--- trunk/chuckDissertation/dissertation.bbl 2009/01/13 14:39:50 3483 +++ trunk/chuckDissertation/dissertation.bbl 2009/04/08 19:13:41 3496 @@ -1,8 +1,8 @@ \begin{thebibliography}{100} \bibitem{DAW:1993p1640} -M.~DAW, S.~FOILES and M.~BASKES, The embedded-atom method - a review of theory - and applications (Jan 1993). +M.~Daw, S.~Foiles and M.~Baskes, The embedded-atom method - a review of theory + and applications. {\em Mater. Sci. Rep.\/}, 9(7-8): 251--310 (Jan 1993). \bibitem{kimura-quantum} Y.~Kimura and T.~Cagin, The quantum sutton-chen manybody potential for @@ -12,11 +12,21 @@ A.~P. Sutton and J.~Chen, Long-range finnis sinclair p A.~P. Sutton and J.~Chen, Long-range finnis sinclair potentials. {\em Phil. Mag. Lett.\/}, 61: 139--146 (1990). +\bibitem{PhysRevB.59.3527} +Y.~Qi, T.~\c{C}a\v{g}in, Y.~Kimura and W.~A. {Goddard III}, Molecular-dynamics + simulations of glass formation and crystallization in binary liquid + metals:\quad{}{C}u-{A}g and {C}u-{N}i. {\em Phys. Rev. B\/}, 59(5): + 3527--3533 (Feb 1999). + \bibitem{wolde:9932} P.~R. ten Wolde, M.~J. Ruiz-Montero and D.~Frenkel, Numerical calculation of the rate of crystal nucleation in a lennard-jones system at moderate undercooling. {\em J. Chem. Phys.\/}, 104(24): 9932--9947 (1996). +\bibitem{Greer:1995qy} +A.~L. Greer, Metallic glasses. {\em Science\/}, 267(5206): 1947--1953 (Mar + 1995). + \bibitem{Allen87} M.~P. Allen and D.~J. Tildesley, {\em Computer Simulations of Liquids\/}. Oxford University Press, New York (1987). @@ -60,39 +70,39 @@ P.~A. Egelstaff, {\em An introduction to the liquid st P.~A. Egelstaff, {\em An introduction to the liquid state\/}, volume~7. Clarendon Press, Oxford, second edition (1992). -\bibitem{Nrskov:1980p1752} -J.~K. N{\o}rskov and N.~D. Lang, Effective-medium theory of chemical binding: - Application to chemisorption. {\em Phys Rev B\/}, 21(6): 2131--2136 (Mar - 1980). - \bibitem{Nrskov:1982p1753} J.~K. N{\o}rskov, Covalent effects in the effective-medium theory of chemical - binding: Hydrogen heats of solution in the 3 dmetals. {\em Phys Rev B\/}, + binding: Hydrogen heats of solution in the 3 d metals. {\em Phys. Rev. B\/}, 26(6): 2875--2885 (Sep 1982). +\bibitem{Nrskov:1980p1752} +J.~K. N{\o}rskov and N.~D. Lang, Effective-medium theory of chemical binding: + Application to chemisorption. {\em Phys. Rev. B\/}, 21(6): 2131--2136 (Mar + 1980). + \bibitem{Stott:1980p1754} M.~J. Stott and E.~Zaremba, Quasiatoms: An approach to atoms in nonuniform - electronic systems. {\em Phys Rev B\/}, 22(4): 1564--1583 (Aug 1980). + electronic systems. {\em Phys. Rev. B\/}, 22(4): 1564--1583 (Aug 1980). \bibitem{Puska:1981p1755} M.~J. Puska and M.~Manninen, Atoms embedded in an electron gas: Immersion - energies. {\em Phys Rev B\/}, 24(6): 3037--3047 (Sep 1981). + energies. {\em Phys. Rev. B\/}, 24(6): 3037--3047 (Sep 1981). +\bibitem{DAW:1983ht} +M.~Daw and M.~Baskes, Semiempirical, quantum-mechanical calculation of hydrogen + embrittlement in metals. {\em Phys. Rev. Lett.\/}, 50(17): 1285--1288 (1983). + \bibitem{Daw84} M.~S. Daw and M.~I. Baskes, Embedded-atom method: Derivation and application to - impurities, surfaces, and other defects in metals. 29(12): 6443--6453 (1984). + impurities, surfaces, and other defects in metals. {\em Phys. Rev. B\/}, + 29(12): 6443--6453 (1984). -\bibitem{DAW:1983ht} -M.~DAW and M.~BASKES, Semiempirical, quantum-mechanical calculation of hydrogen - embrittlement in metals. {\em Physical Review Letters\/}, 50(17): 1285--1288 - (1983). - \bibitem{Hohenberg:1964bs} P.~Hohenberg and W.~Kohn, Inhomogeneous electron gas. {\em Phys. Rev.\/}, 136(3B): B864--B871 (Nov 1964). \bibitem{DAW:1989p1673} -M.~DAW, Model of metallic cohesion - the embedded-atom method. {\em Phys Rev +M.~Daw, Model of metallic cohesion - the embedded-atom method. {\em Phys. Rev. B\/}, 39(11): 7441--7452 (Jan 1989). \bibitem{PhysRevB.33.7983} @@ -110,27 +120,27 @@ J.