ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/electrostaticMethodsPaper/SupportingInfo.tex
(Generate patch)

Comparing trunk/electrostaticMethodsPaper/SupportingInfo.tex (file contents):
Revision 2599 by chrisfen, Tue Feb 28 14:09:55 2006 UTC vs.
Revision 2670 by gezelter, Fri Mar 24 17:28:09 2006 UTC

# Line 1 | Line 1
1   %\documentclass[prb,aps,twocolumn,tabularx]{revtex4}
2 < \documentclass[12pt]{article}
3 < \usepackage{endfloat}
2 > \documentclass[11pt]{article}
3 > %\usepackage{endfloat}
4   \usepackage{amsmath}
5   \usepackage{amssymb}
6   \usepackage{epsf}
# Line 23 | Line 23
23  
24   \begin{document}
25  
26 < This document includes system based comparisons of the studied methods with smooth particle-mesh Ewald.  Each of the seven systems comprises it's own section and has it's own discussion and tabular listing of the results for the $\Delta E$, force and torque vector magnitude, and force and torque vector direction comparisons.
26 > This document includes comparisons of the new pairwise electrostatic
27 > methods with {\sc spme} for each of the individual systems mentioned
28 > in paper. Each of the seven sections contains information about a
29 > single system type and has its own discussion and tabular listing of
30 > the results for the comparisons of $\Delta E$, the magnitudes of the
31 > forces and torques, and directionality of the force and torque
32 > vectors.
33  
34 < \section{\label{app-water}Liquid Water}
34 > \section{\label{app:water}Liquid Water}
35  
36 + The first system considered was liquid water at 300K using the SPC/E
37 + model of water.\cite{Berendsen87} The results for the energy gap
38 + comparisons and the force and torque vector magnitude comparisons are
39 + shown in table \ref{tab:spce}.  The force and torque vector
40 + directionality results are displayed separately in table
41 + \ref{tab:spceAng}, where the effect of group-based cutoffs and
42 + switching functions on the {\sc sp} and {\sc sf} potentials are
43 + investigated.
44   \begin{table}[htbp]
45     \centering
46 <   \caption{Regression results for the liquid water system. Tabulated results include $\Delta E$ values (top set), force vector magnitudes (middle set) and torque vector magnitudes (bottom set).  PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force, GSC = Group Switched Cutoff, and RF = Reaction Field (where $\varepsilon \approx \infty$).}  
