ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/electrostaticMethodsPaper/electrostaticMethods.tex
Revision: 2595
Committed: Mon Feb 20 12:32:54 2006 UTC (19 years, 2 months ago) by chrisfen
Content type: application/x-tex
File size: 52573 byte(s)
Log Message:
considerable additions - rough draft on Results and Discussions finished, plus the addition of a bunch of tables and some updated figures

File Contents

# Content
1 %\documentclass[prb,aps,twocolumn,tabularx]{revtex4}
2 \documentclass[12pt]{article}
3 \usepackage{endfloat}
4 \usepackage{amsmath}
5 \usepackage{amssymb}
6 \usepackage{epsf}
7 \usepackage{times}
8 \usepackage{mathptm}
9 \usepackage{setspace}
10 \usepackage{tabularx}
11 \usepackage{graphicx}
12 \usepackage{booktabs}
13 %\usepackage{berkeley}
14 \usepackage[ref]{overcite}
15 \pagestyle{plain}
16 \pagenumbering{arabic}
17 \oddsidemargin 0.0cm \evensidemargin 0.0cm
18 \topmargin -21pt \headsep 10pt
19 \textheight 9.0in \textwidth 6.5in
20 \brokenpenalty=10000
21 \renewcommand{\baselinestretch}{1.2}
22 \renewcommand\citemid{\ } % no comma in optional reference note
23
24 \begin{document}
25
26 \title{On the necessity of the Ewald Summation in molecular simulations: Alternatives to the accepted standard of cutoff policies}
27
28 \author{Christopher J. Fennell and J. Daniel Gezelter \\
29 Department of Chemistry and Biochemistry\\
30 University of Notre Dame\\
31 Notre Dame, Indiana 46556}
32
33 \date{\today}
34
35 \maketitle
36 %\doublespacing
37
38 \begin{abstract}
39 \end{abstract}
40
41 %\narrowtext
42
43 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
44 % BODY OF TEXT
45 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
46
47 \section{Introduction}
48
49 In this paper, a variety of simulation situations were analyzed to determine the relative effectiveness of the adapted Wolf spherical truncation schemes at reproducing the results obtained using a smooth particle mesh Ewald (SPME) summation technique. In addition to the Shifted-Potential and Shifted-Force adapted Wolf methods, both reaction field and uncorrected cutoff methods were included for comparison purposes. The general usability of these methods in both Monte Carlo and Molecular Dynamics calculations was assessed through statistical analysis over the combined results from all of the following studied systems:
50 \begin{list}{-}{}
51 \item Liquid Water
52 \item Crystalline Water (Ice I$_\textrm{c}$)
53 \item NaCl Crystal
54 \item NaCl Melt
55 \item 1 M Solution of NaCl in Water
56 \item 10 M Solution of NaCl in Water
57 \item 6 \AA\ Radius Sphere of Argon in Water
58 \end{list}
59 Additional discussion on the results from the individual systems was also performed to identify limitations of the considered methods in specific systems.
60
61 \section{Methods}
62
63 In each of the simulated systems, 500 distinct configurations were generated, and the electrostatic summation methods were compared via sequential application on each of these fixed configurations. The methods compared include SPME, the aforementioned Shifted Potential and Shifted Force methods - both with damping parameters ($\alpha$) of 0, 0.1, 0.2, and 0.3 \AA$^{-1}$, reaction field with an infinite dielectric constant, and an unmodified cutoff. Group-based cutoffs with a fifth-order polynomial switching function were necessary for the reaction field simulations and were utilized in the SP, SF, and pure cutoff methods for comparison to the standard lack of group-based cutoffs with a hard truncation.
64
65 Generation of the system configurations was dependent on the system type. For the solid and liquid water configurations, configuration snapshots were taken at regular intervals from higher temperature 1000 SPC/E water molecule trajectories and individually equilibrated. The solid and liquid NaCl systems consisted of 500 Na+ and 500 Cl- ions and were selected and equilibrated in the same fashion as the water systems. For the 1 and 10 M NaCl solutions, 4 and 40 ions, respectively, were first solvated in a 1000 water molecule boxes. Ion and water positions were then randomly swapped, and the resulting configurations were again individually equilibrated. Finally, for the Argon/Water "charge void" systems, the identities of all the SPC/E waters within 6 \AA\ of the center of the equilibrated water configurations were converted to argon (Fig. \ref{argonSlice}).
66
67 \begin{figure}
68 \centering
69 \includegraphics[width=3.25in]{./slice.pdf}
70 \caption{A slice from the center of a water box used in a charge void simulation. The darkened region represents the boundary sphere within which the water molecules were converted to argon atoms.}
71 \label{argonSlice}
72 \end{figure}
73
74 All of these comparisons were performed with three different cutoff radii (9, 12, and 15 \AA) to investigate the cutoff radius dependence of the various techniques. It should be noted that the damping parameter chosen in SPME, or so called ``Ewald Coefficient", has a significant effect on the energies and forces calculated. Typical molecular mechanics packages default this to a value dependent on the cutoff radius and a tolerance (typically less than $1 \times 10^{-5}$ kcal/mol). We chose a tolerance of $1 \times 10^{-8}$, resulting in Ewald Coefficients of 0.4200, 0.3119, and 0.2476 \AA$^{-1}$ for cutoff radii of 9, 12, and 15 \AA\ respectively.
75
76 \section{Results and Discussion}
77
78 In order to evaluate the performance of the adapted Wolf Shifted Potential and Shifted Force electrostatic summation methods for Monte Carlo simulations, the energy differences between configurations need to be compared to the results using SPME. Considering the SPME results to be the correct or desired behavior, ideal performance of a tested method is taken to be agreement between the energy differences calculated. Linear least squares regression of the $\Delta E$ values between configurations using SPME against $\Delta E$ values using tested methods provides a quantitative comparison of this agreement. Unitary results for both the correlation and correlation coefficient for these regressions indicate equivalent energetic results between the methods. The correlation is the slope of the plotted data while the correlation coefficient ($R^2$) is a measure of the of the data scatter around the fitted line and gives an idea of the quality of the fit (Fig. \ref{linearFit}).
79
80 \begin{figure}
81 \centering
82 \includegraphics[width=3.25in]{./linearFit.pdf}
83 \caption{Example least squares regression of the $\Delta E$ between configurations for the SF method against SPME in the pure water system. }
84 \label{linearFit}
85 \end{figure}
86
87 With 500 independent configurations, 124,750 $\Delta E$ data points are used in a regression of a single system. Results and discussion for the individual analysis of each of the system types appear in the appendices of this paper. To probe the applicability of each method in the general case, all the different system types were included in a single regression. The results for this regression are shown in figure \ref{delE}.
88
89 \begin{figure}
90 \centering
91 \includegraphics[width=3.25in]{./delEplot.pdf}
92 \caption{The results from the statistical analysis of the $\Delta$E results for all the system types at 9 \AA\ (${\bullet}$), 12 \AA\ ($\blacksquare$), and 15 \AA\ ($\blacktriangledown$) cutoff radii. Results close to a value of 1 (dashed line) indicate $\Delta E$ values from that particular method (listed on the left) are nearly indistinguishable from those obtained from SPME. Reaction Field results do not include NaCl crystal or melt configurations.}
93 \label{delE}
94 \end{figure}
95
96 In figure \ref{delE}, it is readily apparent that it is unreasonable to expect realistic results using an unmodified cutoff. This is not all that surprising since this results in large energy fluctuations as atoms move in and out of the cutoff radius. These fluctuations can be alleviated to some degree by using group based cutoffs with a switching function. The Group Switch Cutoff row doesn't show a significant improvement in this plot because the salt and salt solution systems contain non-neutral groups, see appendices \ref{app-water} and \ref{app-ice} for a comparison where all groups are neutral. Correcting the resulting charged cutoff sphere is one of the purposes of the shifted potential proposed by Wolf \textit{et al.}, and this correction indeed improves the results as seen in the Shifted Potental rows. While the undamped case of this method is a significant improvement over the pure cutoff, it still doesn't correlate that well with SPME. Inclusion of potential damping improves the results, and using an $\alpha$ of 0.2 \AA $^{-1}$ shows an excellent correlation and quality of fit with the SPME results, particularly with a cutoff radius greater than 12 \AA . Use of a larger damping parameter is more helpful for the shortest cutoff shown, but it has a detrimental effect on simulations with larger cutoffs. This trend is repeated in the Shifted Force rows, where increasing damping results in progressively poorer correlation; however, damping looks to be unnecessary with this method. Overall, the undamped case is the best performing set, as the correlation and quality of fits are consistently superior regardless of the cutoff distance. This result is beneficial in that the undamped case is less computationally prohibitive do to the lack of complimentary error function calculation when performing the electrostatic pair interaction. The reaction field results illustrates some of that method's limitations, primarily that it was developed for use in homogenous systems; although it does provide results that are an improvement over those from an unmodified cutoff.
