 304, Salt Lake City, UT 84112 USA. Univ Utah, Dept Chem \& Fuels Engn, Salt Lake City, UT 84112 USA. Univ Utah, Dept Mat Sci \& Engn, Salt Lake City, UT 84112 USA.},
1190     Author = {Bedrov, D and Smith, GD},
1191     Date-Added = {2009-11-05 18:21:18 -0500},
1192     Date-Modified = {2010-04-14 11:50:48 -0400},
1193     Doc-Delivery-Number = {369BF},
1194     Issn = {0021-9606},
1195     Journal = {J. Chem. Phys.},
1196     Journal-Iso = {J. Chem. Phys.},
1197     Keywords-Plus = {EFFECTIVE PAIR POTENTIALS; TRANSPORT-PROPERTIES; CANONICAL ENSEMBLE; NORMAL-BUTANE; ALGORITHMS; SHAKE; WATER},
1198     Language = {English},
1199     Month = {NOV 8},
1200     Number = {18},
1201     Number-Of-Cited-References = {26},
1202     Pages = {8080-8084},
1203     Publisher = {AMER INST PHYSICS},
1204     Subject-Category = {Physics, Atomic, Molecular \& Chemical},
1205     Times-Cited = {23},
1206     Title = {Thermal conductivity of molecular fluids from molecular dynamics simulations: Application of a new imposed-flux method},
1207     Type = {Article},
1208     Unique-Id = {ISI:000090151400044},
1209     Volume = {113},
1210     Year = {2000}}
1211    
1212     @article{ISI:000231042800044,
1213     Abstract = {The reverse nonequilibrium molecular dynamics
1214     method for thermal conductivities is adapted to the
1215     investigation of molecular fluids. The method
1216     generates a heat flux through the system by suitably
1217     exchanging velocities of particles located in
1218     different regions. From the resulting temperature
1219     gradient, the thermal conductivity is then
1220     calculated. Different variants of the algorithm and
1221     their combinations with other system parameters are
1222     tested: exchange of atomic velocities versus
1223     exchange of molecular center-of-mass velocities,
1224     different exchange frequencies, molecular models
1225     with bond constraints versus models with flexible
1226     bonds, united-atom versus all-atom models, and
1227     presence versus absence of a thermostat. To help
1228     establish the range of applicability, the algorithm
1229     is tested on different models of benzene,
1230     cyclohexane, water, and n-hexane. We find that the
1231     algorithm is robust and that the calculated thermal
1232     conductivities are insensitive to variations in its
1233     control parameters. The force field, in contrast,
1234     has a major influence on the value of the thermal
1235     conductivity. While calculated and experimental
1236     thermal conductivities fall into the same order of
1237     magnitude, in most cases the calculated values are
1238     systematically larger. United-atom force fields seem
1239     to do better than all-atom force fields, possibly
1240     because they remove high-frequency degrees of
1241     freedom from the simulation, which, in nature, are
1242     quantum-mechanical oscillators in their ground state
1243     and do not contribute to heat conduction.},
1244     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
1245     Affiliation = {Zhang, MM (Reprint Author), Int Univ Bremen, POB 750 561, D-28725 Bremen, Germany. Int Univ Bremen, D-28725 Bremen, Germany. Banco Cent Brasil, Desup, Diesp, BR-01310922 Sao Paulo, Brazil.},
1246     Author = {Zhang, MM and Lussetti, E and de Souza, LES and M\"{u}ller-Plathe, F},
1247     Date-Added = {2009-11-05 18:17:33 -0500},
1248     Date-Modified = {2009-11-05 18:17:33 -0500},
1249     Doc-Delivery-Number = {952YQ},
1250     Doi = {10.1021/jp0512255},
1251     Issn = {1520-6106},
1252     Journal = {J. Phys. Chem. B},
1253     Journal-Iso = {J. Phys. Chem. B},
1254     Keywords-Plus = {LENNARD-JONES LIQUIDS; TRANSPORT-COEFFICIENTS; SWOLLEN POLYMERS; SHEAR VISCOSITY; MODEL SYSTEMS; SIMULATION; BENZENE; FLUIDS; POTENTIALS; DIFFUSION},
1255     Language = {English},
1256     Month = {AUG 11},
1257     Number = {31},
1258     Number-Of-Cited-References = {42},
1259     Pages = {15060-15067},
1260     Publisher = {AMER CHEMICAL SOC},
1261     Subject-Category = {Chemistry, Physical},
1262     Times-Cited = {17},
1263     Title = {Thermal conductivities of molecular liquids by reverse nonequilibrium molecular dynamics},
1264     Type = {Article},
1265     Unique-Id = {ISI:000231042800044},
1266     Volume = {109},