46 >   \caption{Regression results for the liquid water system. Tabulated
47 > results include $\Delta E$ values (top set), force vector magnitudes
48 > (middle set) and torque vector magnitudes (bottom set).  PC = Pure
49 > Cutoff, SP = Shifted Potential, SF = Shifted Force, GSC = Group
50 > Switched Cutoff, and RF = Reaction Field (where $\varepsilon \approx
51 > \infty$).}      
52     \begin{tabular}{@{} ccrrrrrr @{}}
53        \\
54        \toprule
# Line 49 | Line 68 | GSC &     & 0.918 & 0.862 & 0.852 & 0.756 & 0.801 & 0.
68      & 0.2 & 0.992 & 0.989 & 1.001 & 0.995 & 0.994 & 0.996 \\
69      & 0.3 & 0.984 & 0.980 & 0.996 & 0.985 & 0.982 & 0.987 \\
70   GSC &     & 0.918 & 0.862 & 0.852 & 0.756 & 0.801 & 0.700 \\
71 < RF  &     & 0.971 & 0.958 & 0.975 & 0.987 & 0.959 & 0.983 \\                              
53 <
71 > RF  &     & 0.971 & 0.958 & 0.975 & 0.987 & 0.959 & 0.983 \\                
72              \midrule
55
73   PC  &     & -1.647 & 0.000 & -0.127 & 0.000 & -0.979 & 0.000 \\
74   SP  & 0.0 & 0.735 & 0.368 & 0.813 & 0.537 & 0.865 & 0.659 \\
75      & 0.1 & 0.850 & 0.612 & 0.956 & 0.887 & 0.992 & 0.979 \\
# Line 64 | Line 81 | RF  &     & 0.999 & 0.995 & 1.000 & 0.999 & 1.000 & 1.
81      & 0.3 & 0.996 & 0.998 & 0.997 & 0.998 & 0.996 & 0.998 \\
82   GSC &     & 0.998 & 0.995 & 1.000 & 0.999 & 1.000 & 1.000 \\
83   RF  &     & 0.999 & 0.995 & 1.000 & 0.999 & 1.000 & 1.000 \\          
67
84              \midrule
69
85   PC  &     & 2.387 & 0.000 & 0.183 & 0.000 & 1.282 & 0.000 \\
86   SP  & 0.0 & 0.847 & 0.543 & 0.904 & 0.694 & 0.935 & 0.786 \\
87      & 0.1 & 0.922 & 0.749 & 0.980 & 0.934 & 0.996 & 0.988 \\
# Line 80 | Line 95 | RF  &     & 0.993 & 0.989 & 0.998 & 0.996 & 1.000 & 0.
95   RF  &     & 0.993 & 0.989 & 0.998 & 0.996 & 1.000 & 0.999 \\
96        \bottomrule
97     \end{tabular}
98 <   \label{spceTabTMag}
98 >   \label{tab:spce}
99   \end{table}
100  
101   \begin{table}[htbp]
102     \centering
103 <   \caption{Variance results from Gaussian fits to angular distributions of the force and torque vectors in the liquid water system.  PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force, GSC = Group Switched Cutoff, RF = Reaction Field (where $\varepsilon \approx \infty$), GSSP = Group Switched Shifted Potential, and GSSF = Group Switched Shifted Force.}  
103 >   \caption{Variance results from Gaussian fits to angular
104 > distributions of the force and torque vectors in the liquid water
105 > system.  PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force,
106 > GSC = Group Switched Cutoff, RF = Reaction Field (where $\varepsilon
107 > \approx \infty$), GSSP = Group Switched Shifted Potential, and GSSF =
108 > Group Switched Shifted Force.}  
109     \begin{tabular}{@{} ccrrrrrr @{}}
110        \\
111        \toprule
# Line 116 | Line 136 | GSSF  & 0.0 & 1.298 & 0.270 & 0.083 & 3.098 & 0.992 &
136        & 0.3 & 0.728 & 0.694 & 0.692 & 7.410 & 6.942 & 6.748 \\
137        \bottomrule
138     \end{tabular}
139 <   \label{spceTabAng}
139 >   \label{tab:spceAng}
140   \end{table}
141  
142 < \section{\label{app-ice}Solid Water: Ice I$_\textrm{c}$}
142 > The water results parallel the combined results seen in the discussion
143 > section of the main paper.  There is good agreement with {\sc spme} in
144 > both energetic and dynamic behavior when using the {\sc sf} method
145 > with and without damping. The {\sc sp} method does well with an
146 > $\alpha$ around 0.2 \AA$^{-1}$, particularly with cutoff radii greater
147 > than 12 \AA. Overdamping the electrostatics reduces the agreement
148 > between both these methods and {\sc spme}.
149  
150 + The pure cutoff ({\sc pc}) method performs poorly, again mirroring the
151 + observations in the main portion of this paper.  In contrast to the
152 + combined values, however, the use of a switching function and group
153 + based cutoffs greatly improves the results for these neutral water
154 + molecules.  The group switched cutoff ({\sc gsc}) does not mimic the
155 + energetics of {\sc spme} as well as the {\sc sp} (with moderate
156 + damping) and {\sc sf} methods, but the dynamics are quite good.  The
157 + switching functions correct discontinuities in the potential and
158 + forces, leading to these improved results.  Such improvements with the
159 + use of a switching function have been recognized in previous
160 + studies,\cite{Andrea83,Steinbach94} and this proves to be a useful
161 + tactic for stably incorporating local area electrostatic effects.