97
98 While studying the energy differences provides insight into how comparable these methods are energetically, if we want to use these methods in Molecular Dynamics simulations, we also need to consider their effect on forces and torques. Both the magnitude and the direction of the force and torque vectors of each of the bodies in the system can be compared to those observed while using SPME. Analysis of the magnitude of these vectors can be performed in the manner described previously for comparing $\Delta E$ values, only instead of a single value between two system configurations, there is a value for each particle in each configuration. For a system of 1000 water molecules and 40 ions, there are 1040 force vectors and 1000 torque vectors. With 500 configurations, this results in excess of 500,000 data samples for each system type. Figures \ref{frcMag} and \ref{trqMag} respectively show the force and torque vector magnitude results for the accumulated analysis over all the system types.
99
100 \begin{figure}
101 \centering
102 \includegraphics[width=3.25in]{./frcMagplot.pdf}
103 \caption{The results from the statistical analysis of the force vector magnitude results for all the system types at 9 \AA\ (${\bullet}$), 12 \AA\ ($\blacksquare$), and 15 \AA\ ($\blacktriangledown$) cutoff radii. Results close to a value of 1 (dashed line) indicate force vector magnitude values from that particular method (listed on the left) are nearly indistinguishable from those obtained from SPME.}
104 \label{frcMag}
105 \end{figure}
106
107 The results in figure \ref{frcMag} for the most part parallel those seen in the previous look at the $\Delta E$ results. The unmodified cutoff results are poor, but using group based cutoffs and a switching function provides a improvement much more significant than what was seen with $\Delta E$. Looking at the Shifted Potential sets, the slope and R$^2$ improve with the use of damping to an optimal result of 0.2 \AA $^{-1}$ for the 12 and 15 \AA\ cutoffs. Further increases in damping, while beneficial for simulations with a cutoff radius of 9 \AA\ , is detrimental to simulations with larger cutoff radii. The undamped Shifted Force method gives forces in line with those obtained using SPME, and use of a damping function gives little to no gain. The reaction field results are surprisingly good, considering the poor quality of the fits for the $\Delta E$ results. There is still a considerable degree of scatter in the data, but it correlates well in general.
108
109 \begin{figure}
110 \centering
111 \includegraphics[width=3.25in]{./trqMagplot.pdf}
112 \caption{The results from the statistical analysis of the torque vector magnitude results for all the system types at 9 \AA\ (${\bullet}$), 12 \AA\ ($\blacksquare$), and 15 \AA\ ($\blacktriangledown$) cutoff radii. Results close to a value of 1 (dashed line) indicate torque vector magnitude values from that particular method (listed on the left) are nearly indistinguishable from those obtained from SPME. Torques are only accumulated on the rigid water molecules, so these results exclude NaCl the systems.}
113 \label{trqMag}
114 \end{figure}
115
116 The torque vector magnitude results in figure \ref{trqMag} are similar to those seen for the forces, but more clearly show the improved behavior with increasing cutoff radius. Moderate damping is beneficial to the Shifted Potential and unnecessary with the Shifted Force method, and they also show that over-damping adversely effects all cutoff radii rather than showing an improvement for systems with short cutoffs. The reaction field method performs well when calculating the torques, better than the Shifted Force method over this limited data set.
117
118 Having force and torque vectors with magnitudes that are well correlated to SPME is good, but if they are not pointing in the proper direction the results will be incorrect. These vector directions were investigated through measurement of the angle formed between them and those from SPME. The dot product of these unit vectors provides a theta value that is accumulated in a distribution function, weighted by the area on the unit sphere. Narrow distributions of theta values indicates similar to identical results between the tested method and SPME. To measure the narrowness of the resulting distributions, non-linear Gaussian fits were performed.
119
120 \begin{figure}
121 \centering
122 \includegraphics[width=3.25in]{./gaussFit.pdf}
123 \caption{Example fitting of the angular distribution of the force vectors over all of the studied systems. The solid and dotted lines show Gaussian and Voigt fits of the distribution data respectively. Even though the Voigt profile make for a more accurate fit, the Gaussian was used due to more versatile statistical results.}
124 \label{gaussian}
125 \end{figure}
126
127 Figure \ref{gaussian} shows an example distribution and the non-linear fit applied. The solid line is a Gaussian profile, while the dotted line is a Voigt profile, a convolution of a Gaussian and a Lorentzian profile. Since this distribution is a measure of angular error between two different electrostatic summation methods, there is particular reason for it to adhere to a particular shape. Because of this and the Gaussian profile's more statistically meaningful properties, Gaussian fitting was used to compare all the methods considered in this study. The results (Fig. \ref{frcTrqAng}) are compared through the variance ($\sigma^2$) of these non-linear fits.
128
129 \begin{figure}
130 \centering
131 \includegraphics[width=3.25in]{./frcTrqAngplot.pdf}
132 \caption{The results from the statistical analysis of the force and torque vector angular distributions for all the system types at 9 \AA\ (${\bullet}$), 12 \AA\ ($\blacksquare$), and 15 \AA\ ($\blacktriangledown$) cutoff radii. Plotted values are the variance ($\sigma^2$) of the Gaussian non-linear fits. Results close to a value of 0 (dashed line) indicate force or torque vector directions from that particular method (listed on the left) are nearly indistinguishable from those obtained from SPME. Torques are only accumulated on the rigid water molecules, so the torque vector angle results exclude NaCl the systems.}
133 \label{frcTrqAng}
134 \end{figure}
135
136 Both the force and torque $\sigma^2$ results from the analysis of the total accumulated system data are tabulated in figure \ref{frcTrqAng}. All of the sets, aside from the over-damped case show the improvement afforded by choosing a longer simulation cutoff. Increasing the cutoff from 9 to 12 \AA\ typically results in a halving of $\sigma^2$, with a similar improvement going from 12 to 15 \AA . The undamped Shifted Force, Group Based Cutoff, and Reaction Field methods all do equivalently well at capturing the direction of both the force and torque vectors. Using damping improves the angular behavior significantly for the Shifted Potential and moderately for the Shifted Force methods. Increasing the damping too far is destructive for both methods, particularly to the torque vectors. Again it is important to recognize that the force vectors cover all particles in the systems, while torque vectors are only available for neutral molecular groups. Damping appears to have a more beneficial non-neutral bodies, and this observation is investigated further in appendices \ref{app-melt}, \ref{app-salt}, \ref{app-sol1}, and \ref{app-sol10}.
137
138 \begin{table}[htbp]
139 \centering
140 \caption{Variance ($\sigma^2$) of the force (top set) and torque (bottom set) vector angle difference distributions for the Shifted Potential and Shifted Force methods. Calculations were performed both with (Y) and without (N) group based cutoffs and a switching function. The $\alpha$ values have units of \AA$^{-1}$ and the variance values have units of degrees$^2$.}
141 \begin{tabular}{@{} ccrrrrrrrr @{}} % Column formatting, @{} suppresses leading/trailing space
142 \\
143 \toprule
144 & & \multicolumn{4}{c}{Shifted Potential} & \multicolumn{4}{c}{Shifted Force} \\
145 \cmidrule(lr){3-6}
146 \cmidrule(l){7-10}
147 Cutoff Radius & Groups & $\alpha = 0$ & $\alpha = 0.1$ & $\alpha = 0.2$ & $\alpha = 0.3$ & $\alpha = 0$ & $\alpha = 0.1$ & $\alpha = 0.2$ & $\alpha = 0.3$\\
148 \midrule
149
150 9 \AA & N & 29.545 & 12.003 & 5.489 & 0.610 & 2.323 & 2.321 & 0.429 & 0.603 \\
151 & \textbf{Y} & \textbf{2.486} & \textbf{2.160} & \textbf{0.667} & \textbf{0.608} & \textbf{1.768} & \textbf{1.766} & \textbf{0.676} & \textbf{0.609} \\
152 12 \AA & N & 19.381 & 3.097 & 0.190 & 0.608 & 0.920 & 0.736 & 0.133 & 0.612 \\
153 & \textbf{Y} & \textbf{0.515} & \textbf{0.288} & \textbf{0.127} & \textbf{0.586} & \textbf{0.308} & \textbf{0.249} & \textbf{0.127} & \textbf{0.586} \\
154 15 \AA & N & 12.700 & 1.196 & 0.123 & 0.601 & 0.339 & 0.160 & 0.123 & 0.601 \\
155 & \textbf{Y} & \textbf{0.228} & \textbf{0.099} & \textbf{0.121} & \textbf{0.598} & \textbf{0.144} & \textbf{0.090} & \textbf{0.121} & \textbf{0.598} \\
156
157 \midrule
158
159 9 \AA & N & 262.716 & 116.585 & 5.234 & 5.103 & 2.392 & 2.350 & 1.770 & 5.122 \\
160 & \textbf{Y} & \textbf{2.115} & \textbf{1.914} & \textbf{1.878} & \textbf{5.142} & \textbf{2.076} & \textbf{2.039} & \textbf{1.972} & \textbf{5.146} \\
161 12 \AA & N & 129.576 & 25.560 & 1.369 & 5.080 & 0.913 & 0.790 & 1.362 & 5.124 \\
162 & \textbf{Y} & \textbf{0.810} & \textbf{0.685} & \textbf{1.352} & \textbf{5.082} & \textbf{0.765} & \textbf{0.714} & \textbf{1.360} & \textbf{5.082} \\
163 15 \AA & N & 87.275 & 4.473 & 1.271 & 5.000 & 0.372 & 0.312 & 1.271 & 5.000 \\
164 & \textbf{Y} & \textbf{0.282} & \textbf{0.294} & \textbf{1.272} & \textbf{4.999} & \textbf{0.324} & \textbf{0.318} & \textbf{1.272} & \textbf{4.999} \\
165
166 \bottomrule
167 \end{tabular}
168 \label{groupAngle}
169 \end{table}
170
171 Although not discussed previously, group based cutoffs can be applied to both the Shifted Potential and Force methods. Use off a switching function corrects for the discontinuities that arise when atoms of a group exit the cutoff before the group's center of mass. Though there are no significant benefit or drawbacks observed in $\Delta E$ and vector magnitude results when doing this, there is a measurable improvement in the vector angle results. Table \ref{groupAngle} shows the angular variance values obtained using group based cutoffs and a switching function alongside the standard results seen in figure \ref{frcTrqAng} for comparison purposes. The Shifted Potential shows much narrower angular distributions for both the force and torque vectors when using an $\alpha$ of 0.2 \AA$^{-1}$ or less, while Shifted Force shows improvements in the undamped and lightly damped cases. Thus, by calculating the electrostatic interactions in terms of molecular pairs rather than atomic pairs, the direction of the force and torque vectors are determined more accurately.
