1 |
\contentsline {chapter}{FIGURES}{v} |
2 |
\contentsline {chapter}{TABLES}{ix} |
3 |
\contentsline {chapter}{ACKNOWLEDGMENTS}{x} |
4 |
\contentsline {chapter}{CHAPTER\ 1:\ INTRODUCTION AND BACKGROUND}{1} |
5 |
\contentsline {section}{\numberline {1.1}INTRODUCTION}{1} |
6 |
\contentsline {section}{\numberline {1.2}COMPUTER SIMULATION METHODS}{1} |
7 |
\contentsline {subsection}{\numberline {1.2.1}EMPIRICAL ENERGY FUNCTIONS}{3} |
8 |
\contentsline {section}{\numberline {1.3}THE LENNARD-JONES FORCE FIELD}{6} |
9 |
\contentsline {section}{\numberline {1.4}METALLIC POTENTIALS}{7} |
10 |
\contentsline {subsection}{\numberline {1.4.1}EMBEDDED ATOM METHOD}{10} |
11 |
\contentsline {subsection}{\numberline {1.4.2}TIGHT-BINDING FORMULATION}{15} |
12 |
\contentsline {section}{\numberline {1.5}INTEGRATING EQUATIONS OF MOTION}{18} |
13 |
\contentsline {subsection}{\numberline {1.5.1}VERLET AND DLM METHODS OF INTEGRATION}{21} |
14 |
\contentsline {subsection}{\numberline {1.5.2}LANGEVIN DYNAMICS}{22} |
15 |
\contentsline {section}{\numberline {1.6}PARALLEL MOLECULAR DYNAMICS}{22} |
16 |
\contentsline {chapter}{CHAPTER\ 2:\ COMPARING MODELS FOR DIFFUSION IN SUPERCOOLED LIQUIDS: THE EUTECTIC COMPOSITION OF THE AG-CU ALLOY}{23} |
17 |
\contentsline {section}{\numberline {2.1}THEORY}{25} |
18 |
\contentsline {subsection}{\numberline {2.1.1}ZWANZIG'S MODEL}{25} |
19 |
\contentsline {subsection}{\numberline {2.1.2}THE {\sc ctrw} MODEL}{26} |
20 |
\contentsline {subsection}{\numberline {2.1.3}THE CAGE CORRELATION FUNCTION}{28} |
21 |
\contentsline {section}{\numberline {2.2}COMPUTATIONAL DETAILS}{29} |
22 |
\contentsline {section}{\numberline {2.3}RESULTS}{31} |
23 |
\contentsline {subsection}{\numberline {2.3.1}DIFFUSIVE TRANSPORT AND EXPONENTIAL DECAY}{35} |
24 |
\contentsline {subsection}{\numberline {2.3.2}NON-DIFFUSIVE TRNASPORT AND NON-EXPONENTIAL DECAY}{38} |
25 |
\contentsline {section}{\numberline {2.4}DISCUSSION}{41} |
26 |
\contentsline {chapter}{CHAPTER\ 3:\ SIZE DEPENDENT SPONTANEOUS ALLOYING OF AU-AG NANOPARTICLES}{42} |
27 |
\contentsline {chapter}{CHAPTER\ 4:\ BREATHING MODE DYNAMICS AND ELASTIC PROPERTIES OF GOLD NANOPARTICLES}{44} |
28 |
\contentsline {section}{\numberline {4.1}COMPUTATIONAL DETAILS}{45} |
29 |
\contentsline {subsection}{\numberline {4.1.1}SIMULATION METHODOLOGY}{45} |
30 |
\contentsline {subsection}{\numberline {4.1.2}ANALYSIS}{46} |
31 |
\contentsline {section}{\numberline {4.2}RESULTS}{51} |
32 |
\contentsline {subsection}{\numberline {4.2.1}THE BULK MODULUS AND HEAT CAPACITY}{51} |
33 |
\contentsline {subsection}{\numberline {4.2.2}BREATHING MODE DYNAMICS}{53} |
34 |
\contentsline {section}{\numberline {4.3}DISCUSSION}{54} |
35 |
\contentsline {subsection}{\numberline {4.3.1}MELTED AND PARTIALLY-MELTED PARTICLES}{57} |
36 |
\contentsline {chapter}{CHAPTER\ 5:\ GLASS FORMATION IN METALLIC NANOPARTICLES}{59} |
37 |
\contentsline {section}{\numberline {5.1}INTRODUCTION}{59} |
38 |
\contentsline {section}{\numberline {5.2}COMPUTATIONAL METHODOLOGY}{64} |
39 |
\contentsline {subsection}{\numberline {5.2.1}INITIAL GEOMETRIES AND HEATING}{64} |
40 |
\contentsline {subsection}{\numberline {5.2.2}MODELING RANDOM ALLOY AND CORE SHELL PARTICLES IN SOLUTION PHASE ENVIRONMENTS}{65} |
41 |
\contentsline {subsection}{\numberline {5.2.3}POTENIALS FOR CLASSICAL SIMULATIONS OF BIMETALLIC NANOPARTICLES}{70} |
42 |
\contentsline {section}{\numberline {5.3}ANALYSIS}{72} |
43 |
\contentsline {section}{\numberline {5.4}CONCLUSIONS}{84} |