162 +
163 + The reaction field ({\sc rf}) method simply extends upon the results
164 + observed in the {\sc gsc} case.  Both methods are similar in form
165 + (i.e. neutral groups, switching function), but {\sc rf} incorporates
166 + an added effect from the external dielectric. This similarity
167 + translates into the same good dynamic results and improved energetic
168 + agreement with {\sc spme}.  Though this agreement is not to the level
169 + of the moderately damped {\sc sp} and {\sc sf} methods, these results
170 + show how incorporating some implicit properties of the surroundings
171 + (i.e. $\epsilon_\textrm{S}$) can improve the solvent depiction.
172 +
173 + As a final note for the liquid water system, use of group cutoffs and a
174 + switching function leads to noticeable improvements in the {\sc sp}
175 + and {\sc sf} methods, primarily in directionality of the force and
176 + torque vectors (table \ref{tab:spceAng}). The {\sc sp} method shows
177 + significant narrowing of the angle distribution when using little to
178 + no damping and only modest improvement for the recommended conditions
179 + ($\alpha$ = 0.2 \AA${-1}$ and $R_\textrm{c} \geqslant 12$~\AA).  The
180 + {\sc sf} method shows modest narrowing across all damping and cutoff
181 + ranges of interest.  When overdamping these methods, group cutoffs and
182 + the switching function do not improve the force and torque
183 + directionalities.
184 +
185 + \section{\label{app:ice}Solid Water: Ice I$_\textrm{c}$}
186 +
187 + In addition to the disordered molecular system above, the ordered
188 + molecular system of ice I$_\textrm{c}$ was also considered. The
189 + results for the energy gap comparisons and the force and torque vector
190 + magnitude comparisons are shown in table \ref{tab:ice}.  The force and
191 + torque vector directionality results are displayed separately in table
192 + \ref{tab:iceAng}, where the effect of group-based cutoffs and
193 + switching functions on the {\sc sp} and {\sc sf} potentials are
194 + investigated.
195 +
196   \begin{table}[htbp]
197     \centering
198 <   \caption{Regression results for the ice I$_\textrm{c}$ system. Tabulated results include $\Delta E$ values (top set), force vector magnitudes (middle set) and torque vector magnitudes (bottom set).  PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force, GSC = Group Switched Cutoff, and RF = Reaction Field (where $\varepsilon \approx \infty$).}    
198 >   \caption{Regression results for the ice I$_\textrm{c}$
199 > system. Tabulated results include $\Delta E$ values (top set), force
200 > vector magnitudes (middle set) and torque vector magnitudes (bottom
201 > set).  PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force,
202 > GSC = Group Switched Cutoff, and RF = Reaction Field (where
203 > $\varepsilon \approx \infty$).}  
204     \begin{tabular}{@{} ccrrrrrr @{}}
205        \\
206        \toprule
# Line 170 | Line 247 | RF  &     & 0.994 & 0.997 & 0.997 & 0.999 & 1.000 & 1.
247   RF  &     & 0.994 & 0.997 & 0.997 & 0.999 & 1.000 & 1.000 \\
248        \bottomrule
249     \end{tabular}
250 <   \label{iceTab}
250 >   \label{tab:ice}
251   \end{table}
252  
253   \begin{table}[htbp]
# Line 206 | Line 283 | GSSF  & 0.0 & 2.124 & 0.132 & 0.069 & 0.919 & 0.263 &
283        & 0.3 & 0.251 & 0.251 & 0.259 & 2.387 & 2.395 & 2.328 \\
284        \bottomrule
285     \end{tabular}
286 <   \label{iceTabAng}
286 >   \label{tab:iceAng}
287   \end{table}
288  
289 < \section{\label{app-melt}NaCl Melt}
289 > Highly ordered systems are a difficult test for the pairwise methods
290 > in that they lack the implicit periodicity of the Ewald summation.  As
291 > expected, the energy gap agreement with {\sc spme} is reduced for the
292 > {\sc sp} and {\sc sf} methods with parameters that were acceptable for
293 > the disordered liquid system.  Moving to higher $R_\textrm{c}$ helps
294 > improve the agreement, though at an increase in computational cost.
295 > The dynamics of this crystalline system (both in magnitude and
296 > direction) are little affected. Both methods still reproduce the Ewald
297 > behavior with the same parameter recommendations from the previous
298 > section.