1267     Year = {2005},
1268     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp0512255%7D}}
1269    
1270     @article{ISI:A1997YC32200056,
1271     Abstract = {Equilibrium molecular dynamics simulations have
1272     been carried out in the microcanonical ensemble at
1273     300 and 255 K on the extended simple point charge
1274     (SPC/E) model of water {[}Berendsen et al.,
1275     J. Phys. Chem. 91, 6269 (1987)]. In addition to a
1276     number of static and dynamic properties, thermal
1277     conductivity lambda has been calculated via
1278     Green-Kubo integration of the heat current time
1279     correlation functions (CF's) in the atomic and
1280     molecular formalism, at wave number k=0. The
1281     calculated values (0.67 +/- 0.04 W/mK at 300 K and
1282     0.52 +/- 0.03 W/mK at 255 K) are in good agreement
1283     with the experimental data (0.61 W/mK at 300 K and
1284     0.49 W/mK at 255 K). A negative long-time tail of
1285     the heat current CF, more apparent at 255 K, is
1286     responsible for the anomalous decrease of lambda
1287     with temperature. An analysis of the dynamical modes
1288     contributing to lambda has shown that its value is
1289     due to two low-frequency exponential-like modes, a
1290     faster collisional mode, with positive contribution,
1291     and a slower one, which determines the negative
1292     long-time tail. A comparison of the molecular and
1293     atomic spectra of the heat current CF has suggested
1294     that higher-frequency modes should not contribute to
1295     lambda in this temperature range. Generalized
1296     thermal diffusivity D-T(k) decreases as a function
1297     of k, after an initial minor increase at k =
1298     k(min). The k dependence of the generalized
1299     thermodynamic properties has been calculated in the
1300     atomic and molecular formalisms. The observed
1301     differences have been traced back to intramolecular
1302     or intermolecular rotational effects and related to
1303     the partial structure functions. Finally, from the
1304     results we calculated it appears that the SPC/E
1305     model gives results in better agreement with
1306     experimental data than the transferable
1307     intermolecular potential with four points TIP4P
1308     water model {[}Jorgensen et al., J. Chem. Phys. 79,
1309     926 (1983)], with a larger improvement for, e.g.,
1310     diffusion, viscosities, and dielectric properties
1311     and a smaller one for thermal conductivity. The
1312     SPC/E model shares, to a smaller extent, the
1313     insufficient slowing down of dynamics at low
1314     temperature already found for the TIP4P water
1315     model.},
1316     Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA},
1317     Affiliation = {UNIV PISA,DIPARTIMENTO CHIM \& CHIM IND,I-56126 PISA,ITALY. CNR,IST FIS ATOM \& MOL,I-56127 PISA,ITALY.},
1318     Author = {Bertolini, D and Tani, A},
1319     Date-Added = {2009-10-30 15:41:21 -0400},
1320     Date-Modified = {2009-10-30 15:41:21 -0400},
1321     Doc-Delivery-Number = {YC322},
1322     Issn = {1063-651X},
1323     Journal = {Phys. Rev. E},
1324     Journal-Iso = {Phys. Rev. E},
1325     Keywords-Plus = {TIME-CORRELATION-FUNCTIONS; LENNARD-JONES LIQUID; TRANSPORT-PROPERTIES; SUPERCOOLED WATER; DENSITY; SIMULATIONS; RELAXATION; VELOCITY; ELECTRON; FLUIDS},
1326     Language = {English},
1327     Month = {OCT},
1328     Number = {4},
1329     Number-Of-Cited-References = {35},
1330     Pages = {4135-4151},
1331     Publisher = {AMERICAN PHYSICAL SOC},
1332     Subject-Category = {Physics, Fluids \& Plasmas; Physics, Mathematical},
1333     Times-Cited = {18},
1334     Title = {Thermal conductivity of water: Molecular dynamics and generalized hydrodynamics results},
1335     Type = {Article},
1336     Unique-Id = {ISI:A1997YC32200056},
1337     Volume = {56},
1338     Year = {1997}}
1339    
1340     @article{Meineke:2005gd,
1341     Abstract = {OOPSE is a new molecular dynamics simulation program
1342     that is capable of efficiently integrating equations
1343     of motion for atom types with orientational degrees
1344     of freedom (e.g. #sticky# atoms and point
1345     dipoles). Transition metals can also be simulated
1346     using the embedded atom method (EAM) potential