172
173 One additional trend to recognize in table \ref{groupAngle} is that the $\sigma^2$ values for both Shifted Potential and Shifted Force converge as $\alpha$ increases, something that is easier to see when using group based cutoffs. Looking back on figures \ref{delE}, \ref{frcMag}, and \ref{trqMag}, show this behavior clearly at large $\alpha$ and cutoff values. The reason for this is that the complimentary error function inserted into the potential weakens the electrostatic interaction as $\alpha$ increases. Thus, at larger values of $\alpha$, both the summation method types progress toward non-interacting functions, so care is required in choosing large damping functions lest one generate an undesirable loss in the pair interaction. Kast \textit{et al.} developed a method for choosing appropriate $\alpha$ values for these types of electrostatic summation methods by fitting to $g(r)$ data, and their methods indicate optimal values of 0.34, 0.25, and 0.16 \AA$^{-1}$ for cutoff values of 9, 12, and 15 \AA\ respectively.\cite{Kast03} These appear to be reasonable choices to obtain proper MC behavior (Fig. \ref{delE}); however, based on these findings, choices this high would be introducing error in the molecular torques, particularly for the shorter cutoffs. Based on the above findings, any empirical damping is arguably unnecessary with the choice of the Shifted Force method.
174
175 \section{Conclusions}
176
177 \section{Acknowledgments}
178
179 \appendix
180
181 \section{\label{app-water}Liquid Water}
182
183 \begin{table}[htbp]
184 \centering
185 \caption{Regression results for the liquid water system. Tabulated results include $\Delta E$ values (top set), force vector magnitudes (middle set) and torque vector magnitudes (bottom set). PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force, GSC = Group Switched Cutoff, and RF = Reaction Field (where $\varepsilon \approx \infty$).}
186 \begin{tabular}{@{} ccrrrrrr @{}} % Column formatting, @{} suppresses leading/trailing space
187 \\
188 \toprule
189 & & \multicolumn{2}{c}{9 \AA} & \multicolumn{2}{c}{12 \AA} & \multicolumn{2}{c}{15 \AA}\\
190 \cmidrule(lr){3-4}
191 \cmidrule(lr){5-6}
192 \cmidrule(l){7-8}
193 Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
194 \midrule
195 PC & & 3.046 & 0.002 & -3.018 & 0.002 & 4.719 & 0.005 \\
196 SP & 0.0 & 1.035 & 0.218 & 0.908 & 0.313 & 1.037 & 0.470 \\
197 & 0.1 & 1.021 & 0.387 & 0.965 & 0.752 & 1.006 & 0.947 \\
198 & 0.2 & 0.997 & 0.962 & 1.001 & 0.994 & 0.994 & 0.996 \\
199 & 0.3 & 0.984 & 0.980 & 0.997 & 0.985 & 0.982 & 0.987 \\
200 SF & 0.0 & 0.977 & 0.974 & 0.996 & 0.992 & 0.991 & 0.997 \\
201 & 0.1 & 0.983 & 0.974 & 1.001 & 0.994 & 0.996 & 0.998 \\
202 & 0.2 & 0.992 & 0.989 & 1.001 & 0.995 & 0.994 & 0.996 \\
203 & 0.3 & 0.984 & 0.980 & 0.996 & 0.985 & 0.982 & 0.987 \\
204 GSC & & 0.918 & 0.862 & 0.852 & 0.756 & 0.801 & 0.700 \\
205 RF & & 0.971 & 0.958 & 0.975 & 0.987 & 0.959 & 0.983 \\
206
207 \midrule
208
209 PC & & -1.647 & 0.000 & -0.127 & 0.000 & -0.979 & 0.000 \\
210 SP & 0.0 & 0.735 & 0.368 & 0.813 & 0.537 & 0.865 & 0.659 \\
211 & 0.1 & 0.850 & 0.612 & 0.956 & 0.887 & 0.992 & 0.979 \\
212 & 0.2 & 0.996 & 0.989 & 1.000 & 1.000 & 1.000 & 1.000 \\
213 & 0.3 & 0.996 & 0.998 & 0.997 & 0.998 & 0.996 & 0.998 \\
214 SF & 0.0 & 0.998 & 0.995 & 1.000 & 0.999 & 1.000 & 0.999 \\
215 & 0.1 & 0.998 & 0.995 & 1.000 & 0.999 & 1.000 & 1.000 \\
216 & 0.2 & 0.999 & 0.998 & 1.000 & 1.000 & 1.000 & 1.000 \\
217 & 0.3 & 0.996 & 0.998 & 0.997 & 0.998 & 0.996 & 0.998 \\
218 GSC & & 0.998 & 0.995 & 1.000 & 0.999 & 1.000 & 1.000 \\
219 RF & & 0.999 & 0.995 & 1.000 & 0.999 & 1.000 & 1.000 \\
220
221 \midrule
222
223 PC & & 2.387 & 0.000 & 0.183 & 0.000 & 1.282 & 0.000 \\
224 SP & 0.0 & 0.847 & 0.543 & 0.904 & 0.694 & 0.935 & 0.786 \\
225 & 0.1 & 0.922 & 0.749 & 0.980 & 0.934 & 0.996 & 0.988 \\
226 & 0.2 & 0.987 & 0.985 & 0.989 & 0.992 & 0.990 & 0.993 \\
227 & 0.3 & 0.965 & 0.973 & 0.967 & 0.975 & 0.967 & 0.976 \\
228 SF & 0.0 & 0.978 & 0.990 & 0.988 & 0.997 & 0.993 & 0.999 \\
229 & 0.1 & 0.983 & 0.991 & 0.993 & 0.997 & 0.997 & 0.999 \\
230 & 0.2 & 0.986 & 0.989 & 0.989 & 0.992 & 0.990 & 0.993 \\
231 & 0.3 & 0.965 & 0.973 & 0.967 & 0.975 & 0.967 & 0.976 \\
232 GSC & & 0.995 & 0.981 & 0.999 & 0.991 & 1.001 & 0.994 \\
233 RF & & 0.993 & 0.989 & 0.998 & 0.996 & 1.000 & 0.999 \\
234 \bottomrule
235 \end{tabular}
236 \label{spceTabTMag}
237 \end{table}
238
239 \begin{table}[htbp]
240 \centering
241 \caption{Variance results from Gaussian fits to angular distributions of the force and torque vectors in the liquid water system. PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force, GSC = Group Switched Cutoff, RF = Reaction Field (where $\varepsilon \approx \infty$), GSSP = Group Switched Shifted Potential, and GSSF = Group Switched Shifted Force.}
242 \begin{tabular}{@{} ccrrrrrr @{}} % Column formatting, @{} suppresses leading/trailing space
243 \\
244 \toprule
245 & & \multicolumn{3}{c}{Force $\sigma^2$} & \multicolumn{3}{c}{Torque $\sigma^2$} \\
246 \cmidrule(lr){3-5}
247 \cmidrule(l){6-8}
248 Method & $\alpha$ & 9 \AA & 12 \AA & 15 \AA & 9 \AA & 12 \AA & 15 \AA \\
249 \midrule
250 PC & & 783.759 & 481.353 & 332.677 & 248.674 & 144.382 & 98.535 \\
251 SP & 0.0 & 659.440 & 380.699 & 250.002 & 235.151 & 134.661 & 88.135 \\
252 & 0.1 & 293.849 & 67.772 & 11.609 & 105.090 & 23.813 & 4.369 \\