299  
300 + It is also worth noting that {\sc rf} exhibits improved energy gap
301 + results over the liquid water system.  One possible explanation is
302 + that the ice I$_\textrm{c}$ crystal is ordered such that the net
303 + dipole moment of the crystal is zero.  With $\epsilon_\textrm{S} =
304 + \infty$, the reaction field incorporates this structural organization
305 + by actively enforcing a zeroed dipole moment within each cutoff
306 + sphere.  
307 +
308 + \section{\label{app:melt}NaCl Melt}
309 +
310 + A high temperature NaCl melt was tested to gauge the accuracy of the
311 + pairwise summation methods in a disordered system of charges. The
312 + results for the energy gap comparisons and the force vector magnitude
313 + comparisons are shown in table \ref{tab:melt}.  The force vector
314 + directionality results are displayed separately in table
315 + \ref{tab:meltAng}.
316 +
317   \begin{table}[htbp]
318     \centering
319     \caption{Regression results for the molten NaCl system. Tabulated results include $\Delta E$ values (top set) and force vector magnitudes (bottom set).  PC = Pure Cutoff, SP = Shifted Potential, and SF = Shifted Force.}  
# Line 224 | Line 327 | PC  &     & -0.008 & 0.000 & -0.049 & 0.005 & -0.136 &
327              Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
328              \midrule
329   PC  &     & -0.008 & 0.000 & -0.049 & 0.005 & -0.136 & 0.020 \\
330 < SP  & 0.0 & 0.937 & 0.996 & 0.880 & 0.995 & 0.971 & 0.999 \\
331 <    & 0.1 & 1.004 & 0.999 & 0.958 & 1.000 & 0.928 & 0.994 \\
330 > SP  & 0.0 & 0.928 & 0.996 & 0.931 & 0.998 & 0.950 & 0.999 \\
331 >    & 0.1 & 0.977 & 0.998 & 0.998 & 1.000 & 0.997 & 1.000 \\
332      & 0.2 & 0.960 & 1.000 & 0.813 & 0.996 & 0.811 & 0.954 \\
333      & 0.3 & 0.671 & 0.994 & 0.439 & 0.929 & 0.535 & 0.831 \\
334 < SF  & 0.0 & 1.001 & 1.000 & 0.949 & 1.000 & 1.008 & 1.000 \\
335 <    & 0.1 & 1.025 & 1.000 & 0.960 & 1.000 & 0.929 & 0.994 \\
334 > SF  & 0.0 & 0.996 & 1.000 & 0.995 & 1.000 & 0.997 & 1.000 \\
335 >    & 0.1 & 1.021 & 1.000 & 1.024 & 1.000 & 1.007 & 1.000 \\
336      & 0.2 & 0.966 & 1.000 & 0.813 & 0.996 & 0.811 & 0.954 \\
337      & 0.3 & 0.671 & 0.994 & 0.439 & 0.929 & 0.535 & 0.831 \\
338              \midrule
339   PC  &     & 1.103 & 0.000 & 0.989 & 0.000 & 0.802 & 0.000 \\
340 < SP  & 0.0 & 0.976 & 0.983 & 1.001 & 0.991 & 0.985 & 0.995 \\
341 <    & 0.1 & 0.996 & 0.997 & 0.997 & 0.998 & 0.996 & 0.996 \\
340 > SP  & 0.0 & 0.973 & 0.981 & 0.975 & 0.988 & 0.979 & 0.992 \\
341 >    & 0.1 & 0.987 & 0.992 & 0.993 & 0.998 & 0.997 & 0.999 \\
342      & 0.2 & 0.993 & 0.996 & 0.985 & 0.988 & 0.986 & 0.981 \\
343      & 0.3 & 0.956 & 0.956 & 0.940 & 0.912 & 0.948 & 0.929 \\
344 < SF  & 0.0 & 0.997 & 0.998 & 0.995 & 0.999 & 0.999 & 1.000 \\
345 <    & 0.1 & 1.001 & 0.997 & 0.997 & 0.999 & 0.996 & 0.996 \\
344 > SF  & 0.0 & 0.996 & 0.997 & 0.997 & 0.999 & 0.998 & 1.000 \\
345 >    & 0.1 & 1.000 & 0.997 & 1.001 & 0.999 & 1.000 & 1.000 \\
346      & 0.2 & 0.994 & 0.996 & 0.985 & 0.988 & 0.986 & 0.981 \\
347      & 0.3 & 0.956 & 0.956 & 0.940 & 0.912 & 0.948 & 0.929 \\
348        \bottomrule
349     \end{tabular}
350 <   \label{meltTab}
350 >   \label{tab:melt}
351   \end{table}
352  
353   \begin{table}[htbp]
# Line 269 | Line 372 | SF  & 0.0 & 1.693 & 0.603 & 0.256 \\
372      & 0.3 & 23.734 & 67.305 & 57.252 \\
373        \bottomrule
374     \end{tabular}
375 <   \label{meltTabAng}
375 >   \label{tab:meltAng}
376   \end{table}
377  
378 < \section{\label{app-salt}NaCl Crystal}
378 > The molten NaCl system shows more sensitivity to the electrostatic