1347     included in the code. Parallel simulations are
1348     carried out using the force-based decomposition
1349     method. Simulations are specified using a very
1350     simple C-based meta-data language. A number of
1351     advanced integrators are included, and the basic
1352     integrator for orientational dynamics provides
1353     substantial improvements over older quaternion-based
1354     schemes.},
1355     Address = {111 RIVER ST, HOBOKEN, NJ 07030 USA},
1356     Author = {Meineke, M. A. and Vardeman, C. F. and Lin, T and Fennell, CJ and Gezelter, J. D.},
1357     Date-Added = {2009-10-01 18:43:03 -0400},
1358     Date-Modified = {2010-04-13 09:11:16 -0400},
1359     Doi = {DOI 10.1002/jcc.20161},
1360     Isi = {000226558200006},
1361     Isi-Recid = {142688207},
1362     Isi-Ref-Recids = {67885400 50663994 64190493 93668415 46699855 89992422 57614458 49016001 61447131 111114169 68770425 52728075 102422498 66381878 32391149 134477335 53221357 9929643 59492217 69681001 99223832 142688208 94600872 91658572 54857943 117365867 69323123 49588888 109970172 101670714 142688209 121603296 94652379 96449138 99938010 112825758 114905670 86802042 121339042 104794914 82674909 72096791 93668384 90513335 142688210 23060767 63731466 109033408 76303716 31384453 97861662 71842426 130707771 125809946 66381889 99676497},
1363     Journal = {J. Comp. Chem.},
1364     Keywords = {OOPSE; molecular dynamics},
1365     Month = feb,
1366     Number = {3},
1367     Pages = {252-271},
1368     Publisher = {JOHN WILEY \& SONS INC},
1369     Times-Cited = {9},
1370     Title = {OOPSE: An object-oriented parallel simulation engine for molecular dynamics},
1371     Volume = {26},
1372     Year = {2005},
1373     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000226558200006},
1374     Bdsk-Url-2 = {http://dx.doi.org/10.1002/jcc.20161}}
1375    
1376     @article{ISI:000080382700030,
1377     Abstract = {A nonequilibrium method for calculating the shear
1378     viscosity is presented. It reverses the
1379     cause-and-effect picture customarily used in
1380     nonequilibrium molecular dynamics: the effect, the
1381     momentum flux or stress, is imposed, whereas the
1382     cause, the velocity gradient or shear rate, is
1383     obtained from the simulation. It differs from other
1384     Norton-ensemble methods by the way in which the
1385     steady-state momentum flux is maintained. This
1386     method involves a simple exchange of particle
1387     momenta, which is easy to implement. Moreover, it
1388     can be made to conserve the total energy as well as
1389     the total linear momentum, so no coupling to an
1390     external temperature bath is needed. The resulting
1391     raw data, the velocity profile, is a robust and
1392     rapidly converging property. The method is tested on
1393     the Lennard-Jones fluid near its triple point. It
1394     yields a viscosity of 3.2-3.3, in Lennard-Jones
1395     reduced units, in agreement with literature
1396     results. {[}S1063-651X(99)03105-0].},
1397     Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA},
1398     Affiliation = {Muller-Plathe, F (Reprint Author), Max Planck Inst Polymerforsch, Ackermannweg 10, D-55128 Mainz, Germany. Max Planck Inst Polymerforsch, D-55128 Mainz, Germany.},
1399     Author = {M\"{u}ller-Plathe, F},
1400     Date-Added = {2009-10-01 14:07:30 -0400},
1401     Date-Modified = {2009-10-01 14:07:30 -0400},
1402     Doc-Delivery-Number = {197TX},
1403     Issn = {1063-651X},
1404     Journal = {Phys. Rev. E},
1405     Journal-Iso = {Phys. Rev. E},
1406     Language = {English},
1407     Month = {MAY},
1408     Number = {5, Part A},
1409     Number-Of-Cited-References = {17},
1410     Pages = {4894-4898},
1411     Publisher = {AMERICAN PHYSICAL SOC},
1412     Subject-Category = {Physics, Fluids \& Plasmas; Physics, Mathematical},
1413     Times-Cited = {57},
1414     Title = {Reversing the perturbation in nonequilibrium molecular dynamics: An easy way to calculate the shear viscosity of fluids},
1415     Type = {Article},
1416     Unique-Id = {ISI:000080382700030},
1417     Volume = {59},
1418     Year = {1999}}
1419    
1420     @article{Maginn:2007,
1421     Abstract = {Atomistic simulations are conducted to examine the
1422     dependence of the viscosity of
1423     1-ethyl-3-methylimidazolium
1424     bis(trifluoromethanesulfonyl)imide on temperature
1425     and water content. A nonequilibrium molecular
1426     dynamics procedure is utilized along with an
1427     established fixed charge force field. It is found
1428     that the simulations quantitatively capture the
1429     temperature dependence of the viscosity as well as
1430     the drop in viscosity that occurs with increasing
1431     water content. Using mixture viscosity models, we
1432     show that the relative drop in viscosity with water
1433     content is actually less than that that would be
1434     predicted for an ideal system. This finding is at
1435     odds with the popular notion that small amounts of
1436     water cause an unusually large drop in the viscosity
1437     of ionic liquids. The simulations suggest that, due
1438     to preferential association of water with anions and
1439     the formation of water clusters, the excess molar
1440     volume is negative. This means that dissolved water
1441     is actually less effective at lowering the viscosity
1442     of these mixtures when compared to a solute obeying
1443     ideal mixing behavior. The use of a nonequilibrium
1444     simulation technique enables diffusive behavior to
1445     be observed on the time scale of the simulations,
1446     and standard equilibrium molecular dynamics resulted
1447     in sub-diffusive behavior even over 2 ns of
1448     simulation time.},
1449     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
1450     Affiliation = {Maginn, EJ (Reprint Author), Univ Notre Dame, Dept Chem \& Biomol Engn, 182 Fitzpatrick Hall, Notre Dame, IN 46556 USA. Univ Notre Dame, Dept Chem \& Biomol Engn, Notre Dame, IN 46556 USA.},
1451     Author = {Kelkar, Manish S. and Maginn, Edward J.},
1452     Author-Email = {ed@nd.edu},
1453     Date-Added = {2009-09-29 17:07:17 -0400},
1454     Date-Modified = {2010-04-14 12:51:02 -0400},
1455     Doc-Delivery-Number = {163VA},
1456     Doi = {10.1021/jp0686893},
1457     Issn = {1520-6106},
1458     Journal = {J. Phys. Chem. B},
1459     Journal-Iso = {J. Phys. Chem. B},
1460     Keywords-Plus = {MOLECULAR-DYNAMICS SIMULATION; MOMENTUM IMPULSE RELAXATION; FORCE-FIELD; TRANSPORT-PROPERTIES; PHYSICAL-PROPERTIES; SIMPLE FLUID; CHLORIDE; MODEL; SALTS; ARCHITECTURE},
1461     Language = {English},
1462     Month = {MAY 10},
1463     Number = {18},
1464     Number-Of-Cited-References = {57},
1465     Pages = {4867-4876},
1466     Publisher = {AMER CHEMICAL SOC},
1467     Subject-Category = {Chemistry, Physical},
1468     Times-Cited = {35},
1469     Title = {Effect of temperature and water content on the shear viscosity of the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide as studied by atomistic simulations},
1470     Type = {Article},
1471     Unique-Id = {ISI:000246190100032},
1472     Volume = {111},
1473     Year = {2007},
1474     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp0686893%7D},
1475     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp0686893}}
1476    
1477     @article{MullerPlathe:1997xw,
1478     Abstract = {A nonequilibrium molecular dynamics method for
1479     calculating the thermal conductivity is
1480     presented. It reverses the usual cause and effect
1481     picture. The ''effect,'' the heat flux, is imposed
1482     on the system and the ''cause,'' the temperature
1483     gradient is obtained from the simulation. Besides
1484     being very simple to implement, the scheme offers
1485     several advantages such as compatibility with
1486     periodic boundary conditions, conservation of total
1487     energy and total linear momentum, and the sampling
1488     of a rapidly converging quantity (temperature
1489     gradient) rather than a slowly converging one (heat
1490     flux). The scheme is tested on the Lennard-Jones
1491     fluid. (C) 1997 American Institute of Physics.},
1492     Address = {WOODBURY},
1493     Author = {M\"{u}ller-Plathe, F.},
1494     Cited-Reference-Count = {13},
1495     Date = {APR 8},
1496     Date-Added = {2009-09-21 16:51:21 -0400},
1497     Date-Modified = {2009-09-21 16:51:21 -0400},
1498     Document-Type = {Article},
1499     Isi = {ISI:A1997WR62000032},
1500     Isi-Document-Delivery-Number = {WR620},
1501     Iso-Source-Abbreviation = {J. Chem. Phys.},
1502     Issn = {0021-9606},
