1 |
gezelter |
4217 |
% ****** Start of file aipsamp.tex ****** |
2 |
|
|
% |
3 |
|
|
% This file is part of the AIP files in the AIP distribution for REVTeX 4. |
4 |
|
|
% Version 4.1 of REVTeX, October 2009 |
5 |
|
|
% |
6 |
|
|
% Copyright (c) 2009 American Institute of Physics. |
7 |
|
|
% |
8 |
|
|
% See the AIP README file for restrictions and more information. |
9 |
|
|
% |
10 |
|
|
% TeX'ing this file requires that you have AMS-LaTeX 2.0 installed |
11 |
|
|
% as well as the rest of the prerequisites for REVTeX 4.1 |
12 |
|
|
% |
13 |
|
|
% It also requires running BibTeX. The commands are as follows: |
14 |
|
|
% |
15 |
|
|
% 1) latex aipsamp |
16 |
|
|
% 2) bibtex aipsamp |
17 |
|
|
% 3) latex aipsamp |
18 |
|
|
% 4) latex aipsamp |
19 |
|
|
% |
20 |
|
|
% Use this file as a source of example code for your aip document. |
21 |
|
|
% Use the file aiptemplate.tex as a template for your document. |
22 |
|
|
\documentclass[% |
23 |
|
|
aip,jcp, |
24 |
|
|
amsmath,amssymb, |
25 |
|
|
preprint,% |
26 |
|
|
% reprint,% |
27 |
|
|
%author-year,% |
28 |
|
|
%author-numerical,% |
29 |
|
|
jcp]{revtex4-1} |
30 |
plouden |
4192 |
|
31 |
gezelter |
4217 |
\usepackage{graphicx}% Include figure files |
32 |
|
|
\usepackage{dcolumn}% Align table columns on decimal point |
33 |
|
|
%\usepackage{bm}% bold math |
34 |
|
|
\usepackage{times} |
35 |
|
|
\usepackage[version=3]{mhchem} % this is a great package for formatting chemical reactions |
36 |
plouden |
4192 |
\usepackage{url} |
37 |
|
|
|
38 |
|
|
\begin{document} |
39 |
|
|
|
40 |
gezelter |
4217 |
\title{Friction at Water / Ice-I$_\mathrm{h}$ interfaces: Do the |
41 |
|
|
Facets of Ice Have Different Hydrophilicity?} |
42 |
plouden |
4192 |
|
43 |
gezelter |
4217 |
\author{Patrick B. Louden} |
44 |
plouden |
4192 |
|
45 |
gezelter |
4217 |
\author{J. Daniel Gezelter} |
46 |
|
|
\email{gezelter@nd.edu.} |
47 |
|
|
\affiliation{Department of Chemistry and Biochemistry, University |
48 |
|
|
of Notre Dame, Notre Dame, IN 46556} |
49 |
|
|
|
50 |
plouden |
4192 |
\date{\today} |
51 |
|
|
|
52 |
|
|
\begin{abstract} |
53 |
plouden |
4224 |
|
54 |
|
|
|
55 |
plouden |
4192 |
\end{abstract} |
56 |
|
|
|
57 |
gezelter |
4217 |
\maketitle |
58 |
plouden |
4192 |
|
59 |
|
|
\section{Introduction} |
60 |
|
|
Explain a little bit about ice Ih, point group stuff. |
61 |
|
|
|
62 |
|
|
Mention previous work done / on going work by other people. Haymet and Rick |
63 |
|
|
seem to be investigating how the interfaces is perturbed by the presence of |
64 |
|
|
ions. This is the conlcusion of a recent publication of the basal and |
65 |
|
|
prismatic facets of ice Ih, now presenting the pyramidal and secondary |
66 |
|
|
prism facets under shear. |
67 |
|
|
|
68 |
|
|
\section{Methodology} |
69 |
|
|
|
70 |
|
|
\begin{figure} |
71 |
|
|
\includegraphics[width=\linewidth]{SP_comic_strip} |
72 |
|
|
\caption{\label{fig:spComic} The secondary prism interface with a shear |
73 |
|
|
rate of 3.5 ms\textsuperscript{-1}. Lower panel: the local tetrahedral order |
74 |
|
|
parameter, $q(z)$, (black circles) and the hyperbolic tangent fit (red line). |
75 |
|
|
Middle panel: the imposed thermal gradient required to maintain a fixed |
76 |
|
|
interfacial temperature. Upper panel: the transverse velocity gradient that |
77 |
|
|
develops in response to an imposed momentum flux. The vertical dotted lines |
78 |
|
|
indicate the locations of the midpoints of the two interfaces.} |
79 |
|
|
\end{figure} |
80 |
|
|
|
81 |
|
|
\begin{figure} |
82 |
|
|
\includegraphics[width=\linewidth]{Pyr_comic_strip} |
83 |
|
|
\caption{\label{fig:pyrComic} The pyramidal interface with a shear rate of 3.8 \ |
