| 1 | 
\contentsline {chapter}{FIGURES}{v} | 
| 2 | 
\contentsline {chapter}{TABLES}{ix} | 
| 3 | 
\contentsline {chapter}{ACKNOWLEDGMENTS}{x} | 
| 4 | 
\contentsline {chapter}{CHAPTER\ 1:\ INTRODUCTION AND BACKGROUND}{1} | 
| 5 | 
\contentsline {section}{\numberline {1.1}INTRODUCTION}{1} | 
| 6 | 
\contentsline {section}{\numberline {1.2}COMPUTER SIMULATION METHODS}{1} | 
| 7 | 
\contentsline {subsection}{\numberline {1.2.1}EMPIRICAL ENERGY FUNCTIONS}{3} | 
| 8 | 
\contentsline {section}{\numberline {1.3}THE LENNARD-JONES FORCE FIELD}{6} | 
| 9 | 
\contentsline {section}{\numberline {1.4}METALLIC POTENTIALS}{7} | 
| 10 | 
\contentsline {subsection}{\numberline {1.4.1}EMBEDDED ATOM METHOD}{10} | 
| 11 | 
\contentsline {subsection}{\numberline {1.4.2}TIGHT-BINDING FORMULATION}{15} | 
| 12 | 
\contentsline {section}{\numberline {1.5}INTEGRATING EQUATIONS OF MOTION}{18} | 
| 13 | 
\contentsline {subsection}{\numberline {1.5.1}VERLET AND DLM METHODS OF INTEGRATION}{21} | 
| 14 | 
\contentsline {subsection}{\numberline {1.5.2}LANGEVIN DYNAMICS}{22} | 
| 15 | 
\contentsline {section}{\numberline {1.6}PARALLEL MOLECULAR DYNAMICS}{22} | 
| 16 | 
\contentsline {chapter}{CHAPTER\ 2:\ COMPARING MODELS FOR DIFFUSION IN SUPERCOOLED LIQUIDS: THE EUTECTIC COMPOSITION OF THE AG-CU ALLOY}{23} | 
| 17 | 
\contentsline {section}{\numberline {2.1}THEORY}{25} | 
| 18 | 
\contentsline {subsection}{\numberline {2.1.1}ZWANZIG'S MODEL}{25} | 
| 19 | 
\contentsline {subsection}{\numberline {2.1.2}THE {\sc ctrw} MODEL}{26} | 
| 20 | 
\contentsline {subsection}{\numberline {2.1.3}THE CAGE CORRELATION FUNCTION}{28} | 
| 21 | 
\contentsline {section}{\numberline {2.2}COMPUTATIONAL DETAILS}{29} | 
| 22 | 
\contentsline {section}{\numberline {2.3}RESULTS}{31} | 
| 23 | 
\contentsline {subsection}{\numberline {2.3.1}DIFFUSIVE TRANSPORT AND EXPONENTIAL DECAY}{35} | 
| 24 | 
\contentsline {subsection}{\numberline {2.3.2}NON-DIFFUSIVE TRNASPORT AND NON-EXPONENTIAL DECAY}{38} | 
| 25 | 
\contentsline {section}{\numberline {2.4}DISCUSSION}{41} | 
| 26 | 
\contentsline {chapter}{CHAPTER\ 3:\ SIZE DEPENDENT SPONTANEOUS ALLOYING OF AU-AG NANOPARTICLES}{42} | 
| 27 | 
\contentsline {chapter}{CHAPTER\ 4:\ BREATHING MODE DYNAMICS AND ELASTIC PROPERTIES OF GOLD NANOPARTICLES}{44} | 
| 28 | 
\contentsline {section}{\numberline {4.1}COMPUTATIONAL DETAILS}{45} | 
| 29 | 
\contentsline {subsection}{\numberline {4.1.1}SIMULATION METHODOLOGY}{45} | 
| 30 | 
\contentsline {subsection}{\numberline {4.1.2}ANALYSIS}{46} | 
| 31 | 
\contentsline {section}{\numberline {4.2}RESULTS}{51} | 
| 32 | 
\contentsline {subsection}{\numberline {4.2.1}THE BULK MODULUS AND HEAT CAPACITY}{51} | 
| 33 | 
\contentsline {subsection}{\numberline {4.2.2}BREATHING MODE DYNAMICS}{53} | 
| 34 | 
\contentsline {section}{\numberline {4.3}DISCUSSION}{54} | 
| 35 | 
\contentsline {subsection}{\numberline {4.3.1}MELTED AND PARTIALLY-MELTED PARTICLES}{57} | 
| 36 | 
\contentsline {chapter}{CHAPTER\ 5:\ GLASS FORMATION IN METALLIC NANOPARTICLES}{59} | 
| 37 | 
\contentsline {section}{\numberline {5.1}INTRODUCTION}{59} | 
| 38 | 
\contentsline {section}{\numberline {5.2}COMPUTATIONAL METHODOLOGY}{64} | 
| 39 | 
\contentsline {subsection}{\numberline {5.2.1}INITIAL GEOMETRIES AND HEATING}{64} | 
| 40 | 
\contentsline {subsection}{\numberline {5.2.2}MODELING RANDOM ALLOY AND CORE SHELL PARTICLES IN SOLUTION PHASE ENVIRONMENTS}{65} | 
| 41 | 
\contentsline {subsection}{\numberline {5.2.3}POTENIALS FOR CLASSICAL SIMULATIONS OF BIMETALLIC NANOPARTICLES}{70} | 
| 42 | 
\contentsline {section}{\numberline {5.3}ANALYSIS}{72} | 
| 43 | 
\contentsline {section}{\numberline {5.4}CONCLUSIONS}{84} |