253 & 0.2 & 5.975 & 0.136 & 0.094 & 5.553 & 1.784 & 1.536 \\
254 & 0.3 & 0.725 & 0.707 & 0.693 & 7.293 & 6.933 & 6.748 \\
255 SF & 0.0 & 2.238 & 0.713 & 0.292 & 3.290 & 1.090 & 0.416 \\
256 & 0.1 & 2.238 & 0.524 & 0.115 & 3.184 & 0.945 & 0.326 \\
257 & 0.2 & 0.374 & 0.102 & 0.094 & 2.598 & 1.755 & 1.537 \\
258 & 0.3 & 0.721 & 0.707 & 0.693 & 7.322 & 6.933 & 6.748 \\
259 GSC & & 2.431 & 0.614 & 0.274 & 5.135 & 2.133 & 1.339 \\
260 RF & & 2.091 & 0.403 & 0.113 & 3.583 & 1.071 & 0.399 \\
261 \midrule
262 GSSP & 0.0 & 2.431 & 0.614 & 0.274 & 5.135 & 2.133 & 1.339 \\
263 & 0.1 & 1.879 & 0.291 & 0.057 & 3.983 & 1.117 & 0.370 \\
264 & 0.2 & 0.443 & 0.103 & 0.093 & 2.821 & 1.794 & 1.532 \\
265 & 0.3 & 0.728 & 0.694 & 0.692 & 7.387 & 6.942 & 6.748 \\
266 GSSF & 0.0 & 1.298 & 0.270 & 0.083 & 3.098 & 0.992 & 0.375 \\
267 & 0.1 & 1.296 & 0.210 & 0.044 & 3.055 & 0.922 & 0.330 \\
268 & 0.2 & 0.433 & 0.104 & 0.093 & 2.895 & 1.797 & 1.532 \\
269 & 0.3 & 0.728 & 0.694 & 0.692 & 7.410 & 6.942 & 6.748 \\
270 \bottomrule
271 \end{tabular}
272 \label{spceTabAng}
273 \end{table}
274
275 \section{\label{app-ice}Solid Water: Ice I$_\textrm{c}$}
276
277 \begin{table}[htbp]
278 \centering
279 \caption{Regression results for the ice I$_\textrm{c}$ system. Tabulated results include $\Delta E$ values (top set), force vector magnitudes (middle set) and torque vector magnitudes (bottom set). PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force, GSC = Group Switched Cutoff, and RF = Reaction Field (where $\varepsilon \approx \infty$).}
280 \begin{tabular}{@{} ccrrrrrr @{}} % Column formatting, @{} suppresses leading/trailing space
281 \\
282 \toprule
283 & & \multicolumn{2}{c}{9 \AA} & \multicolumn{2}{c}{12 \AA} & \multicolumn{2}{c}{15 \AA}\\
284 \cmidrule(lr){3-4}
285 \cmidrule(lr){5-6}
286 \cmidrule(l){7-8}
287 Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
288 \midrule
289 PC & & 19.897 & 0.047 & -29.214 & 0.048 & -3.771 & 0.001 \\
290 SP & 0.0 & -0.014 & 0.000 & 2.135 & 0.347 & 0.457 & 0.045 \\
291 & 0.1 & 0.321 & 0.017 & 1.490 & 0.584 & 0.886 & 0.796 \\
292 & 0.2 & 0.896 & 0.872 & 1.011 & 0.998 & 0.997 & 0.999 \\
293 & 0.3 & 0.983 & 0.997 & 0.992 & 0.997 & 0.991 & 0.997 \\
294 SF & 0.0 & 0.943 & 0.979 & 1.048 & 0.978 & 0.995 & 0.999 \\
295 & 0.1 & 0.948 & 0.979 & 1.044 & 0.983 & 1.000 & 0.999 \\
296 & 0.2 & 0.982 & 0.997 & 0.969 & 0.960 & 0.997 & 0.999 \\
297 & 0.3 & 0.985 & 0.997 & 0.961 & 0.961 & 0.991 & 0.997 \\
298 GSC & & 0.983 & 0.985 & 0.966 & 0.994 & 1.003 & 0.999 \\
299 RF & & 0.924 & 0.944 & 0.990 & 0.996 & 0.991 & 0.998 \\
300 \midrule
301 PC & & -4.375 & 0.000 & 6.781 & 0.000 & -3.369 & 0.000 \\
302 SP & 0.0 & 0.515 & 0.164 & 0.856 & 0.426 & 0.743 & 0.478 \\
303 & 0.1 & 0.696 & 0.405 & 0.977 & 0.817 & 0.974 & 0.964 \\
304 & 0.2 & 0.981 & 0.980 & 1.001 & 1.000 & 1.000 & 1.000 \\
305 & 0.3 & 0.996 & 0.998 & 0.997 & 0.999 & 0.997 & 0.999 \\
306 SF & 0.0 & 0.991 & 0.995 & 1.003 & 0.998 & 0.999 & 1.000 \\
307 & 0.1 & 0.992 & 0.995 & 1.003 & 0.998 & 1.000 & 1.000 \\
308 & 0.2 & 0.998 & 0.998 & 0.981 & 0.962 & 1.000 & 1.000 \\
309 & 0.3 & 0.996 & 0.998 & 0.976 & 0.957 & 0.997 & 0.999 \\
310 GSC & & 0.997 & 0.996 & 0.998 & 0.999 & 1.000 & 1.000 \\
311 RF & & 0.988 & 0.989 & 1.000 & 0.999 & 1.000 & 1.000 \\
312 \midrule
313 PC & & -6.367 & 0.000 & -3.552 & 0.000 & -3.447 & 0.000 \\
314 SP & 0.0 & 0.643 & 0.409 & 0.833 & 0.607 & 0.961 & 0.805 \\
315 & 0.1 & 0.791 & 0.683 & 0.957 & 0.914 & 1.000 & 0.989 \\
316 & 0.2 & 0.974 & 0.991 & 0.993 & 0.998 & 0.993 & 0.998 \\
317 & 0.3 & 0.976 & 0.992 & 0.977 & 0.992 & 0.977 & 0.992 \\
318 SF & 0.0 & 0.979 & 0.997 & 0.992 & 0.999 & 0.994 & 1.000 \\
319 & 0.1 & 0.984 & 0.997 & 0.996 & 0.999 & 0.998 & 1.000 \\
320 & 0.2 & 0.991 & 0.997 & 0.974 & 0.958 & 0.993 & 0.998 \\
321 & 0.3 & 0.977 & 0.992 & 0.956 & 0.948 & 0.977 & 0.992 \\
322 GSC & & 0.999 & 0.997 & 0.996 & 0.999 & 1.002 & 1.000 \\
323 RF & & 0.994 & 0.997 & 0.997 & 0.999 & 1.000 & 1.000 \\
324 \bottomrule
325 \end{tabular}
326 \label{iceTab}
327 \end{table}
328
329 \begin{table}[htbp]
330 \centering
331 \caption{Variance results from Gaussian fits to angular distributions of the force and torque vectors in the ice I$_\textrm{c}$ system. PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force, GSC = Group Switched Cutoff, RF = Reaction Field (where $\varepsilon \approx \infty$), GSSP = Group Switched Shifted Potential, and GSSF = Group Switched Shifted Force.}
332 \begin{tabular}{@{} ccrrrrrr @{}} % Column formatting, @{} suppresses leading/trailing space
333 \\
334 \toprule
335 & & \multicolumn{3}{c}{Force $\sigma^2$} & \multicolumn{3}{c}{Torque $\sigma^2$} \\
336 \cmidrule(lr){3-5}
337 \cmidrule(l){6-8}
338 Method & $\alpha$ & 9 \AA & 12 \AA & 15 \AA & 9 \AA & 12 \AA & 15 \AA \\
339 \midrule
340 PC & & 2128.921 & 603.197 & 715.579 & 329.056 & 221.397 & 81.042 \\
341 SP & 0.0 & 1429.341 & 470.320 & 447.557 & 301.678 & 197.437 & 73.840 \\
342 & 0.1 & 590.008 & 107.510 & 18.883 & 118.201 & 32.472 & 3.599 \\
343 & 0.2 & 10.057 & 0.105 & 0.038 & 2.875 & 0.572 & 0.518 \\
344 & 0.3 & 0.245 & 0.260 & 0.262 & 2.365 & 2.396 & 2.327 \\
345 SF & 0.0 & 1.745 & 1.161 & 0.212 & 1.135 & 0.426 & 0.155 \\
346 & 0.1 & 1.721 & 0.868 & 0.082 & 1.118 & 0.358 & 0.118 \\
347 & 0.2 & 0.201 & 0.040 & 0.038 & 0.786 & 0.555 & 0.518 \\
348 & 0.3 & 0.241 & 0.260 & 0.262 & 2.368 & 2.400 & 2.327 \\