379 > damping than the water systems. The most noticeable point is that the
380 > undamped {\sc sf} method does very well at replicating the {\sc spme}
381 > configurational energy differences and forces. Light damping appears
382 > to minimally improve the dynamics, but this comes with a deterioration
383 > of the energy gap results. In contrast, this light damping improves
384 > the {\sc sp} energy gaps and forces. Moderate and heavy electrostatic
385 > damping reduce the agreement with {\sc spme} for both methods. From
386 > these observations, the undamped {\sc sf} method is the best choice
387 > for disordered systems of charges.
388  
389 + \section{\label{app:salt}NaCl Crystal}
390 +
391 + A 1000K NaCl crystal was used to investigate the accuracy of the
392 + pairwise summation methods in an ordered system of charged
393 + particles. The results for the energy gap comparisons and the force
394 + vector magnitude comparisons are shown in table \ref{tab:salt}.  The
395 + force vector directionality results are displayed separately in table
396 + \ref{tab:saltAng}.
397 +
398   \begin{table}[htbp]
399     \centering
400 <   \caption{Regression results for the crystalline NaCl system. Tabulated results include $\Delta E$ values (top set) and force vector magnitudes (bottom set).  PC = Pure Cutoff, SP = Shifted Potential, and SF = Shifted Force.}    
400 >   \caption{Regression results for the crystalline NaCl
401 > system. Tabulated results include $\Delta E$ values (top set) and
402 > force vector magnitudes (bottom set).  PC = Pure Cutoff, SP = Shifted
403 > Potential, and SF = Shifted Force.}    
404     \begin{tabular}{@{} ccrrrrrr @{}}
405        \\
406        \toprule
# Line 307 | Line 431 | SF  & 0.0 & 1.002 & 0.983 & 0.997 & 0.994 & 0.991 & 0.
431      & 0.3 & 0.950 & 0.952 & 0.950 & 0.953 & 0.950 & 0.953 \\
432        \bottomrule
433     \end{tabular}
434 <   \label{saltTab}
434 >   \label{tab:salt}
435   \end{table}
436  
437   \begin{table}[htbp]
438     \centering
439 <   \caption{Variance results from Gaussian fits to angular distributions of the force vectors in the crystalline NaCl system.  PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force, GSC = Group Switched Cutoff, and RF = Reaction Field (where $\varepsilon \approx \infty$).}        
439 >   \caption{Variance results from Gaussian fits to angular
440 > distributions of the force vectors in the crystalline NaCl system.  PC
441 > = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force, GSC = Group
442 > Switched Cutoff, and RF = Reaction Field (where $\varepsilon \approx
443 > \infty$).}      
444     \begin{tabular}{@{} ccrrrrrr @{}}
445        \\
446        \toprule
# Line 332 | Line 460 | SF  & 0.0 & 10.025 & 3.555 & 1.648 \\
460      & 0.3 & 31.120 & 31.105 & 31.029 \\
461        \bottomrule
462     \end{tabular}
463 <   \label{saltTabAng}
463 >   \label{tab:saltAng}
464   \end{table}
465  
466 < \section{\label{app-sol1}Weak NaCl Solution}
466 > The crystalline NaCl system is the most challenging test case for the
467 > pairwise summation methods, as evidenced by the results in tables
468 > \ref{tab:salt} and \ref{tab:saltAng}. The undamped and weakly damped
469 > {\sc sf} methods with a 12 \AA\ cutoff radius seem to be the best
470 > choices. These methods match well with {\sc spme} across the energy
471 > gap, force magnitude, and force directionality tests.  The {\sc sp}
472 > method struggles in all cases, with the exception of good dynamics
473 > reproduction when using weak electrostatic damping with a large cutoff
474 > radius.