84 |
|
|
ms\textsuperscript{-1}. Panel descriptions match those in figure \ref{fig:spComic}.} |
85 |
|
|
\end{figure} |
86 |
|
|
|
87 |
|
|
\subsection{Pyramidal and secondary prism system construction} |
88 |
|
|
|
89 |
|
|
The construction of the pyramidal and secondary prism systems follows that of |
90 |
|
|
the basal and prismatic systems presented elsewhere\cite{Louden13}, however |
91 |
plouden |
4194 |
the ice crystals and water boxes were equilibrated and combined at 50K |
92 |
|
|
instead of 225K. The ice / water systems generated were then equilibrated |
93 |
|
|
to 225K. The resulting pyramidal system was |
94 |
plouden |
4192 |
$37.47 \times 29.50 \times 93.02$ \AA\ with 1216 |
95 |
|
|
SPC/E molecules in the ice slab, and 2203 in the liquid phase. The secondary |
96 |
|
|
prism system generated was $71.87 \times 31.66 \times 161.55$ \AA\ with 3840 |
97 |
|
|
SPC/E molecules in the ice slab and 8176 molecules in the liquid phase. |
98 |
|
|
|
99 |
|
|
\subsection{Computational details} |
100 |
|
|
% Do we need to justify the sims at 225K? |
101 |
|
|
% No crystal growth or shrinkage over 2 successive 1 ns NVT simulations for |
102 |
|
|
% either the pyramidal or sec. prism ice/water systems. |
103 |
|
|
|
104 |
|
|
The computational details performed here were equivalent to those reported |
105 |
plouden |
4222 |
in our previous publication\cite{Louden13}. The only changes made to the |
106 |
plouden |
4192 |
previously reported procedure were the following. VSS-RNEMD moves were |
107 |
plouden |
4194 |
attempted every 2 fs instead of every 50 fs. This was done to minimize |
108 |
|
|
the magnitude of each individual VSS-RNEMD perturbation to the system. |
109 |
plouden |
4192 |
|
110 |
|
|
All pyramidal simulations were performed under the NVT ensamble except those |
111 |
|
|
during which statistics were accumulated for the orientational correlation |
112 |
|
|
function, which were performed under the NVE ensamble. All secondary prism |
113 |
|
|
simulations were performed under the NVE ensamble. |
114 |
|
|
|
115 |
|
|
\section{Results and discussion} |
116 |
plouden |
4194 |
\subsection{Interfacial width} |
117 |
|
|
In the literature there is good agreement that between the solid ice and |
118 |
|
|
the bulk water, there exists a region of 'slush-like' water molecules. |
119 |
plouden |
4219 |
In this region, the water molecules are structurely distinguishable and |
120 |
plouden |
4194 |
behave differently than those of the solid ice or the bulk water. |
121 |
|
|
The characteristics of this region have been defined by both structural |
122 |
plouden |
4215 |
and dynamic properties; and its width has been measured by the change of these |
123 |
plouden |
4194 |
properties from their bulk liquid values to those of the solid ice. |
124 |
|
|
Examples of these properties include the density, the diffusion constant, and |
125 |
gezelter |
4217 |
the translational order profile. \cite{Bryk02,Karim90,Gay02,Hayward01,Hayward02,Karim88} |
126 |
plouden |
4192 |
|
127 |
plouden |
4215 |
Since the VSS-RNEMD moves used to impose the thermal and velocity gradients |
128 |
|
|
perturb the momenta of the water molecules in |
129 |
|
|
the systems, parameters that depend on translational motion may give |
130 |
plouden |
4194 |
faulty results. A stuructural parameter will be less effected by the |
131 |
plouden |
4215 |
VSS-RNEMD perturbations to the system. Due to this, we have used the |
132 |
|
|
local order tetrahedral parameter to quantify the width of the interface, |
133 |
|
|
which was originally described by Kumar\cite{Kumar09} and |
134 |
plouden |
4222 |