349 GSC & & 1.483 & 0.261 & 0.099 & 0.926 & 0.295 & 0.095 \\
350 RF & & 2.887 & 0.217 & 0.107 & 1.006 & 0.281 & 0.085 \\
351 \midrule
352 GSSP & 0.0 & 1.483 & 0.261 & 0.099 & 0.926 & 0.295 & 0.095 \\
353 & 0.1 & 1.341 & 0.123 & 0.037 & 0.835 & 0.234 & 0.085 \\
354 & 0.2 & 0.558 & 0.040 & 0.037 & 0.823 & 0.557 & 0.519 \\
355 & 0.3 & 0.250 & 0.251 & 0.259 & 2.387 & 2.395 & 2.328 \\
356 GSSF & 0.0 & 2.124 & 0.132 & 0.069 & 0.919 & 0.263 & 0.099 \\
357 & 0.1 & 2.165 & 0.101 & 0.035 & 0.895 & 0.244 & 0.096 \\
358 & 0.2 & 0.706 & 0.040 & 0.037 & 0.870 & 0.559 & 0.519 \\
359 & 0.3 & 0.251 & 0.251 & 0.259 & 2.387 & 2.395 & 2.328 \\
360 \bottomrule
361 \end{tabular}
362 \label{iceTabAng}
363 \end{table}
364
365 \section{\label{app-melt}NaCl Melt}
366
367 \begin{table}[htbp]
368 \centering
369 \caption{Regression results for the molten NaCl system. Tabulated results include $\Delta E$ values (top set) and force vector magnitudes (bottom set). PC = Pure Cutoff, SP = Shifted Potential, and SF = Shifted Force.}
370 \begin{tabular}{@{} ccrrrrrr @{}} % Column formatting, @{} suppresses leading/trailing space
371 \\
372 \toprule
373 & & \multicolumn{2}{c}{9 \AA} & \multicolumn{2}{c}{12 \AA} & \multicolumn{2}{c}{15 \AA}\\
374 \cmidrule(lr){3-4}
375 \cmidrule(lr){5-6}
376 \cmidrule(l){7-8}
377 Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
378 \midrule
379 PC & & -0.008 & 0.000 & -0.049 & 0.005 & -0.136 & 0.020 \\
380 SP & 0.0 & 0.937 & 0.996 & 0.880 & 0.995 & 0.971 & 0.999 \\
381 & 0.1 & 1.004 & 0.999 & 0.958 & 1.000 & 0.928 & 0.994 \\
382 & 0.2 & 0.960 & 1.000 & 0.813 & 0.996 & 0.811 & 0.954 \\
383 & 0.3 & 0.671 & 0.994 & 0.439 & 0.929 & 0.535 & 0.831 \\
384 SF & 0.0 & 1.001 & 1.000 & 0.949 & 1.000 & 1.008 & 1.000 \\
385 & 0.1 & 1.025 & 1.000 & 0.960 & 1.000 & 0.929 & 0.994 \\
386 & 0.2 & 0.966 & 1.000 & 0.813 & 0.996 & 0.811 & 0.954 \\
387 & 0.3 & 0.671 & 0.994 & 0.439 & 0.929 & 0.535 & 0.831 \\
388 \midrule
389 PC & & 1.103 & 0.000 & 0.989 & 0.000 & 0.802 & 0.000 \\
390 SP & 0.0 & 0.976 & 0.983 & 1.001 & 0.991 & 0.985 & 0.995 \\
391 & 0.1 & 0.996 & 0.997 & 0.997 & 0.998 & 0.996 & 0.996 \\
392 & 0.2 & 0.993 & 0.996 & 0.985 & 0.988 & 0.986 & 0.981 \\
393 & 0.3 & 0.956 & 0.956 & 0.940 & 0.912 & 0.948 & 0.929 \\
394 SF & 0.0 & 0.997 & 0.998 & 0.995 & 0.999 & 0.999 & 1.000 \\
395 & 0.1 & 1.001 & 0.997 & 0.997 & 0.999 & 0.996 & 0.996 \\
396 & 0.2 & 0.994 & 0.996 & 0.985 & 0.988 & 0.986 & 0.981 \\
397 & 0.3 & 0.956 & 0.956 & 0.940 & 0.912 & 0.948 & 0.929 \\
398 \bottomrule
399 \end{tabular}
400 \label{meltTab}
401 \end{table}
402
403 \begin{table}[htbp]
404 \centering
405 \caption{Variance results from Gaussian fits to angular distributions of the force vectors in the molten NaCl system. PC = Pure Cutoff, SP = Shifted Potential, and SF = Shifted Force.}
406 \begin{tabular}{@{} ccrrrrrr @{}} % Column formatting, @{} suppresses leading/trailing space
407 \\
408 \toprule
409 & & \multicolumn{3}{c}{Force $\sigma^2$} \\
410 \cmidrule(lr){3-5}
411 \cmidrule(l){6-8}
412 Method & $\alpha$ & 9 \AA & 12 \AA & 15 \AA \\
413 \midrule
414 PC & & 13.294 & 8.035 & 5.366 \\
415 SP & 0.0 & 13.316 & 8.037 & 5.385 \\
416 & 0.1 & 5.705 & 1.391 & 0.360 \\
417 & 0.2 & 2.415 & 7.534 & 13.927 \\
418 & 0.3 & 23.769 & 67.306 & 57.252 \\
419 SF & 0.0 & 1.693 & 0.603 & 0.256 \\
420 & 0.1 & 1.687 & 0.653 & 0.272 \\
421 & 0.2 & 2.598 & 7.523 & 13.930 \\
422 & 0.3 & 23.734 & 67.305 & 57.252 \\
423 \bottomrule
424 \end{tabular}
425 \label{meltTabAng}
426 \end{table}
427
428 \section{\label{app-salt}NaCl Crystal}
429
430 \begin{table}[htbp]
431 \centering
432 \caption{Regression results for the crystalline NaCl system. Tabulated results include $\Delta E$ values (top set) and force vector magnitudes (bottom set). PC = Pure Cutoff, SP = Shifted Potential, and SF = Shifted Force.}
433 \begin{tabular}{@{} ccrrrrrr @{}} % Column formatting, @{} suppresses leading/trailing space
434 \\
435 \toprule
436 & & \multicolumn{2}{c}{9 \AA} & \multicolumn{2}{c}{12 \AA} & \multicolumn{2}{c}{15 \AA}\\
437 \cmidrule(lr){3-4}
438 \cmidrule(lr){5-6}
439 \cmidrule(l){7-8}
440 Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
441 \midrule
442 PC & & -20.241 & 0.228 & -20.248 & 0.229 & -20.239 & 0.228 \\
443 SP & 0.0 & 1.039 & 0.733 & 2.037 & 0.565 & 1.225 & 0.743 \\
444 & 0.1 & 1.049 & 0.865 & 1.424 & 0.784 & 1.029 & 0.980 \\
445 & 0.2 & 0.982 & 0.976 & 0.969 & 0.980 & 0.960 & 0.980 \\
446 & 0.3 & 0.873 & 0.944 & 0.872 & 0.945 & 0.872 & 0.945 \\
447 SF & 0.0 & 1.041 & 0.967 & 0.994 & 0.989 & 0.957 & 0.993 \\
448 & 0.1 & 1.050 & 0.968 & 0.996 & 0.991 & 0.972 & 0.995 \\
449 & 0.2 & 0.982 & 0.975 & 0.959 & 0.980 & 0.960 & 0.980 \\
450 & 0.3 & 0.873 & 0.944 & 0.872 & 0.945 & 0.872 & 0.944 \\
451 \midrule
452 PC & & 0.795 & 0.000 & 0.792 & 0.000 & 0.793 & 0.000 \\
453 SP & 0.0 & 0.916 & 0.829 & 1.086 & 0.791 & 1.010 & 0.936 \\
454 & 0.1 & 0.958 & 0.917 & 1.049 & 0.943 & 1.001 & 0.995 \\
455 & 0.2 & 0.981 & 0.981 & 0.982 & 0.984 & 0.981 & 0.984 \\
456 & 0.3 & 0.950 & 0.952 & 0.950 & 0.953 & 0.950 & 0.953 \\
457 SF & 0.0 & 1.002 & 0.983 & 0.997 & 0.994 & 0.991 & 0.997 \\
458 & 0.1 & 1.003 & 0.984 & 0.996 & 0.995 & 0.993 & 0.997 \\
459 & 0.2 & 0.983 & 0.980 & 0.981 & 0.984 & 0.981 & 0.984 \\
460 & 0.3 & 0.950 & 0.952 & 0.950 & 0.953 & 0.950 & 0.953 \\
461 \bottomrule
462 \end{tabular}
463 \label{saltTab}
464 \end{table}
465
466 \begin{table}[htbp]
467 \centering
468 \caption{Variance results from Gaussian fits to angular distributions of the force vectors in the crystalline NaCl system. PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force, GSC = Group Switched Cutoff, and RF = Reaction Field (where $\varepsilon \approx \infty$).}
469 \begin{tabular}{@{} ccrrrrrr @{}} % Column formatting, @{} suppresses leading/trailing space
470 \\
471 \toprule
472 & & \multicolumn{3}{c}{Force $\sigma^2$} \\
473 \cmidrule(lr){3-5}
474 \cmidrule(l){6-8}
475 Method & $\alpha$ & 9 \AA & 12 \AA & 15 \AA \\
476 \midrule
477 PC & & 111.945 & 111.824 & 111.866 \\
478 SP & 0.0 & 112.414 & 152.215 & 38.087 \\
479 & 0.1 & 52.361 & 42.574 & 2.819 \\
480 & 0.2 & 10.847 & 9.709 & 9.686 \\
481 & 0.3 & 31.128 & 31.104 & 31.029 \\
482 SF & 0.0 & 10.025 & 3.555 & 1.648 \\
483 & 0.1 & 9.462 & 3.303 & 1.721 \\
484 & 0.2 & 11.454 & 9.813 & 9.701 \\
485 & 0.3 & 31.120 & 31.105 & 31.029 \\
486 \bottomrule
487 \end{tabular}
488 \label{saltTabAng}
489 \end{table}
490
491 \section{\label{app-sol1}1M NaCl Solution}
492
493 \begin{table}[htbp]
494 \centering
495 \caption{Regression results for the 1M NaCl solution system. Tabulated results include $\Delta E$ values (top set), force vector magnitudes (middle set) and torque vector magnitudes (bottom set). PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force, GSC = Group Switched Cutoff, RF = Reaction Field (where $\varepsilon \approx \infty$), GSSP = Group Switched Shifted Potential, and GSSF = Group Switched Shifted Force.}
496 \begin{tabular}{@{} ccrrrrrr @{}} % Column formatting, @{} suppresses leading/trailing space
497 \\
498 \toprule
499 & & \multicolumn{2}{c}{9 \AA} & \multicolumn{2}{c}{12 \AA} & \multicolumn{2}{c}{15 \AA}\\
500 \cmidrule(lr){3-4}
501 \cmidrule(lr){5-6}
502 \cmidrule(l){7-8}
503 Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
504 \midrule
505 PC & & 0.247 & 0.000 & -1.103 & 0.001 & 5.480 & 0.015 \\
506 SP & 0.0 & 0.935 & 0.388 & 0.984 & 0.541 & 1.010 & 0.685 \\
507 & 0.1 & 0.951 & 0.603 & 0.993 & 0.875 & 1.001 & 0.979 \\
508 & 0.2 & 0.969 & 0.968 & 0.996 & 0.997 & 0.994 & 0.997 \\
509 & 0.3 & 0.955 & 0.966 & 0.984 & 0.992 & 0.978 & 0.991 \\
510 SF & 0.0 & 0.963 & 0.971 & 0.989 & 0.996 & 0.991 & 0.998 \\
511 & 0.1 & 0.970 & 0.971 & 0.995 & 0.997 & 0.997 & 0.999 \\
512 & 0.2 & 0.972 & 0.975 & 0.996 & 0.997 & 0.994 & 0.997 \\
513 & 0.3 & 0.955 & 0.966 & 0.984 & 0.992 & 0.978 & 0.991 \\
514 GSC & & 0.964 & 0.731 & 0.984 & 0.704 & 1.005 & 0.770 \\
515 RF & & 0.968 & 0.605 & 0.974 & 0.541 & 1.014 & 0.614 \\
516 \midrule
517 PC & & 1.354 & 0.000 & -1.190 & 0.000 & -0.314 & 0.000 \\
518 SP & 0.0 & 0.720 & 0.338 & 0.808 & 0.523 & 0.860 & 0.643 \\
519 & 0.1 & 0.839 & 0.583 & 0.955 & 0.882 & 0.992 & 0.978 \\
520 & 0.2 & 0.995 & 0.987 & 0.999 & 1.000 & 0.999 & 1.000 \\
521 & 0.3 & 0.995 & 0.996 & 0.996 & 0.998 & 0.996 & 0.998 \\
522 SF & 0.0 & 0.998 & 0.994 & 1.000 & 0.998 & 1.000 & 0.999 \\
523 & 0.1 & 0.997 & 0.994 & 1.000 & 0.999 & 1.000 & 1.000 \\
524 & 0.2 & 0.999 & 0.998 & 0.999 & 1.000 & 0.999 & 1.000 \\
525 & 0.3 & 0.995 & 0.996 & 0.996 & 0.998 & 0.996 & 0.998 \\
526 GSC & & 0.995 & 0.990 & 0.998 & 0.997 & 0.998 & 0.996 \\
527 RF & & 0.998 & 0.993 & 0.999 & 0.998 & 0.999 & 0.996 \\
528 \midrule
529 PC & & 2.437 & 0.000 & -1.872 & 0.000 & 2.138 & 0.000 \\
530 SP & 0.0 & 0.838 & 0.525 & 0.901 & 0.686 & 0.932 & 0.779 \\
531 & 0.1 & 0.914 & 0.733 & 0.979 & 0.932 & 0.995 & 0.987 \\
532 & 0.2 & 0.977 & 0.969 & 0.988 & 0.990 & 0.989 & 0.990 \\
533 & 0.3 & 0.952 & 0.950 & 0.964 & 0.971 & 0.965 & 0.970 \\
534 SF & 0.0 & 0.969 & 0.977 & 0.987 & 0.996 & 0.993 & 0.998 \\
535 & 0.1 & 0.975 & 0.978 & 0.993 & 0.996 & 0.997 & 0.998 \\
536 & 0.2 & 0.976 & 0.973 & 0.988 & 0.990 & 0.989 & 0.990 \\
537 & 0.3 & 0.952 & 0.950 & 0.964 & 0.971 & 0.965 & 0.970 \\
538 GSC & & 0.980 & 0.959 & 0.990 & 0.983 & 0.992 & 0.989 \\
539 RF & & 0.984 & 0.975 & 0.996 & 0.995 & 0.998 & 0.998 \\
540 \bottomrule
541 \end{tabular}
542 \label{sol1Tab}
543 \end{table}
544
545 \begin{table}[htbp]
546 \centering
547 \caption{Variance results from Gaussian fits to angular distributions of the force and torque vectors in the 1M NaCl solution system. PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force, GSC = Group Switched Cutoff, RF = Reaction Field (where $\varepsilon \approx \infty$), GSSP = Group Switched Shifted Potential, and GSSF = Group Switched Shifted Force.}
548 \begin{tabular}{@{} ccrrrrrr @{}} % Column formatting, @{} suppresses leading/trailing space
549 \\
550 \toprule
551 & & \multicolumn{3}{c}{Force $\sigma^2$} & \multicolumn{3}{c}{Torque $\sigma^2$} \\
552 \cmidrule(lr){3-5}
553 \cmidrule(l){6-8}
554 Method & $\alpha$ & 9 \AA & 12 \AA & 15 \AA & 9 \AA & 12 \AA & 15 \AA \\
555 \midrule
556 PC & & 882.863 & 510.435 & 344.201 & 277.691 & 154.231 & 100.131 \\
557 SP & 0.0 & 732.569 & 405.704 & 257.756 & 261.445 & 142.245 & 91.497 \\
558 & 0.1 & 329.031 & 70.746 & 12.014 & 118.496 & 25.218 & 4.711 \\
559 & 0.2 & 6.772 & 0.153 & 0.118 & 9.780 & 2.101 & 2.102 \\
560 & 0.3 & 0.951 & 0.774 & 0.784 & 12.108 & 7.673 & 7.851 \\
561 SF & 0.0 & 2.555 & 0.762 & 0.313 & 6.590 & 1.328 & 0.558 \\
562 & 0.1 & 2.561 & 0.560 & 0.123 & 6.464 & 1.162 & 0.457 \\
563 & 0.2 & 0.501 & 0.118 & 0.118 & 5.698 & 2.074 & 2.099 \\
564 & 0.3 & 0.943 & 0.774 & 0.784 & 12.118 & 7.674 & 7.851 \\
565 GSC & & 2.915 & 0.643 & 0.261 & 9.576 & 3.133 & 1.812 \\
566 RF & & 2.415 & 0.452 & 0.130 & 6.915 & 1.423 & 0.507 \\
567 \midrule
568 GSSP & 0.0 & 2.915 & 0.643 & 0.261 & 9.576 & 3.133 & 1.812 \\
569 & 0.1 & 2.251 & 0.324 & 0.064 & 7.628 & 1.639 & 0.497 \\
570 & 0.2 & 0.590 & 0.118 & 0.116 & 6.080 & 2.096 & 2.103 \\
571 & 0.3 & 0.953 & 0.759 & 0.780 & 12.347 & 7.683 & 7.849 \\
572 GSSF & 0.0 & 1.541 & 0.301 & 0.096 & 6.407 & 1.316 & 0.496 \\
573 & 0.1 & 1.541 & 0.237 & 0.050 & 6.356 & 1.202 & 0.457 \\
574 & 0.2 & 0.568 & 0.118 & 0.116 & 6.166 & 2.105 & 2.105 \\
575 & 0.3 & 0.954 & 0.759 & 0.780 & 12.337 & 7.684 & 7.849 \\
576 \bottomrule
577 \end{tabular}
578 \label{sol1TabAng}
579 \end{table}
580
581 \section{\label{app-sol10}10M NaCl Solution}
582
583 \begin{table}[htbp]
584 \centering
585 \caption{Regression results for the 10M NaCl solution system. Tabulated results include $\Delta E$ values (top set), force vector magnitudes (middle set) and torque vector magnitudes (bottom set). PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force, GSC = Group Switched Cutoff, and RF = Reaction Field (where $\varepsilon \approx \infty$).}
586 \begin{tabular}{@{} ccrrrrrr @{}} % Column formatting, @{} suppresses leading/trailing space
587 \\
588 \toprule
589 & & \multicolumn{2}{c}{9 \AA} & \multicolumn{2}{c}{12 \AA} & \multicolumn{2}{c}{15 \AA}\\
590 \cmidrule(lr){3-4}
591 \cmidrule(lr){5-6}
592 \cmidrule(l){7-8}
593 Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
594 \midrule
595 PC & & -0.081 & 0.000 & 0.945 & 0.001 & 0.073 & 0.000 \\
596 SP & 0.0 & 0.978 & 0.469 & 0.996 & 0.672 & 0.975 & 0.668 \\
597 & 0.1 & 0.944 & 0.645 & 0.997 & 0.886 & 0.991 & 0.978 \\
598 & 0.2 & 0.873 & 0.896 & 0.985 & 0.993 & 0.980 & 0.993 \\
599 & 0.3 & 0.831 & 0.860 & 0.960 & 0.979 & 0.955 & 0.977 \\
600 SF & 0.0 & 0.858 & 0.905 & 0.985 & 0.970 & 0.990 & 0.998 \\
601 & 0.1 & 0.865 & 0.907 & 0.992 & 0.974 & 0.994 & 0.999 \\
602 & 0.2 & 0.862 & 0.894 & 0.985 & 0.993 & 0.980 & 0.993 \\
603 & 0.3 & 0.831 & 0.859 & 0.960 & 0.979 & 0.955 & 0.977 \\
604 GSC & & 1.985 & 0.152 & 0.760 & 0.031 & 1.106 & 0.062 \\
605 RF & & 2.414 & 0.116 & 0.813 & 0.017 & 1.434 & 0.047 \\
606 \midrule
607 PC & & -7.028 & 0.000 & -9.364 & 0.000 & 0.925 & 0.865 \\
608 SP & 0.0 & 0.701 & 0.319 & 0.909 & 0.773 & 0.861 & 0.665 \\
609 & 0.1 & 0.824 & 0.565 & 0.970 & 0.930 & 0.990 & 0.979 \\
610 & 0.2 & 0.988 & 0.981 & 0.995 & 0.998 & 0.991 & 0.998 \\
611 & 0.3 & 0.983 & 0.985 & 0.985 & 0.991 & 0.978 & 0.990 \\
612 SF & 0.0 & 0.993 & 0.988 & 0.992 & 0.984 & 0.998 & 0.999 \\
613 & 0.1 & 0.993 & 0.989 & 0.993 & 0.986 & 0.998 & 1.000 \\
614 & 0.2 & 0.993 & 0.992 & 0.995 & 0.998 & 0.991 & 0.998 \\
615 & 0.3 & 0.983 & 0.985 & 0.985 & 0.991 & 0.978 & 0.990 \\
616 GSC & & 0.964 & 0.897 & 0.970 & 0.917 & 0.925 & 0.865 \\
617 RF & & 0.994 & 0.864 & 0.988 & 0.865 & 0.980 & 0.784 \\
618 \midrule
619 PC & & -2.212 & 0.000 & -0.588 & 0.000 & 0.953 & 0.925 \\
620 SP & 0.0 & 0.800 & 0.479 & 0.930 & 0.804 & 0.924 & 0.759 \\
621 & 0.1 & 0.883 & 0.694 & 0.976 & 0.942 & 0.993 & 0.986 \\
622 & 0.2 & 0.952 & 0.943 & 0.980 & 0.984 & 0.980 & 0.983 \\
623 & 0.3 & 0.914 & 0.909 & 0.943 & 0.948 & 0.944 & 0.946 \\
624 SF & 0.0 & 0.945 & 0.953 & 0.980 & 0.984 & 0.991 & 0.998 \\
625 & 0.1 & 0.951 & 0.954 & 0.987 & 0.986 & 0.995 & 0.998 \\
626 & 0.2 & 0.951 & 0.946 & 0.980 & 0.984 & 0.980 & 0.983 \\
627 & 0.3 & 0.914 & 0.908 & 0.943 & 0.948 & 0.944 & 0.946 \\
628 GSC & & 0.882 & 0.818 & 0.939 & 0.902 & 0.953 & 0.925 \\
629 RF & & 0.949 & 0.939 & 0.988 & 0.988 & 0.992 & 0.993 \\
630 \bottomrule
631 \end{tabular}
632 \label{sol10Tab}
633 \end{table}
634
635 \begin{table}[htbp]
636 \centering
637 \caption{Variance results from Gaussian fits to angular distributions of the force and torque vectors in the 10M NaCl solution system. PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force, GSC = Group Switched Cutoff, RF = Reaction Field (where $\varepsilon \approx \infty$), GSSP = Group Switched Shifted Potential, and GSSF = Group Switched Shifted Force.}
638 \begin{tabular}{@{} ccrrrrrr @{}} % Column formatting, @{} suppresses leading/trailing space
639 \\
640 \toprule
641 & & \multicolumn{3}{c}{Force $\sigma^2$} & \multicolumn{3}{c}{Torque $\sigma^2$} \\
642 \cmidrule(lr){3-5}
643 \cmidrule(l){6-8}
644 Method & $\alpha$ & 9 \AA & 12 \AA & 15 \AA & 9 \AA & 12 \AA & 15 \AA \\
645 \midrule
646 PC & & 957.784 & 513.373 & 2.260 & 340.043 & 179.443 & 13.079 \\
647 SP & 0.0 & 786.244 & 139.985 & 259.289 & 311.519 & 90.280 & 105.187 \\
648 & 0.1 & 354.697 & 38.614 & 12.274 & 144.531 & 23.787 & 5.401 \\
649 & 0.2 & 7.674 & 0.363 & 0.215 & 16.655 & 3.601 & 3.634 \\
650 & 0.3 & 1.745 & 1.456 & 1.449 & 23.669 & 14.376 & 14.240 \\
651 SF & 0.0 & 3.282 & 8.567 & 0.369 & 11.904 & 6.589 & 0.717 \\
652 & 0.1 & 3.263 & 7.479 & 0.142 & 11.634 & 5.750 & 0.591 \\
653 & 0.2 & 0.686 & 0.324 & 0.215 & 10.809 & 3.580 & 3.635 \\
654 & 0.3 & 1.749 & 1.456 & 1.449 & 23.635 & 14.375 & 14.240 \\
655 GSC & & 6.181 & 2.904 & 2.263 & 44.349 & 19.442 & 12.873 \\
656 RF & & 3.891 & 0.847 & 0.323 & 18.628 & 3.995 & 2.072 \\
657 \midrule
658 GSSP & 0.0 & 6.197 & 2.929 & 2.290 & 44.441 & 19.442 & 12.873 \\
659 & 0.1 & 4.688 & 1.064 & 0.260 & 31.208 & 6.967 & 2.303 \\
660 & 0.2 & 1.021 & 0.218 & 0.213 & 14.425 & 3.629 & 3.649 \\
661 & 0.3 & 1.752 & 1.454 & 1.451 & 23.540 & 14.390 & 14.245 \\
662 GSSF & 0.0 & 2.494 & 0.546 & 0.217 & 16.391 & 3.230 & 1.613 \\
663 & 0.1 & 2.448 & 0.429 & 0.106 & 16.390 & 2.827 & 1.159 \\
664 & 0.2 & 0.899 & 0.214 & 0.213 & 13.542 & 3.583 & 3.645 \\
665 & 0.3 & 1.752 & 1.454 & 1.451 & 23.587 & 14.390 & 14.245 \\
666 \bottomrule
667 \end{tabular}
668 \label{sol10TabAng}
669 \end{table}
670
671 \section{\label{app-argon}Argon Sphere in Water}
672
673 \begin{table}[htbp]
674 \centering
675 \caption{Regression results for the 6 \AA\ argon sphere in liquid water system. Tabulated results include $\Delta E$ values (top set), force vector magnitudes (middle set) and torque vector magnitudes (bottom set). PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force, GSC = Group Switched Cutoff, and RF = Reaction Field (where $\varepsilon \approx \infty$).}
676 \begin{tabular}{@{} ccrrrrrr @{}} % Column formatting, @{} suppresses leading/trailing space
677 \\
678 \toprule
679 & & \multicolumn{2}{c}{9 \AA} & \multicolumn{2}{c}{12 \AA} & \multicolumn{2}{c}{15 \AA}\\
680 \cmidrule(lr){3-4}
681 \cmidrule(lr){5-6}
682 \cmidrule(l){7-8}
683 Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
684 \midrule
685 PC & & 2.320 & 0.008 & -0.650 & 0.001 & 3.848 & 0.029 \\
686 SP & 0.0 & 1.053 & 0.711 & 0.977 & 0.820 & 0.974 & 0.882 \\
687 & 0.1 & 1.032 & 0.846 & 0.989 & 0.965 & 0.992 & 0.994 \\
688 & 0.2 & 0.993 & 0.995 & 0.982 & 0.998 & 0.986 & 0.998 \\
689 & 0.3 & 0.968 & 0.995 & 0.954 & 0.992 & 0.961 & 0.994 \\
690 SF & 0.0 & 0.982 & 0.996 & 0.992 & 0.999 & 0.993 & 1.000 \\
691 & 0.1 & 0.987 & 0.996 & 0.996 & 0.999 & 0.997 & 1.000 \\
692 & 0.2 & 0.989 & 0.998 & 0.984 & 0.998 & 0.989 & 0.998 \\
693 & 0.3 & 0.971 & 0.995 & 0.957 & 0.992 & 0.965 & 0.994 \\
694 GSC & & 1.002 & 0.983 & 0.992 & 0.973 & 0.996 & 0.971 \\
695 RF & & 0.998 & 0.995 & 0.999 & 0.998 & 0.998 & 0.998 \\
696 \midrule
697 PC & & -36.559 & 0.002 & -44.917 & 0.004 & -52.945 & 0.006 \\
698 SP & 0.0 & 0.890 & 0.786 & 0.927 & 0.867 & 0.949 & 0.909 \\
699 & 0.1 & 0.942 & 0.895 & 0.984 & 0.974 & 0.997 & 0.995 \\
700 & 0.2 & 0.999 & 0.997 & 1.000 & 1.000 & 1.000 & 1.000 \\
701 & 0.3 & 1.001 & 0.999 & 1.001 & 1.000 & 1.001 & 1.000 \\
702 SF & 0.0 & 1.000 & 0.999 & 1.000 & 1.000 & 1.000 & 1.000 \\
703 & 0.1 & 1.000 & 0.999 & 1.000 & 1.000 & 1.000 & 1.000 \\
704 & 0.2 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 \\
705 & 0.3 & 1.001 & 0.999 & 1.001 & 1.000 & 1.001 & 1.000 \\
706 GSC & & 0.999 & 0.999 & 1.000 & 1.000 & 1.000 & 1.000 \\
707 RF & & 0.999 & 0.999 & 1.000 & 1.000 & 1.000 & 1.000 \\
708 \midrule
709 PC & & 1.984 & 0.000 & 0.012 & 0.000 & 1.357 & 0.000 \\
710 SP & 0.0 & 0.850 & 0.552 & 0.907 & 0.703 & 0.938 & 0.793 \\
711 & 0.1 & 0.924 & 0.755 & 0.980 & 0.936 & 0.995 & 0.988 \\
712 & 0.2 & 0.985 & 0.983 & 0.986 & 0.988 & 0.987 & 0.988 \\
713 & 0.3 & 0.961 & 0.966 & 0.959 & 0.964 & 0.960 & 0.966 \\
714 SF & 0.0 & 0.977 & 0.989 & 0.987 & 0.995 & 0.992 & 0.998 \\
715 & 0.1 & 0.982 & 0.989 & 0.992 & 0.996 & 0.997 & 0.998 \\
716 & 0.2 & 0.984 & 0.987 & 0.986 & 0.987 & 0.987 & 0.988 \\
717 & 0.3 & 0.961 & 0.966 & 0.959 & 0.964 & 0.960 & 0.966 \\
718 GSC & & 0.995 & 0.981 & 0.999 & 0.990 & 1.000 & 0.993 \\
719 RF & & 0.993 & 0.988 & 0.997 & 0.995 & 0.999 & 0.998 \\
720 \bottomrule
721 \end{tabular}
722 \label{argonTab}
723 \end{table}
724
725 \begin{table}[htbp]
726 \centering
727 \caption{Variance results from Gaussian fits to angular distributions of the force and torque vectors in the 6 \AA\ sphere of argon in liquid water system. PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force, GSC = Group Switched Cutoff, RF = Reaction Field (where $\varepsilon \approx \infty$), GSSP = Group Switched Shifted Potential, and GSSF = Group Switched Shifted Force.}
728 \begin{tabular}{@{} ccrrrrrr @{}} % Column formatting, @{} suppresses leading/trailing space
729 \\
730 \toprule
731 & & \multicolumn{3}{c}{Force $\sigma^2$} & \multicolumn{3}{c}{Torque $\sigma^2$} \\
732 \cmidrule(lr){3-5}
733 \cmidrule(l){6-8}
734 Method & $\alpha$ & 9 \AA & 12 \AA & 15 \AA & 9 \AA & 12 \AA & 15 \AA \\
735 \midrule
736 PC & & 568.025 & 265.993 & 195.099 & 246.626 & 138.600 & 91.654 \\
737 SP & 0.0 & 504.578 & 251.694 & 179.932 & 231.568 & 131.444 & 85.119 \\
738 & 0.1 & 224.886 & 49.746 & 9.346 & 104.482 & 23.683 & 4.480 \\
739 & 0.2 & 4.889 & 0.197 & 0.155 & 6.029 & 2.507 & 2.269 \\
740 & 0.3 & 0.817 & 0.833 & 0.812 & 8.286 & 8.436 & 8.135 \\
741 SF & 0.0 & 1.924 & 0.675 & 0.304 & 3.658 & 1.448 & 0.600 \\
742 & 0.1 & 1.937 & 0.515 & 0.143 & 3.565 & 1.308 & 0.546 \\
743 & 0.2 & 0.407 & 0.166 & 0.156 & 3.086 & 2.501 & 2.274 \\
744 & 0.3 & 0.815 & 0.833 & 0.812 & 8.330 & 8.437 & 8.135 \\
745 GSC & & 2.098 & 0.584 & 0.284 & 5.391 & 2.414 & 1.501 \\
746 RF & & 1.822 & 0.408 & 0.142 & 3.799 & 1.362 & 0.550 \\
747 \midrule
748 GSSP & 0.0 & 2.098 & 0.584 & 0.284 & 5.391 & 2.414 & 1.501 \\
749 & 0.1 & 1.652 & 0.309 & 0.087 & 4.197 & 1.401 & 0.590 \\
750 & 0.2 & 0.465 & 0.165 & 0.153 & 3.323 & 2.529 & 2.273 \\
751 & 0.3 & 0.813 & 0.825 & 0.816 & 8.316 & 8.447 & 8.132 \\
752 GSSF & 0.0 & 1.173 & 0.292 & 0.113 & 3.452 & 1.347 & 0.583 \\
753 & 0.1 & 1.166 & 0.240 & 0.076 & 3.381 & 1.281 & 0.575 \\
754 & 0.2 & 0.459 & 0.165 & 0.153 & 3.430 & 2.542 & 2.273 \\
755 & 0.3 & 0.814 & 0.825 & 0.816 & 8.325 & 8.447 & 8.132 \\
756 \bottomrule
757 \end{tabular}
758 \label{argonTabAng}
759 \end{table}
760
761 \newpage
762
763 \bibliographystyle{achemso}
764 \bibliography{electrostaticMethods}
765
766
767 \end{document}