475  
476 + The moderate electrostatic damping case is not as good as we would
477 + expect given the long-time dynamics results observed for this
478 + system. Since the data tabulated in tables \ref{tab:salt} and
479 + \ref{tab:saltAng} are a test of instantaneous dynamics, this indicates
480 + that good long-time dynamics comes in part at the expense of
481 + short-time dynamics.
482 +
483 + \section{\label{app:solnWeak}Weak NaCl Solution}
484 +
485 + In an effort to bridge the charged atomic and neutral molecular
486 + systems, Na$^+$ and Cl$^-$ ion charge defects were incorporated into
487 + the liquid water system. This low ionic strength system consists of 4
488 + ions in the 1000 SPC/E water solvent ($\approx$0.11 M). The results
489 + for the energy gap comparisons and the force and torque vector
490 + magnitude comparisons are shown in table \ref{tab:solnWeak}.  The
491 + force and torque vector directionality results are displayed
492 + separately in table \ref{tab:solnWeakAng}, where the effect of
493 + group-based cutoffs and switching functions on the {\sc sp} and {\sc
494 + sf} potentials are investigated.
495 +
496   \begin{table}[htbp]
497     \centering
498 <   \caption{Regression results for the weak NaCl solution system. Tabulated results include $\Delta E$ values (top set), force vector magnitudes (middle set) and torque vector magnitudes (bottom set).  PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force, GSC = Group Switched Cutoff, RF = Reaction Field (where $\varepsilon \approx \infty$), GSSP = Group Switched Shifted Potential, and GSSF = Group Switched Shifted Force.}      
498 >   \caption{Regression results for the weak NaCl solution
499 > system. Tabulated results include $\Delta E$ values (top set), force
500 > vector magnitudes (middle set) and torque vector magnitudes (bottom
501 > set).  PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force,
502 > GSC = Group Switched Cutoff, and RF = Reaction Field (where $\varepsilon
503 > \approx \infty$).}      
504     \begin{tabular}{@{} ccrrrrrr @{}}
505        \\
506        \toprule
# Line 386 | Line 547 | RF  &     & 0.984 & 0.975 & 0.996 & 0.995 & 0.998 & 0.
547   RF  &     & 0.984 & 0.975 & 0.996 & 0.995 & 0.998 & 0.998 \\
548        \bottomrule
549     \end{tabular}
550 <   \label{sol1Tab}
550 >   \label{tab:solnWeak}
551   \end{table}
552  
553   \begin{table}[htbp]
554     \centering
555 <   \caption{Variance results from Gaussian fits to angular distributions of the force and torque vectors in the weak NaCl solution system.  PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force, GSC = Group Switched Cutoff, RF = Reaction Field (where $\varepsilon \approx \infty$), GSSP = Group Switched Shifted Potential, and GSSF = Group Switched Shifted Force.}    
555 >   \caption{Variance results from Gaussian fits to angular
556 > distributions of the force and torque vectors in the weak NaCl
557 > solution system.  PC = Pure Cutoff, SP = Shifted Potential, SF =
558 > Shifted Force, GSC = Group Switched Cutoff, RF = Reaction Field (where
559 > $\varepsilon \approx \infty$), GSSP = Group Switched Shifted
560 > Potential, and GSSF = Group Switched Shifted Force.}    
561     \begin{tabular}{@{} ccrrrrrr @{}}
562        \\
563        \toprule
# Line 422 | Line 588 | GSSF  & 0.0 & 1.541 & 0.301 & 0.096 & 6.407 & 1.316 &
588        & 0.3 & 0.954 & 0.759 & 0.780 & 12.337 & 7.684 & 7.849 \\
589        \bottomrule
590     \end{tabular}
591 <   \label{sol1TabAng}
591 >   \label{tab:solnWeakAng}
592   \end{table}
593  
594 < \section{\label{app-sol10}Strong NaCl Solution}
594 > Because this system is a perturbation of the pure liquid water system,
595 > comparisons are best drawn between these two sets. The {\sc sp} and
596 > {\sc sf} methods are not significantly affected by the inclusion of a
597 > few ions. The aspect of cutoff sphere neutralization aids in the
598 > smooth incorporation of these ions; thus, all of the observations
599 > regarding these methods carry over from section \ref{app:water}. The
600 > differences between these systems are more visible for the {\sc rf}
601 > method. Though good force agreement is still maintained, the energy
602 > gaps show a significant increase in the scatter of the data.
