| 1 |
< |
\contentsline {chapter}{FIGURES}{v} |
| 2 |
< |
\contentsline {chapter}{TABLES}{ix} |
| 3 |
< |
\contentsline {chapter}{ACKNOWLEDGMENTS}{x} |
| 4 |
< |
\contentsline {chapter}{CHAPTER\ 1:\ INTRODUCTION AND BACKGROUND}{1} |
| 5 |
< |
\contentsline {section}{\numberline {1.1}INTRODUCTION}{1} |
| 6 |
< |
\contentsline {section}{\numberline {1.2}COMPUTER SIMULATION METHODS}{1} |
| 7 |
< |
\contentsline {subsection}{\numberline {1.2.1}EMPIRICAL ENERGY FUNCTIONS}{3} |
| 8 |
< |
\contentsline {section}{\numberline {1.3}THE LENNARD-JONES FORCE FIELD}{6} |
| 9 |
< |
\contentsline {section}{\numberline {1.4}METALLIC POTENTIALS}{7} |
| 10 |
< |
\contentsline {subsection}{\numberline {1.4.1}EMBEDDED ATOM METHOD}{10} |
| 11 |
< |
\contentsline {subsection}{\numberline {1.4.2}TIGHT-BINDING FORMULATION}{15} |
| 12 |
< |
\contentsline {section}{\numberline {1.5}INTEGRATING EQUATIONS OF MOTION}{18} |
| 13 |
< |
\contentsline {subsection}{\numberline {1.5.1}VERLET AND DLM METHODS OF INTEGRATION}{21} |
| 14 |
< |
\contentsline {subsection}{\numberline {1.5.2}LANGEVIN DYNAMICS}{22} |
| 15 |
< |
\contentsline {section}{\numberline {1.6}PARALLEL MOLECULAR DYNAMICS}{22} |
| 16 |
< |
\contentsline {chapter}{CHAPTER\ 2:\ COMPARING MODELS FOR DIFFUSION IN SUPERCOOLED LIQUIDS: THE EUTECTIC COMPOSITION OF THE AG-CU ALLOY}{23} |
| 17 |
< |
\contentsline {section}{\numberline {2.1}THEORY}{25} |
| 18 |
< |
\contentsline {subsection}{\numberline {2.1.1}ZWANZIG'S MODEL}{25} |
| 19 |
< |
\contentsline {subsection}{\numberline {2.1.2}THE {\sc ctrw} MODEL}{26} |
| 20 |
< |
\contentsline {subsection}{\numberline {2.1.3}THE CAGE CORRELATION FUNCTION}{28} |
| 21 |
< |
\contentsline {section}{\numberline {2.2}COMPUTATIONAL DETAILS}{29} |
| 22 |
< |
\contentsline {section}{\numberline {2.3}RESULTS}{31} |
| 23 |
< |
\contentsline {subsection}{\numberline {2.3.1}DIFFUSIVE TRANSPORT AND EXPONENTIAL DECAY}{35} |
| 24 |
< |
\contentsline {subsection}{\numberline {2.3.2}NON-DIFFUSIVE TRNASPORT AND NON-EXPONENTIAL DECAY}{38} |
| 25 |
< |
\contentsline {section}{\numberline {2.4}DISCUSSION}{41} |
| 26 |
< |
\contentsline {chapter}{CHAPTER\ 3:\ SIZE DEPENDENT SPONTANEOUS ALLOYING OF AU-AG NANOPARTICLES}{42} |
| 27 |
< |
\contentsline {chapter}{CHAPTER\ 4:\ BREATHING MODE DYNAMICS AND ELASTIC PROPERTIES OF GOLD NANOPARTICLES}{44} |
| 28 |
< |
\contentsline {section}{\numberline {4.1}COMPUTATIONAL DETAILS}{45} |
| 29 |
< |
\contentsline {subsection}{\numberline {4.1.1}SIMULATION METHODOLOGY}{45} |
| 30 |
< |
\contentsline {subsection}{\numberline {4.1.2}ANALYSIS}{46} |
| 31 |
< |
\contentsline {section}{\numberline {4.2}RESULTS}{51} |
| 32 |
< |
\contentsline {subsection}{\numberline {4.2.1}THE BULK MODULUS AND HEAT CAPACITY}{51} |
| 33 |
< |
\contentsline {subsection}{\numberline {4.2.2}BREATHING MODE DYNAMICS}{53} |
| 34 |
< |
\contentsline {section}{\numberline {4.3}DISCUSSION}{54} |
| 35 |
< |
\contentsline {subsection}{\numberline {4.3.1}MELTED AND PARTIALLY-MELTED PARTICLES}{57} |