Errington\cite{Errington01}, and used by Bryk and Haymet in a previous study |
135 |
|
|
of ice/water interfaces.\cite{Bryk2004b} |
136 |
plouden |
4194 |
|
137 |
plouden |
4222 |
The local tetrahedral order parameter, $q(z)$, is given by |
138 |
|
|
\begin{equation} |
139 |
|
|
q(z) = \int_0^L \sum_{k=1}^{N} \Bigg(1 -\frac{3}{8}\sum_{i=1}^{3} |
140 |
|
|
\sum_{j=i+1}^{4} \bigg(\cos\psi_{ikj}+\frac{1}{3}\bigg)^2\Bigg) |
141 |
|
|
\delta(z_{k}-z)\mathrm{d}z \Bigg/ N_z |
142 |
|
|
\label{eq:qz} |
143 |
|
|
\end{equation} |
144 |
|
|
where $\psi_{ikj}$ is the angle formed between the oxygen sites of molecules |
145 |
|
|
$i$,$k$, and $j$, where the centeral oxygen is located within molecule $k$ and |
146 |
|
|
molecules $i$ and $j$ are two of the closest four water molecules |
147 |
|
|
around molecule $k$. All four closest neighbors of molecule $k$ are also |
148 |
|
|
required to reside within the first peak of the pair distribution function |
149 |
|
|
for molecule $k$ (typically $<$ 3.41 \AA\ for water). |
150 |
|
|
$N_z = \int\delta(z_k - z) \mathrm{d}z$ is a normalization factor to account |
151 |
|
|
for the varying population of molecules within each finite-width bin. |
152 |
plouden |
4215 |
|
153 |
|
|
To determine the width of the interfaces, each of the systems were |
154 |
|
|
divided into 100 artificial bins along the |
155 |
plouden |
4194 |
$z$-dimension, and the local tetrahedral order parameter, $q(z)$, was |
156 |
|
|
time-averaged for each of the bins, resulting in a tetrahedrality profile of |
157 |
|
|
the system. These profiles are shown across the $z$-dimension of the systems |
158 |
|
|
in panel $a$ of Figures \ref{fig:spComic} |
159 |
|
|
and \ref{fig:pyrComic} (black circles). The $q(z)$ function has a range of |
160 |
|
|
(0,1), where a larger value indicates a more tetrahedral environment. |
161 |
plouden |
4215 |
The $q(z)$ for the bulk liquid was found to be $\approx $ 0.77, while values of |
162 |
plouden |
4194 |
$\approx $0.92 were more common for the ice. The tetrahedrality profiles were |
163 |
|
|
fit using a hyperbolic tangent\cite{Louden13} designed to smoothly fit the |
164 |
|
|
bulk to ice |
165 |
|
|
transition, while accounting for the thermal influence on the profile by the |
166 |
|
|
kinetic energy exchanges of the VSS-RNEMD moves. In panels $b$ and $c$, the |
167 |
|
|
imposed thermal and velocity gradients can be seen. The verticle dotted |
168 |
|
|
lines traversing all three panels indicate the midpoints of the interface |
169 |
|
|
as determined by the hyperbolic tangent fit of the tetrahedrality profiles. |
170 |
|
|
|
171 |
plouden |
4192 |
From fitting the tetrahedrality profiles for each of the 0.5 nanosecond |
172 |
plouden |
4194 |
simulations (panel c of Figures \ref{fig:spComic} and \ref{fig:pyrComic}) |
173 |
plouden |
4215 |
by Eq. 6\cite{Louden13},we find the interfacial width to be |
174 |
|
|
$3.2 \pm 0.2$ and $3.2 \pm 0.2$ \AA\ for the control system with no applied |
175 |
|
|
momentum flux for both the pyramidal and secondary prism systems. |
176 |
|
|
Over the range of shear rates investigated, |
177 |
plouden |
4192 |
$0.6 \pm 0.2 \mathrm{ms}^{-1} \rightarrow 5.6 \pm 0.4 \mathrm{ms}^{-1}$ for |
178 |
|
|
the pyramidal system and $0.9 \pm 0.3 \mathrm{ms}^{-1} \rightarrow 5.4 \pm 0.1 |
179 |
|
|
\mathrm{ms}^{-1}$ for the secondary prism, we found no significant change in |
180 |
|
|
the interfacial width. This follows our previous findings of the basal and |
181 |
|
|
prismatic systems, in which the interfacial width was invarient of the |
182 |
|
|
shear rate of the ice. The interfacial width of the quiescent basal and |
183 |
|
|
prismatic systems was found to be $3.2 \pm 0.4$ \AA\ and $3.6 \pm 0.2$ \AA\ |
184 |
|
|
respectively. Over the range of shear rates investigated, $0.6 \pm 0.3 |
185 |
|
|
\mathrm{ms}^{-1} \rightarrow 5.3 \pm 0.5 \mathrm{ms}^{-1}$ for the basal |
186 |
|
|
system and $0.9 \pm 0.2 \mathrm{ms}^{-1} \rightarrow 4.5 \pm 0.1 |
187 |
plouden |
4194 |
\mathrm{ms}^{-1}$ for the prismatic. |
188 |
|
|
|
189 |
|
|
These results indicate that the surface structure of the exposed ice crystal |
190 |
|
|
has little to no effect on how far into the bulk the ice-like structural |
191 |
|
|
ordering is. Also, it appears that the interface is not structurally effected |
192 |
|
|
by shearing the ice through water. |
193 |
|
|
|
194 |
|
|
|
195 |
plouden |
4192 |
\subsection{Orientational dynamics} |
196 |
plouden |
4215 |
%Should we include the math here? |
197 |
|
|
The orientational time correlation function, |
198 |
|
|
\begin{equation}\label{C(t)1} |
199 |
|
|
C_{2}(t)=\langle P_{2}(\mathbf{u}(0)\cdot \mathbf{u}(t))\rangle, |
200 |
|
|
\end{equation} |
201 |
|
|
helps indicate the local environment around the water molecules. The function |
202 |
|
|
begins with an initial value of unity, and decays to zero as the water molecule |
203 |
|
|
loses memory of its former orientation. Observing the rate at which this decay |
204 |
|
|
occurs can provide insight to the mechanism and timescales for the relaxation. |
205 |
|
|
In eq. \eqref{C(t)1}, $P_{2}$ is the second-order Legendre polynomial, and |
206 |
plouden |
4224 |
$\mathbf{u}$ is the bisecting HOH vector. The angle brackets indicate |
207 |
plouden |
4215 |
an ensemble average over all the water molecules in a given spatial region. |
208 |
|
|
|
209 |
plouden |
4194 |
To investigate the dynamics of the water molecules across the interface, the |
210 |
plouden |
4215 |
systems were divided in the $z$-dimension into bins, each $\approx$ 3 \AA\ |
211 |
|
|
wide, and \eqref{C(t)1} was computed for each of the bins. A water |
212 |
|
|
molecule was allocated to a particular bin if it was initially in the bin |
213 |
|
|
at time zero. To compute \eqref{C(t)1}, each 0.5 ns simulation was followed |
214 |
|
|
by an additional 200 ps microcanonical (NVE) simulation during which the |
215 |
|
|
position and orientations of each molecule were recorded every 0.1 ps. |
216 |
|
|
|
217 |
|
|
The data obtained for each bin was then fit to a triexponential decay given by |
218 |
|
|
\begin{equation}\label{C(t)_fit} |
219 |
|
|
C_{2}(t) \approx a e^{-t/\tau_\mathrm{short}} + b e^{-t/\tau_\mathrm{middle}} +\ |
220 |
|
|
c |
221 |
|
|
e^{-t/\tau_\mathrm{long}} + (1-a-b-c) |
222 |
|
|
\end{equation} |
223 |
|
|
where $\tau_{short}$ corresponds to the librational motion of the water |
224 |
|
|
molecules, $\tau_{middle}$ corresponds to jumps between the breaking and |
225 |
|
|
making of hydrogen bonds, and $\tau_{long}$ corresponds to the translational |
226 |
|
|
motion of the water molecules. The last term in \eqref{C(t)_fit} accounts |
227 |
|
|
for the water molecules trapped in the ice which do not experience any |
228 |
|
|
long-time orientational decay. |
229 |
plouden |
4192 |
|
230 |
plouden |
4215 |
In Figures \ref{fig:PyrOrient} and \ref{fig:SPorient} we see the $z$-coordinate |
231 |
|
|
profiles for the three decay constants, $\tau_{short}$ (panel a), |
232 |
|
|
$\tau_{middle}$ (panel b), |
233 |
|
|
and $\tau_{long}$ (panel c) for the pyramidal and secondary prismatic systems |
234 |
|
|
respectively. The control experiments (no shear) are shown in black, and |
235 |
|
|
an experiment with an imposed momentum flux is shown in red. The vertical |
236 |
|
|
dotted line traversing all three panels denotes the midpoint of the |
237 |
|
|
interface as determined by the local tetrahedral order parameter fitting. |
238 |
|
|
In the liquid regions of both systems, we see that $\tau_{middle}$ and |
239 |
|
|
$\tau_{long}$ have approximately consistent values of $3-6$ ps and $30-40$ ps, |
240 |
|
|
resepctively, and increase in value as we approach the interface. Conversely, |
241 |
|
|
in panel a, we see that $\tau_{short}$ decreases from the liquid value |
242 |
|
|
of $72-76$ fs as we approach the interface. We believe this speed up is due to |
243 |
|
|
the constrained motion of librations closer to the interface. Both the |
244 |
|
|
approximate values for the decays and relative trends match those reported |
245 |
|
|
previously for the basal and prismatic interfaces. |
246 |
plouden |
4192 |
|
247 |
plouden |
4215 |
As done previously, we have attempted to quantify the distance, $d_{pyramidal}$ |
248 |
|
|
and $d_{secondary prism}$, from the |
249 |
|
|
interface that the deviations from the bulk liquid values begin. This was done |
250 |
|
|
by fitting the orientational decay constant $z$-profiles by |
251 |
|
|
\begin{equation}\label{tauFit} |
252 |
|
|
\tau(z)\approx\tau_{liquid}+(\tau_{solid}-\tau_{liquid})e^{-(z-z_{wall})/d} |
253 |
|
|
\end{equation} |
254 |
|
|
where $\tau_{liquid}$ and $\tau_{solid}$ are the liquid and projected solid |
255 |
|
|
values of the decay constants, $z_{wall}$ is the location of the interface, |
256 |
|
|
and $d$ is the displacement from the interface at which these deviations |
257 |
|
|
occur. The values for $d_{pyramidal}$ and $d_{secondary prismatic}$ were |
258 |
|
|
determined |
259 |
|
|
for each of the decay constants, and then averaged for better statistics |
260 |
|
|
($\tau_{middle}$ was ommitted for secondary prism). For the pyramidal system, |
261 |
|
|
$d_{pyramidal}$ was found to be 2.7 \AA\ for both the control and the sheared |
262 |
|
|
system. We found $d_{secondary prismatic}$ to be slightly larger than |
263 |
|
|
$d_{pyramidal}$ for both the control and with an applied shear, with |
264 |
|
|
displacements of $4$ \AA\ for the control system and $3$ \AA\ for the |
265 |
|
|
experiment with the imposed momentum flux. These values are consistent with |
266 |
|
|
those found for the basal ($d_{basal}\approx2.9$ \AA\ ) and prismatic |
267 |
|
|
($d_{prismatic}\approx3.5$ \AA\ ) systems. |
268 |
plouden |
4192 |
|
269 |
plouden |
4194 |
\subsection{Coefficient of friction of the interfaces} |
270 |
plouden |
4222 |
While investigating the kinetic coefficient of friction, there was found |
271 |
|
|
to be a dependence for $\mu_k$ |
272 |
plouden |
4215 |
on the temperature of the liquid water in the system. We believe this |
273 |
|
|
dependence |
274 |
|
|
arrises from the sharp discontinuity of the viscosity for the SPC/E model |
275 |
|
|
at temperatures approaching 200 K\cite{kuang12}. Due to this, we propose |
276 |
plouden |
4224 |
a weighting to the interfacial friction coefficient, $\kappa$ by the |
277 |
|
|
shear viscosity at 225 K. The interfacial friction coefficient relates |
278 |
|
|
the shear stress with the relative velocity of the fluid normal to the |
279 |
|
|
interface: |
280 |
|
|
\begin{equation}\label{Shenyu-13} |
281 |
|
|
j_{z}(p_{x}) = \kappa[v_{x}(fluid)-v_{x}(solid)] |
282 |
plouden |
4215 |
\end{equation} |
283 |
plouden |
4224 |
where $j_{z}(p_{x})$ is the applied momentum flux (shear stress) across $z$ |
284 |
|
|
in the |
285 |
|
|
$x$-dimension, and $v_{x}$(fluid) and $v_{x}$(solid) are the velocities |
286 |
|
|
directly adjacent to the interface. The shear viscosity, $\eta(T)$, of the |
287 |
|
|
fluid can be determined if we assume a linear response of the momentum |
288 |
|
|
gradient to the applied shear stress by |
289 |
|
|
\begin{equation}\label{Shenyu-11} |
290 |
|
|
j_{z}(p_{x}) = \eta(T) \frac{\partial v_{x}}{\partial z}. |
291 |
plouden |
4215 |
\end{equation} |
292 |
plouden |
4224 |
Using eqs \eqref{Shenyu-13} and \eqref{Shenyu-11}, we can find the following |
293 |
|
|
expression for $\kappa$, |
294 |
|
|
\begin{equation}\label{kappa-1} |
295 |
|
|
\kappa = \eta(T) \frac{\partial v_{x}}{\partial z}\frac{1}{[v_{x}(fluid)-v_{x}(solid)]}. |
296 |
plouden |
4215 |
\end{equation} |
297 |
plouden |
4224 |
Here is where we will introduce the weighting term of $\eta(225)/\eta(T)$ |
298 |
|
|
giving us |
299 |
|
|
\begin{equation}\label{kappa-2} |
300 |
|
|
\kappa = \frac{\eta(225)}{[v_{x}(fluid)-v_{x}(solid)]}\frac{\partial v_{x}}{\partial z}. |
301 |
plouden |
4215 |
\end{equation} |
302 |
plouden |
4224 |
|
303 |
|
|
To obtain the value of $\eta(225)$ for the SPC/E model, a $31.09 \times 29.38 |
304 |
|
|
\times 124.39$ \AA\ box with 3744 SPC/E water molecules was equilibrated to |
305 |
|
|
225K, |
306 |
|
|
and 5 unique shearing experiments were performed. Each experiment was |
307 |
|
|
conducted in the microcanonical ensemble (NVE) and were 5 ns in |
308 |
|
|
length. The VSS were attempted every timestep, which was set to 2 fs. |
309 |
|
|
For our SPC/E systems, we found $\eta(225)$ to be $0.0148 \pm 0.0007$ Pa s, |
310 |
|
|
roughly ten times larger than the value found for 280 K SPC/E bulk water by |
311 |
|
|
Kuang\cite{kuang12}. |
312 |
|
|
|
313 |
|
|
The interfacial friction coefficient, $\kappa$, can equivalently be expressed |
314 |
|
|
as the ratio of the viscosity of the fluid to the slip length, $\delta$, which |
315 |
|
|
is an indication of how 'slippery' the interface is. |
316 |
|
|
\begin{equation}\label{kappa-3} |
317 |
|
|
\kappa = \frac{\eta}{\delta} |
318 |
plouden |
4215 |
\end{equation} |
319 |
plouden |
4224 |
In each of the systems, the interfacial temperature was kept fixed to 225K, |
320 |
|
|
which ensured the viscosity of the fluid at the |
321 |
|
|
interace was approximately the same. Thus, any significant variation in |
322 |
|
|
$\kappa$ between |
323 |
|
|
the systems indicates differences in the 'slipperiness' of the interfaces. |
324 |
|
|
As each of the ice systems are sheared relative to liquid water, the |
325 |
|
|
'slipperiness' of the interface can be taken as an indication of how |
326 |
|
|
hydrophobic or hydrophilic the interface is. The calculated $\kappa$ values |
327 |
|
|
found for the four crystal facets of Ice-I$_\mathrm{h}$ investigated are shown |
328 |
|
|
in Table \ref{tab:kapa}. The basal and pyramidal facets were found to have |
329 |
|
|
similar values of $\kappa \approx$ 0.0006 (units), while $\kappa \approx$ |
330 |
|
|
0.0003 (units) were found for the prismatic and secondary prismatic systems. |
331 |
|
|
These results indicate that the prismatic and secondary prismatic facets are |
332 |
|
|
more hydrophobic than the basal and pyramidal facets. |
333 |
|
|
%This indicates something about the similarity between the two facets that |
334 |
|
|
%share similar values... |
335 |
|
|
%Maybe find values for kappa for other materials to compare against? |
336 |
plouden |
4194 |
|
337 |
plouden |
4219 |
\begin{table}[h] |
338 |
|
|
\centering |
339 |
plouden |
4224 |
\caption{$\kappa$ values for the basal, prismatic, pyramidal, and secondary \ |
340 |
|
|
prismatic facets of Ice-I$_\mathrm{h}$} |
341 |
plouden |
4219 |
\label{tab:kappa} |
342 |
|
|
\begin{tabular}{|ccc|} \hline |
343 |
plouden |
4224 |
& \multicolumn{2}{c|}{$\kappa_{Drag direction}$ (units)} \\ |
344 |
plouden |
4219 |
Interface & $\kappa_{x}$ & $\kappa_{y}$ \\ \hline |
345 |
|
|
basal & $0.00059 \pm 0.00003$ & $0.00065 \pm 0.00008$ \\ |
346 |
|
|
prismatic & $0.00030 \pm 0.00002$ & $0.00030 \pm 0.00001$ \\ |
347 |
|
|
pyramidal & $0.00058 \pm 0.00004$ & $0.00061 \pm 0.00005$ \\ |
348 |
|
|
secondary prism & $0.00035 \pm 0.00001$ & $0.00033 \pm 0.00002$ \\ \hline |
349 |
|
|
\end{tabular} |
350 |
|
|
\end{table} |
351 |
|
|
|
352 |
|
|
|
353 |
plouden |
4215 |
|
354 |
|
|
|
355 |
plouden |
4222 |
%\begin{table}[h] |
356 |
|
|
%\centering |
357 |
|
|
%\caption{Solid-liquid friction coefficients (measured in amu~fs\textsuperscript\ |
358 |
|
|
%{-1}). \\ |
359 |
|
|
%\textsuperscript{a} See ref. \onlinecite{Louden13}. } |
360 |
|
|
%\label{tab:lambda} |
361 |
|
|
%\begin{tabular}{|ccc|} \hline |
362 |
|
|
% & \multicolumn{2}{c|}{Drag direction} \\ |
363 |
|
|
% Interface & $x$ & $y$ \\ \hline |
364 |
|
|
% basal\textsuperscript{a} & $0.08 \pm 0.02$ & $0.09 \pm 0.03$ \\ |
365 |
|
|
% prismatic (T = 225)\textsuperscript{a} & $0.037 \pm 0.008$ & $0.04 \pm 0.01$ \\ |
366 |
|
|
% prismatic (T = 230) & $0.10 \pm 0.01$ & $0.070 \pm 0.006$\\ |
367 |
|
|
% pyramidal & $0.13 \pm 0.03$ & $0.14 \pm 0.03$ \\ |
368 |
|
|
% secondary prism & $0.13 \pm 0.02$ & $0.12 \pm 0.03$ \\ \hline |
369 |
|
|
%\end{tabular} |
370 |
|
|
%\end{table} |
371 |
plouden |
4194 |
|
372 |
|
|
|
373 |
plouden |
4192 |
\begin{figure} |
374 |
|
|
\includegraphics[width=\linewidth]{Pyr-orient} |
375 |
|
|
\caption{\label{fig:PyrOrient} The three decay constants of the |
376 |
|
|
orientational time correlation function, $C_2(t)$, for water as a function |
377 |
|
|
of distance from the center of the ice slab. The vertical dashed line |
378 |
|
|
indicates the edge of the pyramidal ice slab determined by the local order |
379 |
|
|
tetrahedral parameter. The control (black circles) and sheared (red squares) |
380 |
|
|
experiments were fit by a shifted exponential decay (Eq. 9\cite{Louden13}) |
381 |
|
|
shown by the black and red lines respectively. The upper two panels show that |
382 |
|
|
translational and hydrogen bond making and breaking events slow down |
383 |
|
|
through the interface while approaching the ice slab. The bottom most panel |
384 |
|
|
shows the librational motion of the water molecules speeding up approaching |
385 |
|
|
the ice block due to the confined region of space allowed for the molecules |
386 |
|
|
to move in.} |
387 |
|
|
\end{figure} |
388 |
|
|
|
389 |
|
|
\begin{figure} |
390 |
|
|
\includegraphics[width=\linewidth]{SP-orient-less} |
391 |
|
|
\caption{\label{fig:SPorient} Decay constants for $C_2(t)$ at the secondary |
392 |
|
|
prism face. Panel descriptions match those in \ref{fig:PyrOrient}.} |
393 |
|
|
\end{figure} |
394 |
|
|
|
395 |
|
|
|
396 |
|
|
|
397 |
|
|
\section{Conclusion} |
398 |
plouden |
4222 |
We present the results of molecular dynamics simulations of the pyrmaidal |
399 |
|
|
and secondary prismatic facets of an SPC/E model of the |
400 |
|
|
Ice-I$_\mathrm{h}$/water interface. The ice was sheared through the liquid |
401 |
|
|
water while being exposed to a thermal gradient to maintain a stable |
402 |
|
|
interface by using the minimal perturbing VSS RNEMD method. In agreement with |
403 |
|
|
our previous findings for the basal and prismatic facets, the interfacial |
404 |
|
|
width was found to be independent of shear rate as measured by the local |
405 |
plouden |
4224 |
tetrahedral order parameter. This width was found to be |
406 |
|
|
3.2~$\pm$0.2~\AA\ for both the pyramidal and the secondary prismatic systems. |
407 |
|
|
These values are in good agreement with our previously calculated interfacial |
408 |
|
|
widths for the basal (3.2~$\pm$0.4~\AA\ ) and prismatic (3.6~$\pm$0.2~\AA\ ) |
409 |
|
|
systems. |
410 |
plouden |
4192 |
|
411 |
plouden |
4224 |
Orientational dynamics of the Ice-I$_\mathrm{h}$/water interfaces were studied |
412 |
|
|
by calculation of the orientational time correlation function at varying |
413 |
|
|
displacements normal to the interface. The decays were fit |
414 |
|
|
to a tri-exponential decay, where the three decay constants correspond to |
415 |
|
|
the librational motion of the molecules driven by the restoring forces of |
416 |
|
|
existing hydrogen bonds ($\tau_{short}$ $\mathcal{O}$(10 fs)), jumps between |
417 |
|
|
two different hydrogen bonds ($\tau_{middle}$ $\mathcal{O}$(1 ps)), and |
418 |
|
|
translational motion of the molecules ($\tau_{long}$ $\mathcal{O}$(100 ps)). |
419 |
|
|
$\tau_{short}$ was found to decrease approaching the interface due to the |
420 |
|
|
constrained motion of the molecules as the local environment becomes more |
421 |
|
|
ice-like. Conversely, the two longer-time decay constants were found to |
422 |
|
|
increase at small displacements from the interface. As seen in our previous |
423 |
|
|
work on the basal and prismatic facets, there appears to be a dynamic |
424 |
|
|
interface width at which deviations from the bulk liquid values occur. |
425 |
|
|
We had previously found $d_{basal}$ and $d_{prismatic}$ to be approximately |
426 |
|
|
2.8~\AA\ and 3.5~\AA\~. We found good agreement of these values for the |
427 |
|
|
pyramidal and secondary prismatic systems with $d_{pyramidal}$ and |
428 |
|
|
$d_{secondary prism}$ to be 2.7~\AA\ and 3~\AA\~. For all of the facets, there |
429 |
|
|
was found to be no apparent dependence of the dynamic width on the shear rate. |
430 |
|
|
|
431 |
|
|
%Paragraph summarizing the Kappa values |
432 |
|
|
The interfacial friction coefficient, $\kappa$, was determined for each of the |
433 |
|
|
interfaces. We were able to reach an expression for $\kappa$ as a function of |
434 |
|
|
the velocity profile of the system and is scaled by the viscosity of the liquid |
435 |
|
|
at 225 K. In doing so, we have obtained an expression for $\kappa$ which is |
436 |
|
|
independent of temperature differences of the liquid water at far displacements |
437 |
|
|
from the interface. We found the basal and pyramidal facets to have |
438 |
|
|
similar $\kappa$ values, of $\kappa \approx$ 0.0006 (units). However, the |
439 |
|
|
prismatic and secondary prismatic facets were found to have $\kappa$ values of |
440 |
|
|
$\kappa \approx$ 0.0003 (units). As these ice facets are being sheared |
441 |
|
|
relative to liquid water, with the structural and dynamic width of all four |
442 |
|
|
interfaces being approximately the same, the difference in the coefficient of |
443 |
|
|
friction indicates the hydrophilicity of the crystal facets are not |
444 |
|
|
equivalent. Namely, that the basal and pyramidal facets of Ice-I$_\mathrm{h}$ |
445 |
|
|
are more hydrophilic than the prismatic and secondary prismatic facets. |
446 |
plouden |
4192 |
|
447 |
plouden |
4222 |
|
448 |
gezelter |
4217 |
\begin{acknowledgments} |
449 |
|
|
Support for this project was provided by the National |
450 |
|
|
Science Foundation under grant CHE-1362211. Computational time was |
451 |
|
|
provided by the Center for Research Computing (CRC) at the |
452 |
|
|
University of Notre Dame. |
453 |
|
|
\end{acknowledgments} |
454 |
plouden |
4192 |
|
455 |
|
|
\newpage |
456 |
gezelter |
4217 |
|
457 |
plouden |
4192 |
\bibliography{iceWater} |
458 |
|
|
|
459 |
|
|
\end{document} |