603  
604 + \section{\label{app:solnStr}Strong NaCl Solution}
605 +
606 + The bridging of the charged atomic and neutral molecular systems was
607 + further developed by considering a high ionic strength system
608 + consisting of 40 ions in the 1000 SPC/E water solvent ($\approx$1.1
609 + M). The results for the energy gap comparisons and the force and
610 + torque vector magnitude comparisons are shown in table
611 + \ref{tab:solnStr}.  The force and torque vector directionality
612 + results are displayed separately in table \ref{tab:solnStrAng}, where
613 + the effect of group-based cutoffs and switching functions on the {\sc
614 + sp} and {\sc sf} potentials are investigated.
615 +
616   \begin{table}[htbp]
617     \centering
618 <   \caption{Regression results for the strong NaCl solution system. Tabulated results include $\Delta E$ values (top set), force vector magnitudes (middle set) and torque vector magnitudes (bottom set).  PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force, GSC = Group Switched Cutoff, and RF = Reaction Field (where $\varepsilon \approx \infty$).}  
618 >   \caption{Regression results for the strong NaCl solution
619 > system. Tabulated results include $\Delta E$ values (top set), force
620 > vector magnitudes (middle set) and torque vector magnitudes (bottom
621 > set).  PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force,
622 > GSC = Group Switched Cutoff, and RF = Reaction Field (where
623 > $\varepsilon \approx \infty$).}        
624     \begin{tabular}{@{} ccrrrrrr @{}}
625        \\
626        \toprule
# Line 476 | Line 667 | RF  &     & 0.949 & 0.939 & 0.988 & 0.988 & 0.992 & 0.
667   RF  &     & 0.949 & 0.939 & 0.988 & 0.988 & 0.992 & 0.993 \\
668        \bottomrule
669     \end{tabular}
670 <   \label{sol10Tab}
670 >   \label{tab:solnStr}
671   \end{table}
672  
673   \begin{table}[htbp]
# Line 512 | Line 703 | GSSF  & 0.0 & 2.494 & 0.546 & 0.217 & 16.391 & 3.230 &
703        & 0.3 & 1.752 & 1.454 & 1.451 & 23.587 & 14.390 & 14.245 \\
704        \bottomrule
705     \end{tabular}
706 <   \label{sol10TabAng}
706 >   \label{tab:solnStrAng}
707   \end{table}
708  
709 < \section{\label{app-argon}Argon Sphere in Water}
709 > The {\sc rf} method struggles with the jump in ionic strength. The
710 > configuration energy differences degrade to unusable levels while the
711 > forces and torques show a more modest reduction in the agreement with
712 > {\sc spme}. The {\sc rf} method was designed for homogeneous systems,
713 > and this attribute is apparent in these results.
714  
715 + The {\sc sp} and {\sc sf} methods require larger cutoffs to maintain
716 + their agreement with {\sc spme}. With these results, we still
717 + recommend no to moderate damping for the {\sc sf} method and moderate
718 + damping for the {\sc sp} method, both with cutoffs greater than 12
719 + \AA.