| 36 |
< |
\contentsline {chapter}{CHAPTER\ 5:\ GLASS FORMATION IN METALLIC NANOPARTICLES}{59} |
| 37 |
< |
\contentsline {section}{\numberline {5.1}INTRODUCTION}{59} |
| 38 |
< |
\contentsline {section}{\numberline {5.2}COMPUTATIONAL METHODOLOGY}{64} |
| 39 |
< |
\contentsline {subsection}{\numberline {5.2.1}INITIAL GEOMETRIES AND HEATING}{64} |
| 40 |
< |
\contentsline {subsection}{\numberline {5.2.2}MODELING RANDOM ALLOY AND CORE SHELL PARTICLES IN SOLUTION PHASE ENVIRONMENTS}{65} |
| 41 |
< |
\contentsline {subsection}{\numberline {5.2.3}POTENIALS FOR CLASSICAL SIMULATIONS OF BIMETALLIC NANOPARTICLES}{70} |
| 42 |
< |
\contentsline {section}{\numberline {5.3}ANALYSIS}{72} |
| 43 |
< |
\contentsline {section}{\numberline {5.4}CONCLUSIONS}{84} |
| 1 |
> |
\contentsline {chapter}{FIGURES}{v}{chapter*.3} |
| 2 |
> |
\contentsline {chapter}{TABLES}{ix}{chapter*.4} |
| 3 |
> |
\contentsline {chapter}{ACKNOWLEDGMENTS}{x}{chapter*.5} |
| 4 |
> |
\contentsline {chapter}{{CHAPTER\ 1: INTRODUCTION AND BACKGROUND}}{1}{chapter.1} |
| 5 |
> |
\contentsline {section}{\numberline {1.1}Introduction}{1}{section.1.1} |
| 6 |
> |
\contentsline {section}{\numberline {1.2}Computer Simulation Methods}{3}{section.1.2} |
| 7 |
> |
\contentsline {subsection}{\numberline {1.2.1}Empirical Energy Functions}{5}{subsection.1.2.1} |
| 8 |
> |
\contentsline {section}{\numberline {1.3}The Lennard-Jones Force Field}{8}{section.1.3} |
| 9 |
> |
\contentsline {section}{\numberline {1.4}Metallic Potentials}{9}{section.1.4} |
| 10 |
> |
\contentsline {subsection}{\numberline {1.4.1}Embedded Atom Method}{12}{subsection.1.4.1} |
| 11 |
> |
\contentsline {subsection}{\numberline {1.4.2}Tight-Binding Formulation}{18}{subsection.1.4.2} |
| 12 |
> |
\contentsline {section}{\numberline {1.5}Integrating Equations of Motion}{22}{section.1.5} |
| 13 |
> |
\contentsline {subsection}{\numberline {1.5.1}Verlet Method of Intergration}{24}{subsection.1.5.1} |
| 14 |
> |
\contentsline {subsection}{\numberline {1.5.2}Langevin Dynamics}{27}{subsection.1.5.2} |
| 15 |
> |
\contentsline {section}{\numberline {1.6}Parallel Molecular Dynamics}{29}{section.1.6} |
| 16 |
> |
\contentsline {chapter}{{CHAPTER\ 2: COMPARING MODELS FOR DIFFUSION IN SUPERCOOLED LIQUIDS: THE EUTECTIC COMPOSITION OF THE Ag-Cu ALLOY}}{31}{chapter.2} |
| 17 |
> |
\contentsline {section}{\numberline {2.1}Theory}{33}{section.2.1} |
| 18 |
> |
\contentsline {subsection}{\numberline {2.1.1}Zwanzig's Model}{33}{subsection.2.1.1} |
| 19 |
> |
\contentsline {subsection}{\numberline {2.1.2}The {\sc ctrw} Model}{35}{subsection.2.1.2} |
| 20 |
> |
\contentsline {subsection}{\numberline {2.1.3}The Cage Correlation Function}{37}{subsection.2.1.3} |
| 21 |
> |
\contentsline {section}{\numberline {2.2}Computational Details}{38}{section.2.2} |
| 22 |
> |
\contentsline {section}{\numberline {2.3}Results}{40}{section.2.3} |
| 23 |
> |
