--- trunk/electrostaticMethodsPaper/SupportingInfo.tex 2006/03/24 02:39:59 2667 +++ trunk/electrostaticMethodsPaper/SupportingInfo.tex 2006/03/24 17:28:09 2670 @@ -23,12 +23,13 @@ \begin{document} -This document includes individual system-based comparisons of the -studied methods with smooth particle mesh Ewald {\sc spme}. Each of -the seven systems comprises its own section and has its own discussion -and tabular listing of the results for the $\Delta E$, force and -torque vector magnitude, and force and torque vector direction -comparisons. +This document includes comparisons of the new pairwise electrostatic +methods with {\sc spme} for each of the individual systems mentioned +in paper. Each of the seven sections contains information about a +single system type and has its own discussion and tabular listing of +the results for the comparisons of $\Delta E$, the magnitudes of the +forces and torques, and directionality of the force and torque +vectors. \section{\label{app:water}Liquid Water} @@ -138,12 +139,13 @@ GSSF & 0.0 & 1.298 & 0.270 & 0.083 & 3.098 & 0.992 & \label{tab:spceAng} \end{table} -The water results appear to parallel the combined results seen in the -discussion section of the main paper. There is good agreement with -{\sc spme} in both energetic and dynamic behavior when using the {\sc sf} -method with and without damping. The {\sc sp} method does well with an +The water results parallel the combined results seen in the discussion +section of the main paper. There is good agreement with {\sc spme} in +both energetic and dynamic behavior when using the {\sc sf} method +with and without damping. The {\sc sp} method does well with an $\alpha$ around 0.2 \AA$^{-1}$, particularly with cutoff radii greater -than 12 \AA. Overdamping the electrostatics reduces the agreement between both these methods and {\sc spme}. +than 12 \AA. Overdamping the electrostatics reduces the agreement +between both these methods and {\sc spme}. The pure cutoff ({\sc pc}) method performs poorly, again mirroring the observations in the main portion of this paper. In contrast to the @@ -285,7 +287,7 @@ Highly ordered systems are a difficult test for the pa \end{table} Highly ordered systems are a difficult test for the pairwise methods -in that they lack the periodicity term of the Ewald summation. As +in that they lack the implicit periodicity of the Ewald summation. As expected, the energy gap agreement with {\sc spme} is reduced for the {\sc sp} and {\sc sf} methods with parameters that were acceptable for the disordered liquid system. Moving to higher $R_\textrm{c}$ helps @@ -306,8 +308,8 @@ A high temperature NaCl melt was tested to gauge the a \section{\label{app:melt}NaCl Melt} A high temperature NaCl melt was tested to gauge the accuracy of the -pairwise summation methods in a charged disordered system. The results -for the energy gap comparisons and the force vector magnitude +pairwise summation methods in a disordered system of charges. The +results for the energy gap comparisons and the force vector magnitude comparisons are shown in table \ref{tab:melt}. The force vector directionality results are displayed separately in table \ref{tab:meltAng}. @@ -597,8 +599,7 @@ method. Though good force agreement is still maintaine regarding these methods carry over from section \ref{app:water}. The differences between these systems are more visible for the {\sc rf} method. Though good force agreement is still maintained, the energy -gaps show a significant increase in the data scatter. This foreshadows -the breakdown of the method as we introduce charged inhomogeneities. +gaps show a significant increase in the scatter of the data. \section{\label{app:solnStr}Strong NaCl Solution}