| 1 | program convolve | 
| 2 | character*80 junk, option | 
| 3 | integer nargs, iargc, npts, maxpts, i, j | 
| 4 | parameter (maxpts=10000) | 
| 5 | double precision width, x(maxpts), y(maxpts), myX, myY, dx, convol | 
| 6 | double precision instrument_gaussian, deltaX | 
| 7 |  | 
| 8 | external iargc, instrument_gaussian | 
| 9 | nargs = iargc() | 
| 10 |  | 
| 11 | if (nargs.ne.2) then | 
| 12 | write(0,*) 'This program is a filter for convoluting a data file by' | 
| 13 | write(0,*) 'a gaussian instrument function of a particular width.' | 
| 14 | write(0,*) | 
| 15 | write(0,*) 'Sample usage:' | 
| 16 | write(0,*) '                  convolve -w 0.5 < file.dat > new.dat' | 
| 17 | write(0,*) | 
| 18 | write(0,*) 'The -w flag tells the program that the argument that' | 
| 19 | write(0,*) 'follows is the width of the gaussian instrument function' | 
| 20 | write(0,*) 'in the same units as the x column in the data file.' | 
| 21 | stop | 
| 22 | endif | 
| 23 |  | 
| 24 | call getarg(1,junk) | 
| 25 | read(junk,*) option | 
| 26 | if (option.ne.'-w') then | 
| 27 | write(0,*) 'Your first argument is not a -w! What do you want to do?' | 
| 28 | stop | 
| 29 | endif | 
| 30 | call getarg(2,junk) | 
| 31 | read(junk,*) width | 
| 32 |  | 
| 33 | npts = 1 | 
| 34 | do while (.true.) | 
| 35 | read(5,*,end=40) myX, myY | 
| 36 | x(npts) = myX | 
| 37 | y(npts) = myY | 
| 38 | npts = npts + 1 | 
| 39 | end do | 
| 40 |  | 
| 41 | 40  continue | 
| 42 |  | 
| 43 | deltaX = x(2) - x(1) | 
| 44 |  | 
| 45 | do i = 1, npts-1 | 
| 46 | convol = 0.0d0 | 
| 47 | do j = 1, npts-1 | 
| 48 | dx = x(j) - x(i) | 
| 49 | convol = convol + y(j)*instrument_gaussian(dx, width) * deltaX | 
| 50 | enddo | 
| 51 | convol = convol | 
| 52 | write(*,*) x(i), convol | 
| 53 | enddo | 
| 54 |  | 
| 55 | end program convolve | 
| 56 |  | 
| 57 | double precision function instrument_gaussian(x, sigma) | 
| 58 |  | 
| 59 | double precision pi,  sigma, x | 
| 60 |  | 
| 61 | pi = 4.0d0 * datan(1.0d0) | 
| 62 | instrument_gaussian = exp(- x*x / (2.0d0 * sigma * sigma)) / (sigma * sqrt(2.0d0 * pi)) | 
| 63 |  | 
| 64 | return | 
| 65 | end function instrument_gaussian | 
| 66 |  |