1503     Journal = {J. Chem. Phys.},
1504     Language = {English},
1505     Month = {Apr},
1506     Number = {14},
1507     Page-Count = {4},
1508     Pages = {6082--6085},
1509     Publication-Type = {J},
1510     Publisher = {AMER INST PHYSICS},
1511     Publisher-Address = {CIRCULATION FULFILLMENT DIV, 500 SUNNYSIDE BLVD, WOODBURY, NY 11797-2999},
1512     Reprint-Address = {MullerPlathe, F, MAX PLANCK INST POLYMER RES, D-55128 MAINZ, GERMANY.},
1513     Source = {J CHEM PHYS},
1514     Subject-Category = {Physics, Atomic, Molecular & Chemical},
1515     Times-Cited = {106},
1516     Title = {A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity},
1517     Volume = {106},
1518     Year = {1997}}
1519    
1520     @article{Muller-Plathe:1999ek,
1521     Abstract = {A novel non-equilibrium method for calculating
1522     transport coefficients is presented. It reverses the
1523     experimental cause-and-effect picture, e.g. for the
1524     calculation of viscosities: the effect, the momentum
1525     flux or stress, is imposed, whereas the cause, the
1526     velocity gradient or shear rates, is obtained from
1527     the simulation. It differs from other
1528     Norton-ensemble methods by the way, in which the
1529     steady-state fluxes are maintained. This method
1530     involves a simple exchange of particle momenta,
1531     which is easy to implement and to analyse. Moreover,
1532     it can be made to conserve the total energy as well
1533     as the total linear momentum, so no thermostatting
1534     is needed. The resulting raw data are robust and
1535     rapidly converging. The method is tested on the
1536     calculation of the shear viscosity, the thermal
1537     conductivity and the Soret coefficient (thermal
1538     diffusion) for the Lennard-Jones (LJ) fluid near its
1539     triple point. Possible applications to other
1540     transport coefficients and more complicated systems
1541     are discussed. (C) 1999 Elsevier Science Ltd. All
1542     rights reserved.},
1543     Address = {THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND},
1544     Author = {M\"{u}ller-Plathe, F and Reith, D},
1545     Date-Added = {2009-09-21 16:47:07 -0400},
1546     Date-Modified = {2009-09-21 16:47:07 -0400},
1547     Isi = {000082266500004},
1548     Isi-Recid = {111564960},
1549     Isi-Ref-Recids = {64516210 89773595 53816621 60134000 94875498 60964023 90228608 85968509 86405859 63979644 108048497 87560156 577165 103281654 111564961 83735333 99953572 88476740 110174781 111564963 6599000 75892253},
1550     Journal = {Computational and Theoretical Polymer Science},
1551     Keywords = {viscosity; Ludwig-Soret effect; thermal conductivity; Onsager coefficents; non-equilibrium molecular dynamics},
1552     Number = {3-4},
1553     Pages = {203-209},
1554     Publisher = {ELSEVIER SCI LTD},
1555     Times-Cited = {15},
1556     Title = {Cause and effect reversed in non-equilibrium molecular dynamics: an easy route to transport coefficients},
1557     Volume = {9},
1558     Year = {1999},
1559     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000082266500004}}
1560    
1561     @article{Viscardy:2007lq,
1562     Abstract = {The thermal conductivity is calculated with the
1563     Helfand-moment method in the Lennard-Jones fluid
1564     near the triple point. The Helfand moment of thermal
1565     conductivity is here derived for molecular dynamics
1566     with periodic boundary conditions. Thermal
1567     conductivity is given by a generalized Einstein
1568     relation with this Helfand moment. The authors
1569     compute thermal conductivity by this new method and
1570     compare it with their own values obtained by the
1571     standard Green-Kubo method. The agreement is
1572     excellent. (C) 2007 American Institute of Physics.},
1573     Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
1574     Author = {Viscardy, S. and Servantie, J. and Gaspard, P.},
1575     Date-Added = {2009-09-21 16:37:20 -0400},
1576     Date-Modified = {2010-07-19 16:18:44 -0400},
1577     Doi = {DOI 10.1063/1.2724821},
1578     Isi = {000246453900035},
1579     Isi-Recid = {156192451},
1580     Isi-Ref-Recids = {18794442 84473620 156192452 41891249 90040203 110174972 59859940 47256160 105716249 91804339 93329429 95967319 6199670 1785176 105872066 6325196 65361295 71941152 4307928 23120502 54053395 149068110 4811016 99953572 59859908 132156782 156192449},