\contentsline {subsection}{\numberline {2.3.1}Diffusive Transport and Exponential Decay}{45}{subsection.2.3.1} |
| 24 |
> |
\contentsline {subsection}{\numberline {2.3.2}Non-Diffusive Transport and Non-Exponential Decay}{48}{subsection.2.3.2} |
| 25 |
> |
\contentsline {section}{\numberline {2.4}Discussion}{52}{section.2.4} |
| 26 |
> |
\contentsline {chapter}{{CHAPTER\ 3: SIZE DEPENDENT SPONTANEOUS ALLOYING OF Au-Ag NANOPARTICLES}}{54}{chapter.3} |
| 27 |
> |
\contentsline {section}{\numberline {3.1}Background and Methodology}{55}{section.3.1} |
| 28 |
> |
\contentsline {subsection}{\numberline {3.1.1}Computational Methodology}{57}{subsection.3.1.1} |
| 29 |
> |
\contentsline {section}{\numberline {3.2}Computational Results}{60}{section.3.2} |
| 30 |
> |
\contentsline {chapter}{{CHAPTER\ 4: BREATHING MODE DYNAMICS AND ELASTIC PROPERTIES OF GOLD NANOPARTICLES}}{66}{chapter.4} |
| 31 |
> |
\contentsline {section}{\numberline {4.1}Computational Details}{67}{section.4.1} |
| 32 |
> |
\contentsline {subsection}{\numberline {4.1.1}Simulation Methodology}{67}{subsection.4.1.1} |
| 33 |
> |
\contentsline {subsection}{\numberline {4.1.2}Analysis}{68}{subsection.4.1.2} |
| 34 |
> |
\contentsline {section}{\numberline {4.2}Results}{74}{section.4.2} |
| 35 |
> |
\contentsline {subsection}{\numberline {4.2.1}The Bulk Modulus and Heat Capacity}{74}{subsection.4.2.1} |
| 36 |
> |
\contentsline {subsection}{\numberline {4.2.2}Breathing Mode Dynamics}{77}{subsection.4.2.2} |
| 37 |
> |
\contentsline {section}{\numberline {4.3}Discussion}{80}{section.4.3} |
| 38 |
> |
\contentsline {subsection}{\numberline {4.3.1}Melted and Partially-Melted Particles}{81}{subsection.4.3.1} |
| 39 |
> |
\contentsline {chapter}{{CHAPTER\ 5: GLASS FORMATION IN METALLIC NANOPARTICLES}}{84}{chapter.5} |
| 40 |
> |
\contentsline {section}{\numberline {5.1}Introduction}{84}{section.5.1} |
| 41 |
> |
\contentsline {section}{\numberline {5.2}Computer Methodology}{89}{section.5.2} |
| 42 |
> |
\contentsline {subsection}{\numberline {5.2.1}Initial Geometries and Heating}{89}{subsection.5.2.1} |
| 43 |
> |
\contentsline {subsection}{\numberline {5.2.2}Modeling Random Alloy and Core Shell Particles in Solution Phase Environments}{90}{subsection.5.2.2} |
| 44 |
> |
\contentsline {subsection}{\numberline {5.2.3}Potential For Simulations of Bimetallic Nanoparticles}{95}{subsection.5.2.3} |
| 45 |
> |
\contentsline {section}{\numberline {5.3}Analysis}{98}{section.5.3} |
| 46 |
> |
\contentsline {section}{\numberline {5.4}Conclusions}{113}{section.5.4} |
| 47 |
> |
\contentsline {chapter}{{CHAPTER\ 6: CURRENT WORK AND CONCLUSIONS}}{116}{chapter.6} |
| 48 |
> |
\contentsline {section}{\numberline {6.1}Constant Pressure Langevin Dynamics}{116}{section.6.1} |
| 49 |
> |
\contentsline {section}{\numberline {6.2}Angular Water-Metal Potential}{121}{section.6.2} |
| 50 |
> |
\contentsline {section}{\numberline {6.3}Conclusions}{126}{section.6.3} |
| 51 |
> |
\contentsline {chapter}{BIBLIOGRAPHY}{129}{appendix*.6} |