720 +
721 + \section{\label{app:argon}Argon Sphere in Water}
722 +
723 + The final model system studied was a 6 \AA\ sphere of Argon solvated
724 + by SPC/E water. The results for the energy gap comparisons and the
725 + force and torque vector magnitude comparisons are shown in table
726 + \ref{tab:argon}.  The force and torque vector directionality
727 + results are displayed separately in table \ref{tab:argonAng}, where
728 + the effect of group-based cutoffs and switching functions on the {\sc
729 + sp} and {\sc sf} potentials are investigated.
730 +
731   \begin{table}[htbp]
732     \centering
733 <   \caption{Regression results for the 6 \AA\ argon sphere in liquid water system. Tabulated results include $\Delta E$ values (top set), force vector magnitudes (middle set) and torque vector magnitudes (bottom set).  PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force, GSC = Group Switched Cutoff, and RF = Reaction Field (where $\varepsilon \approx \infty$).}    
733 >   \caption{Regression results for the 6 \AA\ Argon sphere in liquid
734 > water system. Tabulated results include $\Delta E$ values (top set),
735 > force vector magnitudes (middle set) and torque vector magnitudes
736 > (bottom set).  PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted
737 > Force, GSC = Group Switched Cutoff, and RF = Reaction Field (where
738 > $\varepsilon \approx \infty$).}        
739     \begin{tabular}{@{} ccrrrrrr @{}}
740        \\
741        \toprule
# Line 566 | Line 782 | RF  &     & 0.993 & 0.988 & 0.997 & 0.995 & 0.999 & 0.
782   RF  &     & 0.993 & 0.988 & 0.997 & 0.995 & 0.999 & 0.998 \\
783        \bottomrule
784     \end{tabular}
785 <   \label{argonTab}
785 >   \label{tab:argon}
786   \end{table}
787  
788   \begin{table}[htbp]
789     \centering
790 <   \caption{Variance results from Gaussian fits to angular distributions of the force and torque vectors in the 6 \AA\ sphere of argon in liquid water system.  PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force, GSC = Group Switched Cutoff, RF = Reaction Field (where $\varepsilon \approx \infty$), GSSP = Group Switched Shifted Potential, and GSSF = Group Switched Shifted Force.}
790 >   \caption{Variance results from Gaussian fits to angular
791 > distributions of the force and torque vectors in the 6 \AA\ sphere of
792 > Argon in liquid water system.  PC = Pure Cutoff, SP = Shifted
793 > Potential, SF = Shifted Force, GSC = Group Switched Cutoff, RF =
794 > Reaction Field (where $\varepsilon \approx \infty$), GSSP = Group
795 > Switched Shifted Potential, and GSSF = Group Switched Shifted Force.}  
796     \begin{tabular}{@{} ccrrrrrr @{}}
797        \\
798        \toprule
# Line 602 | Line 823 | GSSF  & 0.0 & 1.173 & 0.292 & 0.113 & 3.452 & 1.347 &
823        & 0.3 & 0.814 & 0.825 & 0.816 & 8.325 & 8.447 & 8.132 \\
824        \bottomrule
825     \end{tabular}
826 <   \label{argonTabAng}
826 >   \label{tab:argonAng}
827   \end{table}
828  
829 < \end{document}
829 > This system does not appear to show any significant deviations from
830 > the previously observed results. The {\sc sp} and {\sc sf} methods
831 > have aggrements similar to those observed in section
832 > \ref{app:water}. The only significant difference is the improvement
833 > in the configuration energy differences for the {\sc rf} method. This
834 > is surprising in that we are introducing an inhomogeneity to the
835 > system; however, this inhomogeneity is charge-neutral and does not
836 > result in charged cutoff spheres. The charge-neutrality of the cutoff
837 > spheres, which the {\sc sp} and {\sc sf} methods explicitly enforce,
838 > seems to play a greater role in the stability of the {\sc rf} method
839 > than the required homogeneity of the environment.
840 >
841 > \newpage
842 >
843 > \bibliographystyle{jcp2}
844 > \bibliography{electrostaticMethods}
845 >
846 > \end{document}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines