| 1 |
chrisfen |
2977 |
\chapter{\label{chap:water}SIMPLE MODELS FOR WATER} |
| 2 |
|
|
|
| 3 |
|
|
One of the most important tasks in the simulation of biochemical |
| 4 |
|
|
systems is the proper depiction of the aqueous environment around the |
| 5 |
|
|
molecules of interest. In some cases (such as in the simulation of |
| 6 |
|
|
phospholipid bilayers), the majority of the calculations that are |
| 7 |
|
|
performed involve interactions with or between solvent molecules. |
| 8 |
|
|
Thus, the motion and behavior of molecules in biochemical simulations |
| 9 |
|
|
are highly dependent on the properties of the water model that is |
| 10 |
|
|
chosen as the solvent. |
| 11 |
|
|
\begin{figure} |
| 12 |
|
|
\includegraphics[width=\linewidth]{./figures/waterModels.pdf} |
| 13 |
|
|
\caption{Partial-charge geometries for the TIP3P, TIP4P, TIP5P, and |
| 14 |
|
|
SPC/E rigid body water models.\cite{Jorgensen83,Mahoney00,Berendsen87} |
| 15 |
|
|
In the case of the TIP models, the depiction of water improves with |
| 16 |
|
|
increasing number of point charges; however, computational performance |
| 17 |
|
|
simultaneously degrades due to the increasing number of distances and |
| 18 |
|
|
interactions that need to be calculated.} |
| 19 |
|
|
\label{fig:waterModels} |
| 20 |
|
|
\end{figure} |
| 21 |
|
|
|
| 22 |
|
|
As discussed in the previous chapter, water it typically modeled with |
| 23 |
|
|
fixed geometries of point charges shielded by the repulsive part of a |
| 24 |
|
|
Lennard-Jones interaction. Some of the common water models are shown |
| 25 |
|
|
in figure \ref{fig:waterModels}. The various models all have their |
| 26 |
|
|
benefits and drawbacks, and these primarily focus on the balance |
| 27 |
|
|
between computational efficiency and the ability to accurately predict |
| 28 |
|
|
the properties of bulk water. For example, the TIP5P model improves on |
| 29 |
|
|
the structural and transport properties of water relative to the TIP3P |
| 30 |
|
|
and TIP4P models, yet this comes at a greater than 50\% increase in |
| 31 |
|
|
computational cost.\cite{Mahoney00,Mahoney01} This cost is entirely |
| 32 |
|
|
due to the additional distance and electrostatic calculations that |
| 33 |
|
|
come from the extra point charges in the model description. Thus, the |
| 34 |
|
|
criteria for choosing a water model are capturing the liquid state |
| 35 |
|
|
properties and having the fewest number of points to insure efficient |
| 36 |
|
|
performance. As researchers have begun to study larger systems, such |
| 37 |
|
|
as entire viruses, the choice readily shifts towards efficiency over |
| 38 |
|
|
accuracy in order to make the calculations |
| 39 |
|
|
feasible.\cite{Freddolino06} |
| 40 |
|
|
|
| 41 |
|
|
\section{Soft Sticky Dipole Model for Water} |
| 42 |
|
|
|
| 43 |
|
|
One recently developed model that largely succeeds in retaining the |
| 44 |
|
|
accuracy of bulk properties while greatly reducing the computational |
| 45 |
|
|
cost is the Soft Sticky Dipole (SSD) water |
| 46 |
|
|
model.\cite{Liu96,Liu96b,Chandra99,Tan03} The SSD model was developed |
| 47 |
|
|
as a modified form of the hard-sphere water model proposed by Bratko, |
| 48 |
|
|
Blum, and Luzar.\cite{Bratko85,Bratko95} SSD is a {\it single point} |
| 49 |
|
|
model which has an interaction site that is both a point dipole and a |
| 50 |
|
|
Lennard-Jones core. However, since the normal aligned and |
| 51 |
|
|
anti-aligned geometries favored by point dipoles are poor mimics of |
| 52 |
|
|
local structure in liquid water, a short ranged ``sticky'' potential |
| 53 |
|
|
is also added. The sticky potential directs the molecules to assume |
| 54 |
|
|
the proper hydrogen bond orientation in the first solvation shell. |
| 55 |
|
|
|
| 56 |
|
|
The interaction between two SSD water molecules \emph{i} and \emph{j} |
| 57 |
|
|
is given by the potential |
| 58 |
|
|
\begin{equation} |
| 59 |
|
|
u_{ij} = u_{ij}^{LJ} (r_{ij})\ + u_{ij}^{dp} |
| 60 |
|
|
({\bf r}_{ij},{\bf \Omega}_i,{\bf \Omega}_j)\ + |
| 61 |
|
|
u_{ij}^{sp} |
| 62 |
|
|
({\bf r}_{ij},{\bf \Omega}_i,{\bf \Omega}_j), |
| 63 |
|
|
\end{equation} |
| 64 |
|
|
where the ${\bf r}_{ij}$ is the position vector between molecules |
| 65 |
|
|
\emph{i} and \emph{j} with magnitude $r_{ij}$, and |
| 66 |
|
|
${\bf \Omega}_i$ and ${\bf \Omega}_j$ represent the orientations of |
| 67 |
|
|
the two molecules. The Lennard-Jones and dipole interactions are given |
| 68 |
|
|
by the following familiar forms: |
| 69 |
|
|
\begin{equation} |
| 70 |
|
|
u_{ij}^{LJ}(r_{ij}) = 4\epsilon |
| 71 |
|
|
\left[\left(\frac{\sigma}{r_{ij}}\right)^{12}-\left(\frac{\sigma}{r_{ij}}\right)^{6}\right] |
| 72 |
|
|
\ , |
| 73 |
|
|
\end{equation} |
| 74 |
|
|
and |
| 75 |
|
|
\begin{equation} |
| 76 |
|
|
u_{ij}^{dp} = \frac{|\mu_i||\mu_j|}{4 \pi \epsilon_0 r_{ij}^3} \left( |
| 77 |
|
|
\hat{\bf u}_i \cdot \hat{\bf u}_j - 3(\hat{\bf u}_i\cdot\hat{\bf |
| 78 |
|
|
r}_{ij})(\hat{\bf u}_j\cdot\hat{\bf r}_{ij}) \right)\ , |
| 79 |
|
|
\end{equation} |
| 80 |
|
|
where $\hat{\bf u}_i$ and $\hat{\bf u}_j$ are the unit vectors along |
| 81 |
|
|
the dipoles of molecules $i$ and $j$ respectively. $|\mu_i|$ and |
| 82 |
|
|
$|\mu_j|$ are the strengths of the dipole moments, and $\hat{\bf |
| 83 |
|
|
r}_{ij}$ is the unit vector pointing from molecule $j$ to molecule |
| 84 |
|
|
$i$. |
| 85 |
|
|
|
| 86 |
|
|
The sticky potential is somewhat less familiar: |
| 87 |
|
|
\begin{equation} |
| 88 |
|
|
u_{ij}^{sp} |
| 89 |
|
|
({\bf r}_{ij},{\bf \Omega}_i,{\bf \Omega}_j) = |
| 90 |
|
|
\frac{\nu_0}{2}[s(r_{ij})w({\bf r}_{ij},{\bf \Omega}_i,{\bf \Omega}_j) |
| 91 |
|
|
+ s^\prime(r_{ij})w^\prime({\bf r}_{ij},{\bf \Omega}_i,{\bf |
| 92 |
|
|
\Omega}_j)]\ . |
| 93 |
|
|
\label{eq:stickyfunction} |
| 94 |
|
|
\end{equation} |
| 95 |
|
|
Here, $\nu_0$ is a strength parameter for the sticky potential, and |
| 96 |
|
|
$s$ and $s^\prime$ are cubic switching functions which turn off the |
| 97 |
|
|
sticky interaction beyond the first solvation shell. The $w$ function |
| 98 |
|
|
can be thought of as an attractive potential with tetrahedral |
| 99 |
|
|
geometry: |
| 100 |
|
|
\begin{equation} |
| 101 |
|
|
w({\bf r}_{ij},{\bf \Omega}_i,{\bf \Omega}_j)=\sin\theta_{ij}\sin2\theta_{ij}\cos2\phi_{ij}, |
| 102 |
|
|
\end{equation} |
| 103 |
|
|
while the $w^\prime$ function counters the normal aligned and |
| 104 |
|
|
anti-aligned structures favored by point dipoles: |
| 105 |
|
|
\begin{equation} |
| 106 |
|
|
w^\prime({\bf r}_{ij},{\bf \Omega}_i,{\bf \Omega}_j) = (\cos\theta_{ij}-0.6)^2(\cos\theta_{ij}+0.8)^2-w^\circ, |
| 107 |
|
|
\end{equation} |
| 108 |
|
|
It should be noted that $w$ is proportional to the sum of the $Y_3^2$ |
| 109 |
|
|
and $Y_3^{-2}$ spherical harmonics (a linear combination which |
| 110 |
|
|
enhances the tetrahedral geometry for hydrogen bonded structures), |
| 111 |
|
|
while $w^\prime$ is a purely empirical function. A more detailed |
| 112 |
|
|
description of the functional parts and variables in this potential |
| 113 |
|
|
can be found in the original SSD |
| 114 |
|
|
articles.\cite{Liu96,Liu96b,Chandra99,Tan03} |
| 115 |
|
|
|
| 116 |
|
|
Since SSD is a single-point {\it dipolar} model, the force |
| 117 |
|
|
calculations are simplified significantly relative to the standard |
| 118 |
|
|
{\it charged} multi-point models. In the original Monte Carlo |
| 119 |
|
|
simulations using this model, Liu and Ichiye reported that using SSD |
| 120 |
|
|
decreased computer time by a factor of 6-7 compared to other |
| 121 |
|
|
models.\cite{Liu96b} What is most impressive is that this savings did |
| 122 |
|
|
not come at the expense of accurate depiction of the liquid state |
| 123 |
|
|
properties. Indeed, SSD maintains reasonable agreement with the Soper |
| 124 |
|
|
data for the structural features of liquid water.\cite{Soper86,Liu96b} |
| 125 |
|
|
Additionally, the dynamical properties exhibited by SSD agree with |
| 126 |
|
|
experiment better than those of more computationally expensive models |
| 127 |
|
|
(like TIP3P and SPC/E).\cite{Chandra99} The combination of speed and |
| 128 |
|
|
accurate depiction of solvent properties makes SSD a very attractive |
| 129 |
|
|
model for the simulation of large scale biochemical simulations. |
| 130 |
|
|
|
| 131 |
|
|
It is important to note that the SSD model was originally developed |
| 132 |
|
|
for use with the Ewald summation for handling long-range |
| 133 |
|
|
electrostatics.\cite{Ewald21} In applying this water model in a |
| 134 |
|
|
variety of molecular systems, it would be useful to know its |
| 135 |
|
|
properties and behavior under the more computationally efficient |
| 136 |
|
|
reaction field (RF) technique, the correction techniques discussed in |
| 137 |
|
|
the previous chapter, or even a simple |
| 138 |
|
|
cutoff.\cite{Onsager36,Fennell06} This study addresses these issues by |
| 139 |
|
|
looking at the structural and transport behavior of SSD over a variety |
| 140 |
|
|
of temperatures with the purpose of utilizing the RF correction |
| 141 |
|
|
technique. We then suggest modifications to the parameters that |
| 142 |
|
|
result in more realistic bulk phase behavior. It should be noted that |
| 143 |
|
|
in a recent publication, some of the original investigators of the SSD |
| 144 |
|
|
water model have suggested adjustments to the SSD water model to |
| 145 |
|
|
address abnormal density behavior (also observed here), calling the |
| 146 |
|
|
corrected model SSD1.\cite{Tan03} In the later sections of this |
| 147 |
|
|
chapter, we compare our modified variants of SSD with both the |
| 148 |
|
|
original SSD and SSD1 models and discuss how our changes improve the |
| 149 |
|
|
depiction of water. |
| 150 |
|
|
|
| 151 |
|
|
\section{Simulation Methods} |
| 152 |
|
|
|
| 153 |
|
|
Most of the calculations in this particular study were performed using |
| 154 |
|
|
a internally developed simulation code that was one of the precursors |
| 155 |
|
|
of the {\sc oopse} molecular dynamics (MD) package.\cite{Meineke05} |
| 156 |
|
|
All of the capabilities of this code have been efficiently |
| 157 |
|
|
incorporated into {\sc oopse}, and calculation results are consistent |
| 158 |
|
|
between the two simulation packages. The later calculations involving |
| 159 |
|
|
the damped shifted force ({\sc sf}) techniques were performed using |
| 160 |
|
|
{\sc oopse}. |
| 161 |
|
|
|
| 162 |
|
|
In the primary simulations of this study, long-range dipole-dipole |
| 163 |
|
|
interaction corrections were accounted for by using either the |
| 164 |
|
|
reaction field technique or a simple cubic switching function at the |
| 165 |
|
|
cutoff radius. Interestingly, one of the early applications of a |
| 166 |
|
|
reaction field was in Monte Carlo simulations of liquid |
| 167 |
|
|
water.\cite{Barker73} In this method, the magnitude of the reaction |
| 168 |
|
|
field acting on dipole $i$ is |
| 169 |
|
|
\begin{equation} |
| 170 |
|
|
\mathcal{E}_{i} = \frac{2(\varepsilon_{s} - 1)}{2\varepsilon_{s} + 1} |
| 171 |
|
|
\frac{1}{r_{c}^{3}} \sum_{j\in{\mathcal{R}}} {\bf \mu}_{j} s(r_{ij}), |
| 172 |
|
|
\label{eq:rfequation} |
| 173 |
|
|
\end{equation} |
| 174 |
|
|
where $\mathcal{R}$ is the cavity defined by the cutoff radius |
| 175 |
|
|
($r_{c}$), $\varepsilon_{s}$ is the dielectric constant imposed on the |
| 176 |
|
|
system, ${\bf\mu}_{j}$ is the dipole moment vector of particle $j$, |
| 177 |
|
|
and $s(r_{ij})$ is a cubic switching function.\cite{Allen87} The |
| 178 |
|
|
reaction field contribution to the total energy by particle $i$ is |
| 179 |
|
|
given by $-\frac{1}{2}{\bf\mu}_{i}\cdot\mathcal{E}_{i}$ and the torque |
| 180 |
|
|
on dipole $i$ by ${\bf\mu}_{i}\times\mathcal{E}_{i}$.\cite{Allen87} An |
| 181 |
|
|
applied reaction field will alter the bulk orientational properties of |
| 182 |
|
|
simulated water, and there is particular sensitivity of these |
| 183 |
|
|
properties on changes in the length of the cutoff |
| 184 |
|
|
radius.\cite{vanderSpoel98} This variable behavior makes reaction |
| 185 |
|
|
field a less attractive method than the Ewald sum; however, for very |
| 186 |
|
|
large systems, the computational benefit of reaction field is is |
| 187 |
|
|
significant. |
| 188 |
|
|
|
| 189 |
|
|
In contrast to the simulations with a reaction field, we have also |
| 190 |
|
|
performed a companion set of simulations {\it without} a surrounding |
| 191 |
|
|
dielectric (i.e. using a simple cubic switching function at the cutoff |
| 192 |
|
|
radius). As a result, we have developed two reparametrizations of SSD |
| 193 |
|
|
which can be used either with or without an active reaction field. |
| 194 |
|
|
|
| 195 |
|
|
To determine the preferred densities of the models, we performed |
| 196 |
|
|
simulations in the isobaric-isothermal ({\it NPT}) ensemble. All |
| 197 |
|
|
dynamical properties for these models were then obtained from |
| 198 |
|
|
microcanonical ({\it NVE}) simulations done at densities matching the |
| 199 |
|
|
{\it NPT} density for a particular target temperature. The constant |
| 200 |
|
|
pressure simulations were implemented using an integral thermostat and |
| 201 |
|
|
barostat as outlined by Hoover.\cite{Hoover85,Hoover86} All molecules |
| 202 |
|
|
were treated as non-linear rigid bodies. Vibrational constraints are |
| 203 |
|
|
not necessary in simulations of SSD, because there are no explicit |
| 204 |
|
|
hydrogen atoms, and thus no molecular vibrational modes need to be |
| 205 |
|
|
considered. |
| 206 |
|
|
|
| 207 |
|
|
The symplectic splitting method proposed by Dullweber, Leimkuhler, and |
| 208 |
|
|
McLachlan ({\sc dlm}, see section \ref{sec:IntroIntegrate}) was used |
| 209 |
|
|
to carry out the integration of the equations of motion in place of |
| 210 |
|
|
the more prevalent quaternion |
| 211 |
|
|
method.\cite{Dullweber97,Evans77,Evans77b,Allen87} The reason behind |
| 212 |
|
|
this decision was that, in {\it NVE} simulations, the energy drift |
| 213 |
|
|
when using quaternions was substantially greater than when using the |
| 214 |
|
|
{\sc dlm} method (Fig. \ref{fig:timeStepIntegration}). This steady |
| 215 |
|
|
drift in the total energy has also been observed in other |
| 216 |
|
|
studies.\cite{Kol97} |
| 217 |
|
|
|
| 218 |
|
|
\begin{figure} |
| 219 |
|
|
\centering |
| 220 |
|
|
\includegraphics[width=\linewidth]{./figures/timeStepIntegration.pdf} |
| 221 |
|
|
\caption{Energy conservation using both quaternion-based integration |
| 222 |
|
|
and the {\sc dlm} method with increasing time step. The larger time |
| 223 |
|
|
step plots are shifted from the true energy baseline (that of $\Delta |
| 224 |
chrisfen |
2981 |
t$ = 0.1~fs) for clarity.} |
| 225 |
chrisfen |
2977 |
\label{fig:timeStepIntegration} |
| 226 |
|
|
\end{figure} |
| 227 |
|
|
|
| 228 |
|
|
The {\sc dlm} method allows for Verlet style integration orientational |
| 229 |
|
|
motion of rigid bodies via a sequence of rotation matrix |
| 230 |
|
|
operations. Because these matrix operations are more costly than the |
| 231 |
|
|
simpler arithmetic operations for quaternion propagation, typical SSD |
| 232 |
|
|
particle simulations using {\sc dlm} are 5-10\% slower than |
| 233 |
|
|
simulations using the quaternion method and an identical time |
| 234 |
|
|
step. This additional expense is justified because of the ability to |
| 235 |
|
|
use time steps that are more that twice as long and still achieve the |
| 236 |
|
|
same energy conservation. |
| 237 |
|
|
|
| 238 |
|
|
Figure \ref{fig:timeStepIntegration} shows the resulting energy drift |
| 239 |
|
|
at various time steps for both {\sc dlm} and quaternion |
| 240 |
|
|
integration. All of the 1000 SSD particle simulations started with the |
| 241 |
|
|
same configuration, and the only difference was the method used to |
| 242 |
chrisfen |
2981 |
handle orientational motion. At time steps of 0.1 and 0.5~fs, both |
| 243 |
chrisfen |
2977 |
methods for propagating the orientational degrees of freedom conserve |
| 244 |
|
|
energy fairly well, with the quaternion method showing a slight energy |
| 245 |
chrisfen |
2981 |
drift over time in the 0.5~fs time step simulation. Time steps of 1 and |
| 246 |
|
|
2~fs clearly demonstrate the benefits in energy conservation that come |
| 247 |
chrisfen |
2977 |
with the {\sc dlm} method. Thus, while maintaining the same degree of |
| 248 |
|
|
energy conservation, one can take considerably longer time steps, |
| 249 |
|
|
leading to an overall reduction in computation time. |
| 250 |
|
|
|
| 251 |
|
|
Energy drifts in water simulations using {\sc dlm} integration were |
| 252 |
chrisfen |
2981 |
unnoticeable for time steps up to 3~fs. We observed a slight energy |
| 253 |
chrisfen |
2977 |
drift on the order of 0.012~kcal/mol per nanosecond with a time step |
| 254 |
chrisfen |
2981 |
of 4~fs. As expected, this drift increases dramatically with increasing |
| 255 |
chrisfen |
2977 |
time step. To insure accuracy in our {\it NVE} simulations, time steps |
| 256 |
chrisfen |
2981 |
were set at 2~fs and were also kept at this value for {\it NPT} |
| 257 |
chrisfen |
2977 |
simulations. |
| 258 |
|
|
|
| 259 |
|
|
Proton-disordered ice crystals in both the I$_\textrm{h}$ and |
| 260 |
|
|
I$_\textrm{c}$ lattices were generated as starting points for all |
| 261 |
|
|
simulations. The I$_\textrm{h}$ crystals were formed by first |
| 262 |
|
|
arranging the centers of mass of the SSD particles into a |
| 263 |
|
|
``hexagonal'' ice lattice of 1024 particles. Because of the crystal |
| 264 |
|
|
structure of I$_\textrm{h}$ ice, the simulation boxes were |
| 265 |
|
|
orthorhombic in shape with an edge length ratio of approximately |
| 266 |
|
|
1.00$\times$1.06$\times$1.23. We then allowed the particles to orient |
| 267 |
|
|
freely about their fixed lattice positions with angular momenta values |
| 268 |
chrisfen |
2981 |
randomly sampled at 400~K. The rotational temperature was then scaled |
| 269 |
|
|
down in stages to slowly cool the crystals to 25~K. The particles were |
| 270 |
chrisfen |
2977 |
then allowed to translate with fixed orientations at a constant |
| 271 |
chrisfen |
2981 |
pressure of 1atm for 50~ps at 25~K. Finally, all constraints were |
| 272 |
|
|
removed and the ice crystals were allowed to equilibrate for 50~ps at |
| 273 |
|
|
25~K and a constant pressure of 1atm. This procedure resulted in |
| 274 |
chrisfen |
2977 |
structurally stable I$_\textrm{h}$ ice crystals that obey the |
| 275 |
|
|
Bernal-Fowler rules.\cite{Bernal33,Rahman72} This method was also |
| 276 |
|
|
utilized in the making of diamond lattice I$_\textrm{c}$ ice crystals, |
| 277 |
|
|
with each cubic simulation box consisting of either 512 or 1000 |
| 278 |
|
|
particles. Only isotropic volume fluctuations were performed under |
| 279 |
|
|
constant pressure, so the ratio of edge lengths remained constant |
| 280 |
|
|
throughout the simulations. |
| 281 |
|
|
|
| 282 |
|
|
\section{SSD Density Behavior} |
| 283 |
|
|
|
| 284 |
|
|
Melting studies were performed on the randomized ice crystals using |
| 285 |
|
|
the {\it NPT} ensemble. During melting simulations, the melting |
| 286 |
|
|
transition and the density maximum can both be observed, provided that |
| 287 |
|
|
the density maximum occurs in the liquid and not the supercooled |
| 288 |
|
|
regime. It should be noted that the calculated melting temperature |
| 289 |
|
|
($T_\textrm{m}$) will not be the true $T_\textrm{m}$ because of |
| 290 |
|
|
super-heating due to the relatively short time scales in molecular |
| 291 |
|
|
simulations. This behavior results in inflated $T_\textrm{m}$ values; |
| 292 |
|
|
however, these values provide a reasonable initial estimate of |
| 293 |
|
|
$T_\textrm{m}$. |
| 294 |
|
|
|
| 295 |
|
|
An ensemble average from five separate melting simulations was |
| 296 |
|
|
acquired, each starting from different ice crystals generated as |
| 297 |
chrisfen |
2981 |
described previously. All simulations were equilibrated for 100~ps |
| 298 |
|
|
prior to a 200~ps data collection run at each temperature setting. The |
| 299 |
|
|
temperature range of study spanned from 25 to 400~K, with a maximum |
| 300 |
|
|
degree increment of 25~K. For regions of interest along this stepwise |
| 301 |
|
|
progression, the temperature increment was decreased from 25~K to 10 |
| 302 |
|
|
and 5~K. The above equilibration and production times were sufficient |
| 303 |
chrisfen |
2977 |
in that the fluctuations in the volume autocorrelation function damped |
| 304 |
chrisfen |
2981 |
out in all of the simulations in under 20~ps. |
| 305 |
chrisfen |
2977 |
|
| 306 |
|
|
Our initial simulations focused on the original SSD water model, and |
| 307 |
|
|
an average density versus temperature plot is shown in figure |
| 308 |
|
|
\ref{fig:ssdDense}. Note that the density maximum when using a |
| 309 |
chrisfen |
2981 |
reaction field appears between 255 and 265~K. There were smaller |
| 310 |
|
|
fluctuations in the density at 260~K than at either 255 or 265~K, so we |
| 311 |
chrisfen |
2977 |
report this value as the location of the density maximum. Figure |
| 312 |
|
|
\ref{fig:ssdDense} was constructed using ice I$_\textrm{h}$ crystals |
| 313 |
|
|
for the initial configuration; though not pictured, the simulations |
| 314 |
|
|
starting from ice I$_\textrm{c}$ crystal configurations showed similar |
| 315 |
|
|
results, with a liquid-phase density maximum at the same temperature. |
| 316 |
|
|
|
| 317 |
|
|
\begin{figure} |
| 318 |
|
|
\centering |
| 319 |
|
|
\includegraphics[width=\linewidth]{./figures/ssdDense.pdf} |
| 320 |
|
|
\caption{ Density versus temperature for TIP3P, SPC/E, TIP4P, SSD, |
| 321 |
|
|
SSD with a reaction field, and |
| 322 |
chrisfen |
2979 |
experiment.\cite{Jorgensen98b,Baez94,CRC80}. Note that using a |
| 323 |
chrisfen |
2977 |
reaction field lowers the density more than the already lowered SSD |
| 324 |
|
|
densities. The lower than expected densities for the SSD model |
| 325 |
|
|
prompted the original reparametrization of SSD to SSD1.\cite{Tan03}} |
| 326 |
|
|
\label{fig:ssdDense} |
| 327 |
|
|
\end{figure} |
| 328 |
|
|
|
| 329 |
|
|
The density maximum for SSD compares quite favorably to other simple |
| 330 |
|
|
water models. Figure \ref{fig:ssdDense} also shows calculated |
| 331 |
|
|
densities of several other models and experiment obtained from other |
| 332 |
chrisfen |
2979 |
sources.\cite{Jorgensen98b,Baez94,CRC80} Of the listed simple water |
| 333 |
chrisfen |
2977 |
models, SSD has a temperature closest to the experimentally observed |
| 334 |
|
|
density maximum. Of the {\it charge-based} models in figure |
| 335 |
|
|
\ref{fig:ssdDense}, TIP4P has a density maximum behavior most like |
| 336 |
|
|
that seen in SSD. Though not included in this plot, it is useful to |
| 337 |
|
|
note that TIP5P has a density maximum nearly identical to the |
| 338 |
|
|
experimentally measured temperature (see section |
| 339 |
|
|
\ref{sec:t5peDensity}. |
| 340 |
|
|
|
| 341 |
|
|
Liquid state densities in water have been observed to be dependent on |
| 342 |
|
|
the cutoff radius ($R_\textrm{c}$), both with and without the use of a |
| 343 |
|
|
reaction field.\cite{vanderSpoel98} In order to address the possible |
| 344 |
|
|
effect of $R_\textrm{c}$, simulations were performed with a cutoff |
| 345 |
chrisfen |
2981 |
radius of 12~\AA\, complementing the 9~\AA\ $R_\textrm{c}$ used in the |
| 346 |
chrisfen |
2977 |
previous SSD simulations. All of the resulting densities overlapped |
| 347 |
|
|
within error and showed no significant trend toward lower or higher |
| 348 |
|
|
densities in simulations both with and without reaction field. |
| 349 |
|
|
|
| 350 |
|
|
The key feature to recognize in figure \ref{fig:ssdDense} is the |
| 351 |
|
|
density scaling of SSD relative to other common models at any given |
| 352 |
|
|
temperature. SSD assumes a lower density than any of the other listed |
| 353 |
|
|
models at the same pressure, behavior which is especially apparent at |
| 354 |
chrisfen |
2981 |
temperatures greater than 300~K. Lower than expected densities have |
| 355 |
chrisfen |
2977 |
been observed for other systems using a reaction field for long-range |
| 356 |
|
|
electrostatic interactions, so the most likely reason for the reduced |
| 357 |
|
|
densities is the presence of the reaction |
| 358 |
|
|
field.\cite{vanderSpoel98,Nezbeda02} In order to test the effect of |
| 359 |
|
|
the reaction field on the density of the systems, the simulations were |
| 360 |
|
|
repeated without a reaction field present. The results of these |
| 361 |
|
|
simulations are also displayed in figure \ref{fig:ssdDense}. Without |
| 362 |
|
|
the reaction field, the densities increase to more experimentally |
| 363 |
|
|
reasonable values, especially around the freezing point of liquid |
| 364 |
|
|
water. The shape of the curve is similar to the curve produced from |
| 365 |
|
|
SSD simulations using reaction field, specifically the rapidly |
| 366 |
|
|
decreasing densities at higher temperatures; however, a shift in the |
| 367 |
chrisfen |
2981 |
density maximum location, down to 245~K, is observed. This is a more |
| 368 |
chrisfen |
2977 |
accurate comparison to the other listed water models, in that no long |
| 369 |
|
|
range corrections were applied in those |
| 370 |
chrisfen |
2979 |
simulations.\cite{Baez94,Jorgensen98b} However, even without the |
| 371 |
chrisfen |
2981 |
reaction field, the density around 300~K is still significantly lower |
| 372 |
chrisfen |
2977 |
than experiment and comparable water models. This anomalous behavior |
| 373 |
|
|
was what lead Tan {\it et al.} to recently reparametrize |
| 374 |
|
|
SSD.\cite{Tan03} Throughout the remainder of the paper our |
| 375 |
|
|
reparametrizations of SSD will be compared with their newer SSD1 |
| 376 |
|
|
model. |
| 377 |
|
|
|
| 378 |
|
|
\section{SSD Transport Behavior} |
| 379 |
|
|
|
| 380 |
|
|
Accurate dynamical properties of a water model are particularly |
| 381 |
|
|
important when using the model to study permeation or transport across |
| 382 |
|
|
biological membranes. In order to probe transport in bulk water, {\it |
| 383 |
|
|
NVE} simulations were performed at the average densities obtained from |
| 384 |
|
|
the {\it NPT} simulations at an identical target |
| 385 |
|
|
temperature. Simulations started with randomized velocities and |
| 386 |
chrisfen |
2981 |
underwent 50~ps of temperature scaling and 50~ps of constant energy |
| 387 |
|
|
equilibration before a 200~ps data collection run. Diffusion constants |
| 388 |
chrisfen |
2977 |
were calculated via linear fits to the long-time behavior of the |
| 389 |
|
|
mean-square displacement as a function of time.\cite{Allen87} The |
| 390 |
|
|
averaged results from five sets of {\it NVE} simulations are displayed |
| 391 |
|
|
in figure \ref{fig:ssdDiffuse}, alongside experimental, SPC/E, and TIP5P |
| 392 |
chrisfen |
2979 |
results.\cite{Gillen72,Holz00,Baez94,Mahoney01} |
| 393 |
chrisfen |
2977 |
|
| 394 |
|
|
\begin{figure} |
| 395 |
|
|
\centering |
| 396 |
|
|
\includegraphics[width=\linewidth]{./figures/ssdDiffuse.pdf} |
| 397 |
|
|
\caption{ Average self-diffusion constant as a function of temperature for |
| 398 |
|
|
SSD, SPC/E, and TIP5P compared with experimental |
| 399 |
chrisfen |
2979 |
data.\cite{Baez94,Mahoney01,Gillen72,Holz00} Of the three water |
| 400 |
chrisfen |
2977 |
models shown, SSD has the least deviation from the experimental |
| 401 |
|
|
values. The rapidly increasing diffusion constants for TIP5P and SSD |
| 402 |
|
|
correspond to significant decreases in density at the higher |
| 403 |
|
|
temperatures.} |
| 404 |
|
|
\label{fig:ssdDiffuse} |
| 405 |
|
|
\end{figure} |
| 406 |
|
|
|
| 407 |
|
|
The observed values for the diffusion constant point out one of the |
| 408 |
|
|
strengths of the SSD model. Of the three models shown, the SSD model |
| 409 |
|
|
has the most accurate depiction of self-diffusion in both the |
| 410 |
|
|
supercooled and liquid regimes. SPC/E does a respectable job by |
| 411 |
chrisfen |
2981 |
reproducing values similar to experiment around 290~K; however, it |
| 412 |
chrisfen |
2977 |
deviates at both higher and lower temperatures, failing to predict the |
| 413 |
|
|
correct thermal trend. TIP5P and SSD both start off low at colder |
| 414 |
|
|
temperatures and tend to diffuse too rapidly at higher temperatures. |
| 415 |
|
|
This behavior at higher temperatures is not particularly surprising |
| 416 |
|
|
since the densities of both TIP5P and SSD are lower than experimental |
| 417 |
|
|
water densities at higher temperatures. When calculating the |
| 418 |
|
|
diffusion coefficients for SSD at experimental densities (instead of |
| 419 |
|
|
the densities from the {\it NPT} simulations), the resulting values |
| 420 |
|
|
fall more in line with experiment at these temperatures. |
| 421 |
|
|
|
| 422 |
|
|
\section{Structural Changes and Characterization} |
| 423 |
|
|
|
| 424 |
|
|
By starting the simulations from the crystalline state, we can get an |
| 425 |
|
|
estimation of the $T_\textrm{m}$ of the ice structure, and beyond the |
| 426 |
|
|
melting point, we study the phase behavior of the liquid. The constant |
| 427 |
|
|
pressure heat capacity ($C_\textrm{p}$) was monitored to locate |
| 428 |
|
|
$T_\textrm{m}$ in each of the simulations. In the melting simulations |
| 429 |
|
|
of the 1024 particle ice I$_\textrm{h}$ simulations, a large spike in |
| 430 |
chrisfen |
2981 |
$C_\textrm{p}$ occurs at 245~K, indicating a first order phase |
| 431 |
chrisfen |
2977 |
transition for the melting of these ice crystals (see figure |
| 432 |
|
|
\ref{fig:ssdCp}. When the reaction field is turned off, the melting |
| 433 |
chrisfen |
2981 |
transition occurs at 235~K. These melting transitions are considerably |
| 434 |
|
|
lower than the experimental value of 273~K, indicating that the solid |
| 435 |
chrisfen |
2977 |
ice I$_\textrm{h}$ is not thermodynamically preferred relative to the |
| 436 |
|
|
liquid state at these lower temperatures. |
| 437 |
|
|
\begin{figure} |
| 438 |
|
|
\centering |
| 439 |
|
|
\includegraphics[width=\linewidth]{./figures/ssdCp.pdf} |
| 440 |
|
|
\caption{Heat capacity versus temperature for the SSD model with an |
| 441 |
chrisfen |
2981 |
active reaction field. Note the large spike in $C_p$ around 245~K, |
| 442 |
chrisfen |
2977 |
indicating a phase transition from the ordered crystal to disordered |
| 443 |
|
|
liquid.} |
| 444 |
|
|
\label{fig:ssdCp} |
| 445 |
|
|
\end{figure} |
| 446 |
|
|
|
| 447 |
|
|
\begin{figure} |
| 448 |
|
|
\centering |
| 449 |
|
|
\includegraphics[width=\linewidth]{./figures/fullContour.pdf} |
| 450 |
|
|
\caption{ Contour plots of 2D angular pair correlation functions for |
| 451 |
chrisfen |
2981 |
512 SSD molecules at 100~K (A \& B) and 300~K (C \& D). Dark areas |
| 452 |
chrisfen |
2977 |
signify regions of enhanced density while light areas signify |
| 453 |
|
|
depletion relative to the bulk density. White areas have pair |
| 454 |
|
|
correlation values below 0.5 and black areas have values above 1.5.} |
| 455 |
|
|
\label{fig:contour} |
| 456 |
|
|
\end{figure} |
| 457 |
|
|
|
| 458 |
|
|
\begin{figure} |
| 459 |
|
|
\centering |
| 460 |
|
|
\includegraphics[width=2.5in]{./figures/corrDiag.pdf} |
| 461 |
chrisfen |
2980 |
\caption{ An illustration of angles involved in the correlations |
| 462 |
|
|
observed in figure \ref{fig:contour}.} |
| 463 |
chrisfen |
2977 |
\label{fig:corrAngle} |
| 464 |
|
|
\end{figure} |
| 465 |
|
|
|
| 466 |
|
|
Additional analysis of the melting process was performed using |
| 467 |
|
|
two-dimensional structure and dipole angle correlations. Expressions |
| 468 |
|
|
for these correlations are as follows: |
| 469 |
|
|
|
| 470 |
|
|
\begin{equation} |
| 471 |
|
|
g_{\text{AB}}(r,\cos\theta) = \frac{V}{N_\text{A}N_\text{B}}\langle\sum_{i\in\text{A}}\sum_{j\in\text{B}}\delta(\cos\theta-\cos\theta_{ij})\delta(r-\left|{\bf r}_{ij}\right|)\rangle\ , |
| 472 |
|
|
\end{equation} |
| 473 |
|
|
\begin{equation} |
| 474 |
|
|
g_{\text{AB}}(r,\cos\omega) = |
| 475 |
|
|
\frac{V}{N_\text{A}N_\text{B}}\langle\sum_{i\in\text{A}}\sum_{j\in\text{B}}\delta(\cos\omega-\cos\omega_{ij})\delta(r-\left|{\bf r}_{ij}\right|)\rangle\ , |
| 476 |
|
|
\end{equation} |
| 477 |
|
|
where $\theta$ and $\omega$ refer to the angles shown in figure |
| 478 |
|
|
\ref{fig:corrAngle}. By binning over both distance and the cosine of the |
| 479 |
|
|
desired angle between the two dipoles, the $g(r)$ can be analyzed to |
| 480 |
|
|
determine the common dipole arrangements that constitute the peaks and |
| 481 |
|
|
troughs in the standard one-dimensional $g(r)$ plots. Frames A and B |
| 482 |
|
|
of figure \ref{fig:contour} show results from an ice I$_\textrm{c}$ |
| 483 |
|
|
simulation. The first peak in the $g(r)$ consists primarily of the |
| 484 |
|
|
preferred hydrogen bonding arrangements as dictated by the tetrahedral |
| 485 |
|
|
sticky potential - one peak for the hydrogen bond donor and the other |
| 486 |
|
|
for the hydrogen bond acceptor. Due to the high degree of |
| 487 |
|
|
crystallinity of the sample, the second and third solvation shells |
| 488 |
|
|
show a repeated peak arrangement which decays at distances around the |
| 489 |
|
|
fourth solvation shell, near the imposed cutoff for the Lennard-Jones |
| 490 |
|
|
and dipole-dipole interactions. In the higher temperature simulation |
| 491 |
|
|
shown in frames C and D, these long-range features deteriorate |
| 492 |
|
|
rapidly. The first solvation shell still shows the strong effect of |
| 493 |
|
|
the sticky-potential, although it covers a larger area, extending to |
| 494 |
|
|
include a fraction of aligned dipole peaks within the first solvation |
| 495 |
|
|
shell. The latter peaks lose due to thermal motion and as the |
| 496 |
|
|
competing dipole force overcomes the sticky potential's tight |
| 497 |
|
|
tetrahedral structuring of the crystal. |
| 498 |
|
|
|
| 499 |
|
|
This complex interplay between dipole and sticky interactions was |
| 500 |
|
|
remarked upon as a possible reason for the split second peak in the |
| 501 |
|
|
oxygen-oxygen pair correlation function, |
| 502 |
|
|
$g_\textrm{OO}(r)$.\cite{Liu96b} At low temperatures, the second |
| 503 |
|
|
solvation shell peak appears to have two distinct components that |
| 504 |
|
|
blend together to form one observable peak. At higher temperatures, |
| 505 |
chrisfen |
2981 |
this split character alters to show the leading 4~\AA\ peak dominated |
| 506 |
chrisfen |
2977 |
by equatorial anti-parallel dipole orientations. There is also a |
| 507 |
|
|
tightly bunched group of axially arranged dipoles that most likely |
| 508 |
|
|
consist of the smaller fraction of aligned dipole pairs. The trailing |
| 509 |
chrisfen |
2981 |
component of the split peak at 5~\AA\ is dominated by aligned dipoles |
| 510 |
chrisfen |
2977 |
that assume hydrogen bond arrangements similar to those seen in the |
| 511 |
|
|
first solvation shell. This evidence indicates that the dipole pair |
| 512 |
|
|
interaction begins to dominate outside of the range of the dipolar |
| 513 |
|
|
repulsion term. The energetically favorable dipole arrangements |
| 514 |
|
|
populate the region immediately outside this repulsion region (around |
| 515 |
chrisfen |
2981 |
4~\AA), while arrangements that seek to satisfy both the sticky and |
| 516 |
chrisfen |
2977 |
dipole forces locate themselves just beyond this initial buildup |
| 517 |
chrisfen |
2981 |
(around 5~\AA). |
| 518 |
chrisfen |
2977 |
|
| 519 |
|
|
This analysis indicates that the split second peak is primarily the |
| 520 |
|
|
product of the dipolar repulsion term of the sticky potential. In |
| 521 |
|
|
fact, the inner peak can be pushed out and merged with the outer split |
| 522 |
|
|
peak just by extending the switching function ($s^\prime(r_{ij})$) |
| 523 |
chrisfen |
2981 |
from its normal 4~\AA\ cutoff to values of 4.5 or even 5~\AA. This |
| 524 |
chrisfen |
2977 |
type of correction is not recommended for improving the liquid |
| 525 |
|
|
structure, since the second solvation shell would still be shifted too |
| 526 |
|
|
far out. In addition, this would have an even more detrimental effect |
| 527 |
|
|
on the system densities, leading to a liquid with a more open |
| 528 |
|
|
structure and a density considerably lower than the already low SSD |
| 529 |
|
|
density. A better correction would be to include the |
| 530 |
|
|
quadrupole-quadrupole interactions for the water particles outside of |
| 531 |
|
|
the first solvation shell, but this would remove the simplicity and |
| 532 |
|
|
speed advantage of SSD. |
| 533 |
|
|
|
| 534 |
|
|
\section{Adjusted Potentials: SSD/RF and SSD/E} |
| 535 |
|
|
|
| 536 |
|
|
The propensity of SSD to adopt lower than expected densities under |
| 537 |
|
|
varying conditions is troubling, especially at higher temperatures. In |
| 538 |
|
|
order to correct this model for use with a reaction field, it is |
| 539 |
|
|
necessary to adjust the force field parameters for the primary |
| 540 |
|
|
intermolecular interactions. In undergoing a reparametrization, it is |
| 541 |
|
|
important not to focus on just one property and neglect the others. In |
| 542 |
|
|
this case, it would be ideal to correct the densities while |
| 543 |
|
|
maintaining the accurate transport behavior. |
| 544 |
|
|
|
| 545 |
|
|
The parameters available for tuning include the $\sigma$ and |
| 546 |
|
|
$\epsilon$ Lennard-Jones parameters, the dipole strength ($\mu$), the |
| 547 |
|
|
strength of the sticky potential ($\nu_0$), and the cutoff distances |
| 548 |
|
|
for the sticky attractive and dipole repulsive cubic switching |
| 549 |
|
|
function cutoffs ($r_l$, $r_u$ and $r_l^\prime$, $r_u^\prime$ |
| 550 |
|
|
respectively). The results of the reparametrizations are shown in |
| 551 |
|
|
table \ref{tab:ssdParams}. We are calling these reparametrizations the |
| 552 |
|
|
Soft Sticky Dipole Reaction Field (SSD/RF - for use with a reaction |
| 553 |
|
|
field) and Soft Sticky Dipole Extended (SSD/E - an attempt to improve |
| 554 |
|
|
the liquid structure in simulations without a long-range correction). |
| 555 |
|
|
|
| 556 |
|
|
\begin{table} |
| 557 |
|
|
\caption{PARAMETERS FOR THE ORIGINAL AND ADJUSTED SSD MODELS} |
| 558 |
|
|
|
| 559 |
|
|
\centering |
| 560 |
chrisfen |
2981 |
\begin{tabular}{ llcccc } |
| 561 |
chrisfen |
2977 |
\toprule |
| 562 |
|
|
\toprule |
| 563 |
chrisfen |
2981 |
Parameters & & SSD & SSD1 & SSD/E & SSD/RF \\ |
| 564 |
chrisfen |
2977 |
\midrule |
| 565 |
chrisfen |
2981 |
$\sigma$ & (\AA) & 3.051 & 3.016 & 3.035 & 3.019\\ |
| 566 |
|
|
$\epsilon$ & (kcal mol$^{-1}$) & 0.152 & 0.152 & 0.152 & 0.152\\ |
| 567 |
|
|
$\mu$ & (D) & 2.35 & 2.35 & 2.42 & 2.48\\ |
| 568 |
|
|
$\nu_0$ & (kcal mol$^{-1}$) & 3.7284 & 3.6613 & 3.90 & 3.90\\ |
| 569 |
|
|
$\omega^\circ$ & & 0.07715 & 0.07715 & 0.07715 & 0.07715\\ |
| 570 |
|
|
$r_l$ & (\AA) & 2.75 & 2.75 & 2.40 & 2.40\\ |
| 571 |
|
|
$r_u$ & (\AA) & 3.35 & 3.35 & 3.80 & 3.80\\ |
| 572 |
|
|
$r_l^\prime$ & (\AA) & 2.75 & 2.75 & 2.75 & 2.75\\ |
| 573 |
|
|
$r_u^\prime$ & (\AA) & 4.00 & 4.00 & 3.35 & 3.35\\ |
| 574 |
chrisfen |
2977 |
\bottomrule |
| 575 |
|
|
\end{tabular} |
| 576 |
|
|
\label{tab:ssdParams} |
| 577 |
|
|
\end{table} |
| 578 |
|
|
|
| 579 |
|
|
\begin{figure} |
| 580 |
|
|
\centering |
| 581 |
|
|
\includegraphics[width=4.5in]{./figures/newGofRCompare.pdf} |
| 582 |
|
|
\caption{ Plots showing the experimental $g(r)$ (Ref. \cite{Hura00}) |
| 583 |
|
|
with SSD/E and SSD1 without reaction field (top), as well as SSD/RF |
| 584 |
|
|
and SSD1 with reaction field turned on (bottom). The changes in |
| 585 |
|
|
parameters have lowered and broadened the first peak of SSD/E and |
| 586 |
|
|
SSD/RF, resulting in a better fit to the first solvation shell.} |
| 587 |
|
|
\label{fig:gofrCompare} |
| 588 |
|
|
\end{figure} |
| 589 |
|
|
|
| 590 |
|
|
\begin{figure} |
| 591 |
|
|
\centering |
| 592 |
|
|
\includegraphics[width=\linewidth]{./figures/dualPotentials.pdf} |
| 593 |
|
|
\caption{ Positive and negative isosurfaces of the sticky potential for |
| 594 |
|
|
SSD and SSD1 (A) and SSD/E \& SSD/RF (B). Gold areas correspond to the |
| 595 |
|
|
tetrahedral attractive component, and blue areas correspond to the |
| 596 |
|
|
dipolar repulsive component.} |
| 597 |
|
|
\label{fig:isosurface} |
| 598 |
|
|
\end{figure} |
| 599 |
|
|
|
| 600 |
|
|
In the original paper detailing the development of SSD, Liu and Ichiye |
| 601 |
|
|
placed particular emphasis on an accurate description of the first |
| 602 |
|
|
solvation shell. This resulted in a somewhat tall and narrow first |
| 603 |
|
|
peak in $g(r)$ that integrated to give similar coordination numbers to |
| 604 |
|
|
the experimental data obtained by Soper and |
| 605 |
|
|
Phillips.\cite{Liu96b,Soper86} New experimental x-ray scattering data |
| 606 |
|
|
from Hura {\it et al.} indicates a slightly lower and shifted first |
| 607 |
|
|
peak in the $g_\textrm{OO}(r)$, so our adjustments to SSD were made |
| 608 |
|
|
after taking into consideration the new experimental |
| 609 |
|
|
findings.\cite{Hura00} Figure \ref{fig:gofrCompare} shows the |
| 610 |
|
|
relocation of the first peak of the oxygen-oxygen $g(r)$ by comparing |
| 611 |
|
|
the revised SSD model (SSD1), SSD/E, and SSD/RF to the new |
| 612 |
|
|
experimental results. Both modified water models have shorter peaks |
| 613 |
|
|
that match more closely to the experimental peak (as seen in the |
| 614 |
|
|
insets of figure \ref{fig:gofrCompare}). This structural alteration |
| 615 |
|
|
was accomplished by the combined reduction in the Lennard-Jones |
| 616 |
|
|
$\sigma$ variable and adjustment of the sticky potential strength and |
| 617 |
|
|
cutoffs. As can be seen in table \ref{tab:ssdParams}, the cutoffs for |
| 618 |
|
|
the tetrahedral attractive and dipolar repulsive terms were nearly |
| 619 |
|
|
swapped with each other. Isosurfaces of the original and modified |
| 620 |
|
|
sticky potentials are shown in figure \ref{fig:isosurface}. In these |
| 621 |
|
|
isosurfaces, it is easy to see how altering the cutoffs changes the |
| 622 |
|
|
repulsive and attractive character of the particles. With a reduced |
| 623 |
|
|
repulsive surface, the particles can move closer to one another, |
| 624 |
|
|
increasing the density for the overall system. This change in |
| 625 |
|
|
interaction cutoff also results in a more gradual orientational motion |
| 626 |
|
|
by allowing the particles to maintain preferred dipolar arrangements |
| 627 |
|
|
before they begin to feel the pull of the tetrahedral |
| 628 |
|
|
restructuring. As the particles move closer together, the dipolar |
| 629 |
|
|
repulsion term becomes active and excludes unphysical nearest-neighbor |
| 630 |
|
|
arrangements. This compares with how SSD and SSD1 exclude preferred |
| 631 |
|
|
dipole alignments before the particles feel the pull of the ``hydrogen |
| 632 |
|
|
bonds''. Aside from improving the shape of the first peak in the |
| 633 |
|
|
$g(r)$, this modification improves the densities considerably by |
| 634 |
|
|
allowing the persistence of full dipolar character below the previous |
| 635 |
chrisfen |
2981 |
4~\AA\ cutoff. |
| 636 |
chrisfen |
2977 |
|
| 637 |
|
|
While adjusting the location and shape of the first peak of $g(r)$ |
| 638 |
|
|
improves the densities, these changes alone are insufficient to bring |
| 639 |
|
|
the system densities up to the values observed experimentally. To |
| 640 |
|
|
further increase the densities, the dipole moments were increased in |
| 641 |
|
|
both of our adjusted models. Since SSD is a dipole based model, the |
| 642 |
|
|
structure and transport are very sensitive to changes in the dipole |
| 643 |
|
|
moment. The original SSD simply used the dipole moment calculated from |
| 644 |
|
|
the TIP3P water model, which at 2.35~D is significantly greater than |
| 645 |
|
|
the experimental gas phase value of 1.84~D. The larger dipole moment |
| 646 |
|
|
is a more realistic value and improves the dielectric properties of |
| 647 |
|
|
the fluid. Both theoretical and experimental measurements indicate a |
| 648 |
|
|
liquid phase dipole moment ranging from 2.4~D to values as high as |
| 649 |
|
|
3.11~D, providing a substantial range of reasonable values for a |
| 650 |
|
|
dipole moment.\cite{Sprik91,Gubskaya02,Badyal00,Barriol64} Moderately |
| 651 |
|
|
increasing the dipole moments to 2.42 and 2.48~D for SSD/E and SSD/RF, |
| 652 |
|
|
respectively, leads to significant changes in the density and |
| 653 |
|
|
transport of the water models. |
| 654 |
|
|
|
| 655 |
|
|
\subsection{Density Behavior} |
| 656 |
|
|
|
| 657 |
|
|
In order to demonstrate the benefits of these reparametrizations, we |
| 658 |
|
|
performed a series of {\it NPT} and {\it NVE} simulations to probe the |
| 659 |
|
|
density and transport properties of the adapted models and compare the |
| 660 |
|
|
results to the original SSD model. This comparison involved full {\it |
| 661 |
|
|
NPT} melting sequences for both SSD/E and SSD/RF, as well as {\it NVE} |
| 662 |
|
|
transport calculations at the calculated self-consistent |
| 663 |
|
|
densities. Again, the results were obtained from five separate |
| 664 |
|
|
simulations of 1024 particle systems, and the melting sequences were |
| 665 |
|
|
started from different ice I$_\textrm{h}$ crystals constructed as |
| 666 |
|
|
described previously. Each {\it NPT} simulation was equilibrated for |
| 667 |
chrisfen |
2981 |
100~ps before a 200~ps data collection run at each temperature step, |
| 668 |
chrisfen |
2977 |
and the final configuration from the previous temperature simulation |
| 669 |
|
|
was used as a starting point. All {\it NVE} simulations had the same |
| 670 |
|
|
thermalization, equilibration, and data collection times as stated |
| 671 |
|
|
previously. |
| 672 |
|
|
|
| 673 |
|
|
\begin{figure} |
| 674 |
|
|
\centering |
| 675 |
|
|
\includegraphics[width=\linewidth]{./figures/ssdeDense.pdf} |
| 676 |
|
|
\caption{ Comparison of densities calculated with SSD/E to |
| 677 |
|
|
SSD1 without a reaction field, TIP3P, SPC/E, TIP5P, and |
| 678 |
chrisfen |
2979 |
experiment.\cite{Jorgensen98b,Baez94,Mahoney00,CRC80} Both SSD1 and |
| 679 |
chrisfen |
2977 |
SSD/E show good agreement with experiment when the long-range |
| 680 |
|
|
correction is neglected.} |
| 681 |
|
|
\label{fig:ssdeDense} |
| 682 |
|
|
\end{figure} |
| 683 |
|
|
|
| 684 |
|
|
Figure \ref{fig:ssdeDense} shows the density profiles for SSD/E, SSD1, |
| 685 |
|
|
TIP3P, TIP4P, and SPC/E alongside the experimental results. The |
| 686 |
|
|
calculated densities for both SSD/E and SSD1 have increased |
| 687 |
|
|
significantly over the original SSD model (see figure |
| 688 |
|
|
\ref{fig:ssdDense}) and are in better agreement with the experimental |
| 689 |
chrisfen |
2981 |
values. At 298~K, the densities of SSD/E and SSD1 without a long-range |
| 690 |
|
|
correction are 0.996~g/cm$^3$ and 0.999~g/cm$^3$ respectively. These |
| 691 |
|
|
both compare well with the experimental value of 0.997~g/cm$^3$, and |
| 692 |
|
|
they are considerably better than the SSD value of 0.967~g/cm$^3$. The |
| 693 |
chrisfen |
2977 |
changes to the dipole moment and sticky switching functions have |
| 694 |
|
|
improved the structuring of the liquid (as seen in figure |
| 695 |
|
|
\ref{fig:gofrCompare}), but they have shifted the density maximum to |
| 696 |
|
|
much lower temperatures. This comes about via an increase in the |
| 697 |
|
|
liquid disorder through the weakening of the sticky potential and |
| 698 |
|
|
strengthening of the dipolar character. However, this increasing |
| 699 |
|
|
disorder in the SSD/E model has little effect on the melting |
| 700 |
|
|
transition. By monitoring $C_p$ throughout these simulations, we |
| 701 |
chrisfen |
2981 |
observed a melting transition for SSD/E at 235~K, the same as SSD and |
| 702 |
chrisfen |
2977 |
SSD1. |
| 703 |
|
|
|
| 704 |
|
|
\begin{figure} |
| 705 |
|
|
\centering |
| 706 |
|
|
\includegraphics[width=\linewidth]{./figures/ssdrfDense.pdf} |
| 707 |
|
|
\caption{ Comparison of densities calculated with SSD/RF to |
| 708 |
|
|
SSD1 with a reaction field, TIP3P, SPC/E, TIP5P, and |
| 709 |
chrisfen |
2979 |
experiment.\cite{Jorgensen98b,Baez94,Mahoney00,CRC80} This plot |
| 710 |
chrisfen |
2977 |
shows the benefit afforded by the reparametrization for use with a |
| 711 |
|
|
reaction field correction - SSD/RF provides significantly more |
| 712 |
|
|
accurate densities than SSD1 when performing room temperature |
| 713 |
|
|
simulations.} |
| 714 |
|
|
\label{fig:ssdrfDense} |
| 715 |
|
|
\end{figure} |
| 716 |
|
|
|
| 717 |
|
|
Including the reaction field long-range correction results in a more |
| 718 |
|
|
interesting comparison. A density profile including SSD/RF and SSD1 |
| 719 |
|
|
with an active reaction field is shown in figure \ref{fig:ssdrfDense}. |
| 720 |
|
|
As observed in the simulations without a reaction field, the densities |
| 721 |
|
|
of SSD/RF and SSD1 show a dramatic increase over normal SSD (see |
| 722 |
chrisfen |
2981 |
figure \ref{fig:ssdDense}). At 298~K, SSD/RF has a density of 0.997 |
| 723 |
chrisfen |
2977 |
g/cm$^3$, directly in line with experiment and considerably better |
| 724 |
chrisfen |
2981 |
than the original SSD value of 0.941~g/cm$^3$ and the SSD1 value of |
| 725 |
|
|
0.972~g/cm$^3$. These results further emphasize the importance of |
| 726 |
chrisfen |
2977 |
reparametrization in order to model the density properly under |
| 727 |
|
|
different simulation conditions. Again, these changes have only a |
| 728 |
chrisfen |
2981 |
minor effect on the melting point, which observed at 245~K for SSD/RF, |
| 729 |
|
|
is identical to SSD and only 5~K lower than SSD1 with a reaction |
| 730 |
chrisfen |
2977 |
field. Additionally, the difference in density maxima is not as |
| 731 |
chrisfen |
2981 |
extreme, with SSD/RF showing a density maximum at 255~K, fairly close |
| 732 |
|
|
to the density maxima of 260~K and 265~K, shown by SSD and SSD1 |
| 733 |
chrisfen |
2977 |
respectively. |
| 734 |
|
|
|
| 735 |
|
|
\subsection{Transport Behavior} |
| 736 |
|
|
|
| 737 |
|
|
\begin{figure} |
| 738 |
|
|
\centering |
| 739 |
|
|
\includegraphics[width=\linewidth]{./figures/ssdeDiffuse.pdf} |
| 740 |
|
|
\caption{ The diffusion constants calculated from SSD/E and |
| 741 |
|
|
SSD1 (both without a reaction field) along with experimental |
| 742 |
|
|
results.\cite{Gillen72,Holz00} The {\it NVE} calculations were |
| 743 |
|
|
performed at the average densities from the {\it NPT} simulations for |
| 744 |
|
|
the respective models. SSD/E is slightly more mobile than experiment |
| 745 |
|
|
at all of the temperatures, but it is closer to experiment at |
| 746 |
|
|
biologically relevant temperatures than SSD1 without a long-range |
| 747 |
|
|
correction.} |
| 748 |
|
|
\label{fig:ssdeDiffuse} |
| 749 |
|
|
\end{figure} |
| 750 |
|
|
|
| 751 |
|
|
The reparametrization of the SSD water model, both for use with and |
| 752 |
|
|
without an applied long-range correction, brought the densities up to |
| 753 |
|
|
what is expected for proper simulation of liquid water. In addition to |
| 754 |
|
|
improving the densities, it is important that the diffusive behavior |
| 755 |
|
|
of SSD be maintained or improved. Figure \ref{fig:ssdeDiffuse} |
| 756 |
|
|
compares the temperature dependence of the diffusion constant of SSD/E |
| 757 |
|
|
to SSD1 without an active reaction field at the densities calculated |
| 758 |
|
|
from their respective {\it NPT} simulations at 1 atm. The diffusion |
| 759 |
|
|
constant for SSD/E is consistently higher than experiment, while SSD1 |
| 760 |
|
|
remains lower than experiment until relatively high temperatures |
| 761 |
chrisfen |
2981 |
(around 360~K). Both models follow the shape of the experimental curve |
| 762 |
|
|
below 300~K but tend to diffuse too rapidly at higher temperatures, as |
| 763 |
|
|
seen in SSD1 crossing above 360~K. This increasing diffusion relative |
| 764 |
chrisfen |
2977 |
to the experimental values is caused by the rapidly decreasing system |
| 765 |
|
|
density with increasing temperature. Both SSD1 and SSD/E show this |
| 766 |
|
|
deviation in particle mobility, but this trend has different |
| 767 |
|
|
implications on the diffusive behavior of the models. While SSD1 |
| 768 |
|
|
shows more experimentally accurate diffusive behavior in the high |
| 769 |
|
|
temperature regimes, SSD/E shows more accurate behavior in the |
| 770 |
|
|
supercooled and biologically relevant temperature ranges. Thus, the |
| 771 |
|
|
changes made to improve the liquid structure may have had an adverse |
| 772 |
|
|
affect on the density maximum, but they improve the transport behavior |
| 773 |
|
|
of SSD/E relative to SSD1 under the most commonly simulated |
| 774 |
|
|
conditions. |
| 775 |
|
|
|
| 776 |
|
|
\begin{figure} |
| 777 |
|
|
\centering |
| 778 |
|
|
\includegraphics[width=\linewidth]{./figures/ssdrfDiffuse.pdf} |
| 779 |
|
|
\caption{ The diffusion constants calculated from SSD/RF and |
| 780 |
|
|
SSD1 (both with an active reaction field) along with experimental |
| 781 |
|
|
results.\cite{Gillen72,Holz00} The {\it NVE} calculations were |
| 782 |
|
|
performed at the average densities from the {\it NPT} simulations for |
| 783 |
|
|
both of the models. SSD/RF captures the self-diffusion of water |
| 784 |
|
|
throughout most of this temperature range. The increasing diffusion |
| 785 |
|
|
constants at high temperatures for both models can be attributed to |
| 786 |
|
|
lower calculated densities than those observed in experiment.} |
| 787 |
|
|
\label{fig:ssdrfDiffuse} |
| 788 |
|
|
\end{figure} |
| 789 |
|
|
|
| 790 |
|
|
In figure \ref{fig:ssdrfDiffuse}, the diffusion constants for SSD/RF are |
| 791 |
|
|
compared to SSD1 with an active reaction field. Note that SSD/RF |
| 792 |
|
|
tracks the experimental results quantitatively, identical within error |
| 793 |
|
|
throughout most of the temperature range shown and exhibiting only a |
| 794 |
|
|
slight increasing trend at higher temperatures. SSD1 tends to diffuse |
| 795 |
|
|
more slowly at low temperatures and deviates to diffuse too rapidly at |
| 796 |
chrisfen |
2981 |
temperatures greater than 330~K. As stated above, this deviation away |
| 797 |
chrisfen |
2977 |
from the ideal trend is due to a rapid decrease in density at higher |
| 798 |
|
|
temperatures. SSD/RF does not suffer from this problem as much as SSD1 |
| 799 |
|
|
because the calculated densities are closer to the experimental |
| 800 |
|
|
values. These results again emphasize the importance of careful |
| 801 |
|
|
reparametrization when using an altered long-range correction. |
| 802 |
|
|
|
| 803 |
|
|
\subsection{Summary of Liquid State Properties} |
| 804 |
|
|
|
| 805 |
|
|
\begin{table} |
| 806 |
|
|
\caption{PROPERTIES OF THE SINGLE-POINT WATER MODELS COMPARED WITH |
| 807 |
|
|
EXPERIMENTAL DATA AT AMBIENT CONDITIONS} |
| 808 |
|
|
\footnotesize |
| 809 |
|
|
\centering |
| 810 |
chrisfen |
2978 |
\begin{tabular}{ llccccc } |
| 811 |
chrisfen |
2977 |
\toprule |
| 812 |
|
|
\toprule |
| 813 |
chrisfen |
2978 |
& & SSD1 & SSD/E & SSD1 (RF) & SSD/RF & Experiment [Ref.] \\ |
| 814 |
chrisfen |
2977 |
\midrule |
| 815 |
chrisfen |
2978 |
$\rho$ & (g cm$^{-3}$) & 0.999(1) & 0.996(1) & 0.972(2) & 0.997(1) & 0.997 \cite{CRC80}\\ |
| 816 |
|
|
$C_p$ & (cal mol$^{-1}$ K$^{-1}$) & 28.80(11) & 25.45(9) & 28.28(6) & 23.83(16) & 18.005 \cite{Wagner02}\\ |
| 817 |
|
|
$D$ & ($10^{-5}$ cm$^2$ s$^{-1}$) & 1.78(7) & 2.51(18) & 2.00(17) & 2.32(6) & 2.299 \cite{Mills73}\\ |
| 818 |
|
|
$n_C$ & & 3.9 & 4.3 & 3.8 & 4.4 & 4.7 \cite{Hura00}\\ |
| 819 |
|
|
$n_H$ & & 3.7 & 3.6 & 3.7 & 3.7 & 3.5 \cite{Soper86}\\ |
| 820 |
|
|
$\tau_1$ & (ps) & 10.9(6) & 7.3(4) & 7.5(7) & 7.2(4) & 5.7 \cite{Eisenberg69}\\ |
| 821 |
|
|
$\tau_2$ & (ps) & 4.7(4) & 3.1(2) & 3.5(3) & 3.2(2) & 2.3 \cite{Krynicki66}\\ |
| 822 |
chrisfen |
2977 |
\bottomrule |
| 823 |
|
|
\end{tabular} |
| 824 |
|
|
\label{tab:liquidProperties} |
| 825 |
|
|
\end{table} |
| 826 |
|
|
|
| 827 |
|
|
Table \ref{tab:liquidProperties} gives a synopsis of the liquid state |
| 828 |
|
|
properties of the water models compared in this study along with the |
| 829 |
|
|
experimental values for liquid water at ambient conditions. The |
| 830 |
|
|
coordination number ($n_C$) and number of hydrogen bonds per particle |
| 831 |
|
|
($n_H$) were calculated by integrating the following relations: |
| 832 |
|
|
\begin{equation} |
| 833 |
|
|
n_C = 4\pi\rho_{\text{OO}}\int_{0}^{a}r^2g_{\textrm{OO}}(r)dr, |
| 834 |
|
|
\end{equation} |
| 835 |
|
|
\begin{equation} |
| 836 |
|
|
n_H = 4\pi\rho_{\text{OH}}\int_{0}^{b}r^2g_{\textrm{OH}}(r)dr, |
| 837 |
|
|
\end{equation} |
| 838 |
|
|
where $\rho$ is the number density of the specified pair interactions, |
| 839 |
|
|
$a$ and $b$ are the radial locations of the minima following the first |
| 840 |
|
|
peak in $g_\textrm{OO}(r)$ or $g_\textrm{OH}(r)$ respectively. The |
| 841 |
|
|
number of hydrogen bonds stays relatively constant across all of the |
| 842 |
|
|
models, but the coordination numbers of SSD/E and SSD/RF show an |
| 843 |
|
|
improvement over SSD1. This improvement is primarily due to extension |
| 844 |
|
|
of the first solvation shell in the new parameter sets. Because $n_H$ |
| 845 |
|
|
and $n_C$ are nearly identical in SSD1, it appears that all molecules |
| 846 |
|
|
in the first solvation shell are involved in hydrogen bonds. Since |
| 847 |
|
|
$n_H$ and $n_C$ differ in the newly parameterized models, the |
| 848 |
|
|
orientations in the first solvation shell are a bit more ``fluid''. |
| 849 |
|
|
Therefore SSD1 over-structures the first solvation shell and our |
| 850 |
|
|
reparametrizations have returned this shell to more realistic |
| 851 |
|
|
liquid-like behavior. |
| 852 |
|
|
|
| 853 |
|
|
The time constants for the orientational autocorrelation functions |
| 854 |
|
|
are also displayed in Table \ref{tab:liquidProperties}. The dipolar |
| 855 |
|
|
orientational time correlation functions ($C_{l}$) are described |
| 856 |
|
|
by: |
| 857 |
|
|
\begin{equation} |
| 858 |
|
|
C_{l}(t) = \langle P_l[\hat{\mathbf{u}}_j(0)\cdot\hat{\mathbf{u}}_j(t)]\rangle, |
| 859 |
|
|
\end{equation} |
| 860 |
|
|
where $P_l$ are Legendre polynomials of order $l$ and |
| 861 |
|
|
$\hat{\mathbf{u}}_j$ is the unit vector pointing along the molecular |
| 862 |
|
|
dipole.\cite{Rahman71} Note that this is identical to equation |
| 863 |
|
|
(\ref{eq:OrientCorr}) were $\alpha$ is equal to $z$. From these |
| 864 |
|
|
correlation functions, the orientational relaxation time of the dipole |
| 865 |
|
|
vector can be calculated from an exponential fit in the long-time |
| 866 |
chrisfen |
2978 |
regime ($t > \tau_l$).\cite{Rothschild84} Calculation of these time |
| 867 |
|
|
constants were averaged over five detailed {\it NVE} simulations |
| 868 |
|
|
performed at the ambient conditions for each of the respective |
| 869 |
chrisfen |
2981 |
models. It should be noted that the commonly cited value of 1.9~ps for |
| 870 |
chrisfen |
2978 |
$\tau_2$ was determined from the NMR data in Ref. \cite{Krynicki66} at |
| 871 |
|
|
a temperature near 34$^\circ$C.\cite{Rahman71} Because of the strong |
| 872 |
|
|
temperature dependence of $\tau_2$, it is necessary to recalculate it |
| 873 |
chrisfen |
2981 |
at 298~K to make proper comparisons. The value shown in Table |
| 874 |
chrisfen |
2977 |
\ref{tab:liquidProperties} was calculated from the same NMR data in the |
| 875 |
|
|
fashion described in Ref. \cite{Krynicki66}. Similarly, $\tau_1$ was |
| 876 |
chrisfen |
2981 |
recomputed for 298~K from the data in Ref. \cite{Eisenberg69}. |
| 877 |
chrisfen |
2977 |
Again, SSD/E and SSD/RF show improved behavior over SSD1, both with |
| 878 |
|
|
and without an active reaction field. Turning on the reaction field |
| 879 |
|
|
leads to much improved time constants for SSD1; however, these results |
| 880 |
|
|
also include a corresponding decrease in system density. |
| 881 |
|
|
Orientational relaxation times published in the original SSD dynamics |
| 882 |
|
|
paper are smaller than the values observed here, and this difference |
| 883 |
|
|
can be attributed to the use of the Ewald sum.\cite{Chandra99} |
| 884 |
|
|
|
| 885 |
chrisfen |
2981 |
\subsection{SSD/RF and Damped Electrostatics}\label{sec:ssdrfDamped} |
| 886 |
chrisfen |
2977 |
|
| 887 |
chrisfen |
2978 |
In section \ref{sec:dampingMultipoles}, a method was described for |
| 888 |
|
|
applying the damped {\sc sf} or {\sc sp} techniques to for systems |
| 889 |
|
|
containing point multipoles. The SSD family of water models is the |
| 890 |
|
|
perfect test case because of the dipole-dipole (and |
| 891 |
|
|
charge-dipole/quadrupole) interactions that are present. The {\sc sf} |
| 892 |
|
|
and {\sc sp} techniques were presented as a pairwise replacement for |
| 893 |
|
|
the Ewald summation. It has been suggested that models parametrized |
| 894 |
|
|
for the Ewald summation (like TIP5P-E) would be appropriate for use |
| 895 |
|
|
with a reaction field and vice versa.\cite{Rick04} Therefore, we |
| 896 |
|
|
decided to test the SSD/RF water model with this damped electrostatic |
| 897 |
|
|
technique in place of the reaction field to see how the calculated |
| 898 |
|
|
properties change. |
| 899 |
|
|
|
| 900 |
chrisfen |
2977 |
\begin{table} |
| 901 |
chrisfen |
2980 |
\caption{PROPERTIES OF SSD/RF WHEN USING DIFFERENT ELECTROSTATIC |
| 902 |
|
|
CORRECTION METHODS} |
| 903 |
chrisfen |
2977 |
\footnotesize |
| 904 |
|
|
\centering |
| 905 |
chrisfen |
2978 |
\begin{tabular}{ llccc } |
| 906 |
chrisfen |
2977 |
\toprule |
| 907 |
|
|
\toprule |
| 908 |
chrisfen |
2978 |
& & Reaction Field & Damped Electrostatics & Experiment [Ref.] \\ |
| 909 |
chrisfen |
2981 |
& & $\epsilon = 80$ & $\alpha = 0.2125$~\AA$^{-1}$ & \\ |
| 910 |
chrisfen |
2977 |
\midrule |
| 911 |
chrisfen |
2978 |
$\rho$ & (g cm$^{-3}$) & 0.997(1) & 1.004(4) & 0.997 \cite{CRC80}\\ |
| 912 |
|
|
$C_p$ & (cal mol$^{-1}$ K$^{-1}$) & 23.8(2) & 27(1) & 18.005 \cite{Wagner02} \\ |
| 913 |
|
|
$D$ & ($10^{-5}$ cm$^2$ s$^{-1}$) & 2.32(6) & 2.33(2) & 2.299 \cite{Mills73}\\ |
| 914 |
chrisfen |
2981 |
$n_C$ & & 4.4 & 4.2 & 4.7 \cite{Hura00}\\ |
| 915 |
chrisfen |
2978 |
$n_H$ & & 3.7 & 3.7 & 3.5 \cite{Soper86}\\ |
| 916 |
|
|
$\tau_1$ & (ps) & 7.2(4) & 5.86(8) & 5.7 \cite{Eisenberg69}\\ |
| 917 |
|
|
$\tau_2$ & (ps) & 3.2(2) & 2.45(7) & 2.3 \cite{Krynicki66}\\ |
| 918 |
chrisfen |
2977 |
\bottomrule |
| 919 |
|
|
\end{tabular} |
| 920 |
|
|
\label{tab:dampedSSDRF} |
| 921 |
|
|
\end{table} |
| 922 |
|
|
|
| 923 |
chrisfen |
2980 |
The properties shown in table \ref{tab:dampedSSDRF} compare |
| 924 |
|
|
surprisingly well. The average density shows a modest increase when |
| 925 |
|
|
using damped electrostatics in place of the reaction field. This comes |
| 926 |
|
|
about because we neglect the pressure effect due to the surroundings |
| 927 |
|
|
outside of the cuttoff, instead relying on screening effects to |
| 928 |
|
|
neutralize electrostatic interactions at long distances. The $C_p$ |
| 929 |
|
|
also shows a slight increase, indicating greater fluctuation in the |
| 930 |
|
|
enthalpy at constant pressure. The only other differences between the |
| 931 |
|
|
damped and reaction field results are the dipole reorientational time |
| 932 |
|
|
constants, $\tau_1$ and $\tau_2$. When using damped electrostatics, |
| 933 |
|
|
the water molecules relax more quickly and are almost identical to the |
| 934 |
|
|
experimental values. These results indicate that not only is it |
| 935 |
|
|
reasonable to use damped electrostatics with SSD/RF, it is recommended |
| 936 |
|
|
if capturing realistic dynamics is of primary importance. This is an |
| 937 |
|
|
encouraging result because of the more varied applicability of damping |
| 938 |
|
|
over the reaction field technique. Rather than be limited to |
| 939 |
|
|
homogeneous systems, SSD/RF can be used effectively with mixed |
| 940 |
chrisfen |
2981 |
systems, such as dissolved ions, dissolved organic molecules, or even |
| 941 |
chrisfen |
2980 |
proteins. |
| 942 |
|
|
|
| 943 |
chrisfen |
2977 |
In addition to the properties tabulated in table |
| 944 |
chrisfen |
2980 |
\ref{tab:dampedSSDRF}, we calculated the static dielectric constant |
| 945 |
chrisfen |
2981 |
from a 5~ns simulation of SSD/RF using the damped electrostatics. The |
| 946 |
chrisfen |
2977 |
resulting value of 82.6(6) compares very favorably with the |
| 947 |
|
|
experimental value of 78.3.\cite{Malmberg56} This value is closer to |
| 948 |
|
|
the experimental value than what was expected according to figure |
| 949 |
|
|
\ref{fig:dielectricMap}, raising some questions as to the accuracy of |
| 950 |
chrisfen |
2980 |
the visual contours in the figure. This highlights the qualitative |
| 951 |
|
|
nature of contour plotting. |
| 952 |
chrisfen |
2977 |
|
| 953 |
|
|
\section{Tetrahedrally Restructured Elongated Dipole (TRED) Water Model} |
| 954 |
|
|
|
| 955 |
chrisfen |
2981 |
The SSD/RF model works well with damped electrostatics, but because of |
| 956 |
|
|
its point multipole character, there is no charge neutralization |
| 957 |
|
|
correction at $R_\textrm{c}$. This has the effect of increasing the |
| 958 |
|
|
density, since there is no consideration of the ``surroundings''. In |
| 959 |
|
|
an attempt to optimize a water model for these conditions, we decided |
| 960 |
|
|
to both simplify the parameters of the SSD type models and break the |
| 961 |
|
|
point dipole into a charge pair so that it will gain some effect from |
| 962 |
|
|
the shifting action in the {\sc sf} technique. This process resulted |
| 963 |
|
|
in a two-point model that we are calling the Tetrahedrally |
| 964 |
|
|
Restructured Elongated Dipole (TRED) water model. |
| 965 |
chrisfen |
2980 |
|
| 966 |
chrisfen |
2981 |
\begin{figure} |
| 967 |
|
|
\centering |
| 968 |
|
|
\includegraphics[width=2.75in]{./figures/tredLayout.pdf} |
| 969 |
|
|
\caption{Geometry of TRED water. In this two-point model, the origin |
| 970 |
|
|
is the center-of-mass of the water molecule with the same moments of |
| 971 |
|
|
inertia as SSD/RF. The negatively charged site at the origin is also |
| 972 |
|
|
both a Lennard-Jones and sticky interaction site.} |
| 973 |
|
|
\label{fig:tredLayout} |
| 974 |
|
|
\end{figure} |
| 975 |
chrisfen |
2978 |
\begin{table} |
| 976 |
chrisfen |
2981 |
\centering |
| 977 |
|
|
\caption{PARAMETERS FOR THE TRED WATER MODEL} |
| 978 |
|
|
\begin{tabular}{ llr } |
| 979 |
|
|
\toprule |
| 980 |
|
|
\toprule |
| 981 |
|
|
$\sigma$ & (\AA) & 2.980 \\ |
| 982 |
|
|
$\epsilon$ & (kcal mol$^{-1}$) & 0.2045 \\ |
| 983 |
|
|
$q$ & ($e$) & 1.041 \\ |
| 984 |
|
|
$v_0$ & (kcal mol$^{-1}$) & 4.22 \\ |
| 985 |
|
|
$\omega^\circ$ & & 0.07715 \\ |
| 986 |
|
|
$r_l$ \& $r_l^\prime$ & (\AA) & 2.4 \\ |
| 987 |
|
|
$r_u$ \& $r_u^\prime$ & (\AA) & 4.0 \\ |
| 988 |
|
|
Q$_xx$ & (D \AA) & -1.682 \\ |
| 989 |
|
|
Q$_yy$ & (D \AA) & 1.762 \\ |
| 990 |
|
|
Q$_zz$ & (D \AA) & -0.080 \\ |
| 991 |
|
|
\bottomrule |
| 992 |
|
|
\end{tabular} |
| 993 |
|
|
\label{tab:tredParams} |
| 994 |
|
|
\end{table} |
| 995 |
|
|
\begin{figure} |
| 996 |
|
|
\centering |
| 997 |
|
|
\includegraphics[width=\linewidth]{./figures/tredGofR.pdf} |
| 998 |
|
|
\caption{The $g_\textrm{OO}(r)$ for TRED water. The first peak has a |
| 999 |
|
|
closer to the experimental plot; however, the second and third peaks |
| 1000 |
|
|
exhibit a more expanded structure similar to SSD/RF. The minimum |
| 1001 |
|
|
following the first peak is located at 3.55~\AA , which is further out |
| 1002 |
|
|
than both experiment and SSD/RF (3.42 and 3.3~\AA\ respectively), |
| 1003 |
|
|
leading to a larger coordination number. If all the curves were |
| 1004 |
|
|
integrated to the experimental minimum, the $n_C$ results would all be |
| 1005 |
|
|
similar, with TRED having an $n_C$ only 0.2 larger than experiment.} |
| 1006 |
|
|
\label{fig:tredGofR} |
| 1007 |
|
|
\end{figure} |
| 1008 |
|
|
The geometric layout of TRED water is shown in figure |
| 1009 |
|
|
\ref{fig:tredLayout} and the electrostatic, Lennard-Jones, and sticky |
| 1010 |
|
|
parameters are displayed in table \ref{tab:tredParams}. The negatively |
| 1011 |
|
|
charged site is located at the center of mass of the molecule and is |
| 1012 |
|
|
also home to the Lennard-Jones and sticky interactions. The charge |
| 1013 |
|
|
separation distance of 0.5~\AA\ along the dipolar ($z$) axis combined |
| 1014 |
|
|
with the charge magnitude ($q$) results in a dipole moment of |
| 1015 |
|
|
2.5~D. This value is simply the value used for SSD/RF (2.48~D) rounded |
| 1016 |
|
|
to the tenths place. We also unified the sticky parameters for the |
| 1017 |
|
|
switching functions on the repulsive and attractive interactions in |
| 1018 |
|
|
the interest of simplicity, and we left the quadrupole moment elements |
| 1019 |
|
|
and $\omega^\circ$ unaltered. Finally, the strength of the sticky |
| 1020 |
|
|
interaction ($v_0$) was modified to improve the shape of the first |
| 1021 |
|
|
peaks in $g_\textrm{OO}(r)$ and $g_\textrm{OH}(r)$, while the $\sigma$ |
| 1022 |
|
|
and $\epsilon$ values were varied to adjust the location of the first |
| 1023 |
|
|
peak of $g_\textrm{OO}(r)$ (see figure \ref{fig:tredGofR}) and the |
| 1024 |
|
|
density. The $\sigma$ and $epsilon$ optimization was carried out by |
| 1025 |
|
|
separating the Lennard-Jones potential into near entirely repulsive |
| 1026 |
|
|
($A$) and attractive ($C$) parts, such that |
| 1027 |
|
|
\begin{equation} |
| 1028 |
|
|
\sigma = \left(\frac{A}{C}\right)^\frac{1}{6}, |
| 1029 |
|
|
\end{equation} |
| 1030 |
|
|
and |
| 1031 |
|
|
\begin{equation} |
| 1032 |
|
|
\epsilon = \frac{C^2}{4A}. |
| 1033 |
|
|
\end{equation} |
| 1034 |
|
|
The location of the peak is adjusted through $A$, while the |
| 1035 |
|
|
interaction strength is modified through $C$. All of the above changes |
| 1036 |
|
|
were made with the goal of capturing the experimental density and |
| 1037 |
|
|
translational diffusion constant at 298~K and 1~atm. |
| 1038 |
|
|
|
| 1039 |
|
|
Being that TRED is a two-point water model, we expect its |
| 1040 |
|
|
computational efficiency to fall some place in between the single and |
| 1041 |
|
|
three-point water models. In comparative simulations, TRED was |
| 1042 |
|
|
approximately 85\% slower than SSD/RF, while SPC/E was 225\% slower |
| 1043 |
|
|
than SSD/RF. While TRED loses some of the performance advantage of |
| 1044 |
|
|
SSD, it is still nearly twice as computationally efficient as SPC/E |
| 1045 |
|
|
and TIP3P. |
| 1046 |
|
|
|
| 1047 |
|
|
\begin{table} |
| 1048 |
chrisfen |
2978 |
\caption{PROPERTIES OF TRED COMPARED WITH SSD/RF AND EXPERIMENT} |
| 1049 |
|
|
\footnotesize |
| 1050 |
|
|
\centering |
| 1051 |
|
|
\begin{tabular}{ llccc } |
| 1052 |
|
|
\toprule |
| 1053 |
|
|
\toprule |
| 1054 |
|
|
& & SSD/RF & TRED & Experiment [Ref.]\\ |
| 1055 |
chrisfen |
2981 |
& & $\alpha = 0.2125$~\AA$^{-1}$ & $\alpha = 0.2125$~\AA$^{-1}$ & \\ |
| 1056 |
chrisfen |
2978 |
\midrule |
| 1057 |
chrisfen |
2980 |
$\rho$ & (g cm$^{-3}$) & 1.004(4) & 0.995(5) & 0.997 \cite{CRC80}\\ |
| 1058 |
|
|
$C_p$ & (cal mol$^{-1}$ K$^{-1}$) & 27(1) & 23(1) & 18.005 \cite{Wagner02} \\ |
| 1059 |
chrisfen |
2978 |
$D$ & ($10^{-5}$ cm$^2$ s$^{-1}$) & 2.33(2) & 2.30(5) & 2.299 \cite{Mills73}\\ |
| 1060 |
chrisfen |
2981 |
$n_C$ & & 4.2 & 5.3 & 4.7 \cite{Hura00}\\ |
| 1061 |
chrisfen |
2978 |
$n_H$ & & 3.7 & 4.1 & 3.5 \cite{Soper86}\\ |
| 1062 |
|
|
$\tau_1$ & (ps) & 5.86(8) & 6.0(1) & 5.7 \cite{Eisenberg69}\\ |
| 1063 |
|
|
$\tau_2$ & (ps) & 2.45(7) & 2.49(5) & 2.3 \cite{Krynicki66}\\ |
| 1064 |
chrisfen |
2980 |
$\epsilon_0$ & & 82.6(6) & 83(1) & 78.3 \cite{Malmberg56}\\ |
| 1065 |
|
|
$\tau_D$ & (ps) & 9.1(2) & 10.6(3) & 8.2(4) \cite{Kindt96}\\ |
| 1066 |
chrisfen |
2978 |
\bottomrule |
| 1067 |
|
|
\end{tabular} |
| 1068 |
chrisfen |
2981 |
\label{tab:tredProperties} |
| 1069 |
chrisfen |
2978 |
\end{table} |
| 1070 |
chrisfen |
2981 |
We calculated thermodynamic and dynamic properties in the same manner |
| 1071 |
|
|
described in section \ref{sec:ssdrfDamped} for SSD/RF, and the results |
| 1072 |
|
|
are presented in table \ref{tab:tredProperties}. These results show that |
| 1073 |
|
|
TRED improves upon the $\rho$ and $C_p$ properties of SSD/RF with |
| 1074 |
|
|
damped electrostatics while maintaining the excellent dynamics |
| 1075 |
|
|
behavior of both the translational self-diffusivity and the |
| 1076 |
|
|
reorientational time constants, $\tau_1$ and $\tau_2$. The structural |
| 1077 |
|
|
results show some differences between the two models. Despite the |
| 1078 |
|
|
improved peak shape for the first solvation shell (see figure |
| 1079 |
|
|
\ref{fig:tredGofR}), $n_C$ and $n_H$ counts increase because of the |
| 1080 |
|
|
further first minimum distance locations. This results in the |
| 1081 |
|
|
integration extending over a larger water volume. If we integrate to |
| 1082 |
|
|
the first minimum value of the experimental $g_\textrm{OO}(r)$ (3.42 |
| 1083 |
|
|
\AA ) in both the SSD/RF and TRED plots, the $n_C$ values for both are |
| 1084 |
|
|
much closer to experiment (4.7 for SSD/RF and 4.9 for TRED). |
| 1085 |
chrisfen |
2978 |
|
| 1086 |
chrisfen |
2981 |
\begin{figure} |
| 1087 |
|
|
\centering |
| 1088 |
|
|
\includegraphics[width=3in]{./figures/tredDielectric.pdf} |
| 1089 |
|
|
\caption{Contour map of the dielectric constant for TRED as a function |
| 1090 |
|
|
of damping parameter and cutoff radius. The dielectric behavior for TRED |
| 1091 |
|
|
is very similar to SSD/RF (see figure \ref{fig:dielectricMap}D), which |
| 1092 |
|
|
is to be expected due to the similar dipole moment and sticky interaction |
| 1093 |
|
|
strength.} |
| 1094 |
|
|
\label{fig:tredDielectric} |
| 1095 |
|
|
\end{figure} |
| 1096 |
|
|
A comparison of the dielectric behavior was also included at the |
| 1097 |
|
|
bottom of table \ref{tab:tredProperties}. The static dielectric |
| 1098 |
|
|
constant results for SSD/RF and TRED are identical within error. This |
| 1099 |
|
|
is not surprising given the similar dipole moment, similar sticky |
| 1100 |
|
|
interaction strength, and identical applied damping constant. Comparing the static dielectric constant contour map (figure \ref{fig:tredDielectric}) with the dielectric map for SSD/RF |
| 1101 |
|
|
|
| 1102 |
chrisfen |
2977 |
\section{Conclusions} |
| 1103 |
|
|
|
| 1104 |
|
|
In the above sections, the density maximum and temperature dependence |
| 1105 |
|
|
of the self-diffusion constant were studied for the SSD water model, |
| 1106 |
|
|
both with and without the use of reaction field, via a series of {\it |
| 1107 |
|
|
NPT} and {\it NVE} simulations. The constant pressure simulations |
| 1108 |
chrisfen |
2981 |
showed a density maximum near 260~K. In most cases, the calculated |
| 1109 |
chrisfen |
2977 |
densities were significantly lower than the densities obtained from |
| 1110 |
|
|
other water models (and experiment). Analysis of self-diffusion showed |
| 1111 |
|
|
SSD to capture the transport properties of water well in both the |
| 1112 |
|
|
liquid and supercooled liquid regimes. |
| 1113 |
|
|
|
| 1114 |
|
|
In order to correct the density behavior, we reparametrized the |
| 1115 |
|
|
original SSD model for use both with and without a reaction field |
| 1116 |
|
|
(SSD/RF and SSD/E), and made comparisons with SSD1, an alternate |
| 1117 |
|
|
density corrected version of SSD. Both models improve the liquid |
| 1118 |
|
|
structure, densities, and diffusive properties under their respective |
| 1119 |
|
|
simulation conditions, indicating the necessity of reparametrization |
| 1120 |
|
|
when changing the method of calculating long-range electrostatic |
| 1121 |
|
|
interactions. |
| 1122 |
|
|
|
| 1123 |
chrisfen |
2981 |
The simple water models investigated here are excellent choices for |
| 1124 |
|
|
representing explicit water in large scale simulations of biochemical |
| 1125 |
|
|
systems. They are more computationally efficient than the common |
| 1126 |
|
|
charge based water models, and, in many cases, exhibit more realistic |
| 1127 |
|
|
bulk phase fluid properties. These models are one of the few cases in |
| 1128 |
|
|
which maximizing efficiency does not result in a loss in realistic |
| 1129 |
|
|
representation. |