1581     Journal = {J. Chem. Phys.},
1582     Month = may,
1583     Number = {18},
1584     Pages = {184513},
1585     Publisher = {AMER INST PHYSICS},
1586     Times-Cited = {3},
1587     Title = {Transport and Helfand moments in the Lennard-Jones fluid. II. Thermal conductivity},
1588     Volume = {126},
1589     Year = {2007},
1590     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000246453900035},
1591     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.2724821}}
1592    
1593     @article{Viscardy:2007bh,
1594     Abstract = {The authors propose a new method, the Helfand-moment
1595     method, to compute the shear viscosity by
1596     equilibrium molecular dynamics in periodic
1597     systems. In this method, the shear viscosity is
1598     written as an Einstein-type relation in terms of the
1599     variance of the so-called Helfand moment. This
1600     quantity is modified in order to satisfy systems
1601     with periodic boundary conditions usually considered
1602     in molecular dynamics. They calculate the shear
1603     viscosity in the Lennard-Jones fluid near the triple
1604     point thanks to this new technique. They show that
1605     the results of the Helfand-moment method are in
1606     excellent agreement with the results of the standard
1607     Green-Kubo method. (C) 2007 American Institute of
1608     Physics.},
1609     Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
1610     Author = {Viscardy, S. and Servantie, J. and Gaspard, P.},
1611     Date-Added = {2009-09-21 16:37:19 -0400},
1612     Date-Modified = {2010-07-19 16:19:03 -0400},
1613     Doi = {DOI 10.1063/1.2724820},
1614     Isi = {000246453900034},
1615     Isi-Recid = {156192449},
1616     Isi-Ref-Recids = {18794442 89109900 84473620 86837966 26564374 23367140 83161139 75750220 90040203 110174972 5885 67722779 91461489 42484251 77907850 93329429 95967319 105716249 6199670 1785176 105872066 6325196 129596740 120782555 51131244 65361295 41141868 4307928 21555860 23120502 563068 120721875 142813985 135942402 4811016 86224873 57621419 85506488 89860062 44796632 51381285 132156779 156192450 132156782 156192451},
1617     Journal = {J. Chem. Phys.},
1618     Month = may,
1619     Number = {18},
1620     Pages = {184512},
1621     Publisher = {AMER INST PHYSICS},
1622     Times-Cited = {1},
1623     Title = {Transport and Helfand moments in the Lennard-Jones fluid. I. Shear viscosity},
1624     Volume = {126},
1625     Year = {2007},
1626     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000246453900034},
1627     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.2724820}}
1628    
1629     @inproceedings{384119,
1630     Address = {New York, NY, USA},
1631     Author = {Fortune, Steven},
1632     Booktitle = {ISSAC '01: Proceedings of the 2001 international symposium on Symbolic and algebraic computation},
1633     Doi = {http://doi.acm.org/10.1145/384101.384119},
1634     Isbn = {1-58113-417-7},
1635     Location = {London, Ontario, Canada},
1636     Pages = {121--128},
1637     Publisher = {ACM},
1638     Title = {Polynomial root finding using iterated Eigenvalue computation},
1639     Year = {2001},
1640     Bdsk-Url-1 = {http://doi.acm.org/10.1145/384101.384119}}
1641    
1642     @article{Fennell06,
1643 skuang 3721 Author = {C.~J. Fennell and J.~D. Gezelter},
1644     Date-Added = {2006-08-24 09:49:57 -0400},
1645     Date-Modified = {2006-08-24 09:49:57 -0400},
1646     Doi = {10.1063/1.2206581},
1647     Journal = {J. Chem. Phys.},
1648     Number = {23},
1649     Pages = {234104(12)},
1650     Rating = {5},
1651     Read = {Yes},
1652     Title = {Is the \uppercase{E}wald summation still necessary? \uppercase{P}airwise alternatives to the accepted standard for long-range electrostatics},
1653     Volume = {124},
1654     Year = {2006},
1655     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.2206581}}
1656 skuang 3719
1657 skuang 3721 @book{Sommese2005,
1658     Address = {Singapore},
1659     Author = {Andrew J. Sommese and Charles W. Wampler},
1660     Publisher = {World Scientific Press},
1661     Title = {The numerical solution of systems of polynomials arising in engineering and science},
1662     Year = 2005}