~H. Rose, J.~R. Smith, F.~Guinea and J.~Ferrante, Un 1984). \bibitem{BASKES:1987p1743} -M.~BASKES, Application of the embedded-atom method to covalent materials - a - semiempirical potential for silicon. {\em Phys Rev Lett\/}, 59(23): +M.~Baskes, Application of the embedded-atom method to covalent materials - a + semiempirical potential for silicon. {\em Phys. Rev. Lett.\/}, 59(23): 2666--2669 (Jan 1987). +\bibitem{BASKES:1992p1735} +M.~Baskes, Modified embedded-atom potentials for cubic materials and + impurities. {\em Phys. Rev. B\/}, 46(5): 2727--2742 (Jan 1992). + \bibitem{BASKES:1989p1746} -M.~BASKES, J.~NELSON and A.~WRIGHT, Semiempirical modified embedded-atom - potentials for silicon and germanium. {\em Phys Rev B\/}, 40(9): 6085--6100 +M.~Baskes, J.~Nelson and A.~Wright, Semiempirical modified embedded-atom + potentials for silicon and germanium. {\em Phys. Rev. B\/}, 40(9): 6085--6100 (Jan 1989). -\bibitem{BASKES:1992p1735} -M.~BASKES, Modified embedded-atom potentials for cubic materials and - impurities. {\em Phys Rev B\/}, 46(5): 2727--2742 (Jan 1992). +\bibitem{Ercolessi88} +F.~Ercolessi, M.~Parrinello and E.~Tosatti, Simulation of gold in the glue + model. {\em Phil. Mag. A\/}, 58: 213--226 (1988). \bibitem{Finnis84} M.~W. Finnis and J.~E. Sinclair, A simple empirical n-body potential for transition-metals. {\em Phil. Mag. A\/}, 50: 45--55 (1984). -\bibitem{Ercolessi88} -F.~Ercolessi, M.~Parrinello and E.~Tosatti, Simulation of gold in the glue - model. {\em Phil. Mag. A\/}, 58: 213--226 (1988). - \bibitem{Qi99} Y.~Qi, T.~\c{C}a\v{g}in, Y.~Kimura and W.~A. {Goddard III}, Molecular-dynamics simulations of glass formation and crystallization in binary liquid metals: @@ -138,24 +148,82 @@ U.~Tartaglino, E.~Tosatti, D.~Passerone and F.~Ercoles \bibitem{Ercolessi02} U.~Tartaglino, E.~Tosatti, D.~Passerone and F.~Ercolessi, Bending strain-driven - modification of surface resconstructions: Au(111). 65: 241406 (2002). + modification of surface resconstructions: Au(111). {\em Phys. Rev. B\/}, 65: + 241406 (2002). +\bibitem{Goldstein:2001uf} +H.~Goldstein, C.~Poole and J.~Safko, {\em Classical Mechanics\/}. Addison + Wesley, San Francisco, third edition (2001). + \bibitem{Tolman:1938kl} R.~C. Tolman, {\em The Principles of Statistical Mechanics\/}. Oxford University Press, Inc., New York (1938). -\bibitem{Goldstein:2001uf} -H.~Goldstein, C.~Poole and J.~Safko, {\em Classical Mechanics\/}. Addison - Wesley, San Francisco, third edition (2001). +\bibitem{McQuarrie:2000yt} +D.~A. McQuarrie, {\em Statistical mechanics\/}. University Science Books, + Sausalito, Calif. (2000). + +\bibitem{swope:637} +W.~C. Swope, H.~C. Andersen, P.~H. Berens and K.~R. Wilson, A computer + simulation method for the calculation of equilibrium constants for the + formation of physical clusters of molecules: Application to small water + clusters. {\em The Journal of Chemical Physics\/}, 76(1): 637--649 (1982). + +\bibitem{Verlet67} +L.~Verlet, Computer ``experiments" on classical fluids. \uppercase{I. + T}hermodynamic properties of \uppercase{L}ennard-\uppercase{J}ones molecules. + {\em Phys. Rev.\/}, 159(1): 98--103 (1967). + +\bibitem{tuckerman:2278} +M.~Tuckerman, B.~J. Berne and G.~J. Martyna, Reply to comment on: Reversible + multiple time scale molecular dynamics. {\em J. Chem. Phys.\/}, 99(3): + 2278--2279 (1993). +\bibitem{BROOKS:1983uq} +B.~CL and M.~Karplus, Deformable stochastic boundaries in molecular-dynamics. + {\em J. Chem. Phys.\/}, 79: 6312--6325 (1983). + +\bibitem{BROOKS:1985kx} +C.~Brooks, A.~Brunger and M.~Karplus, Active-site dynamics in protein molecules + - a stochastic boundary molecular-dynamics approach. {\em Biopolymers\/}, 24: + 843--865 (1985). + +\bibitem{BRUNGER:1984fj} +A.~Brunger, C.~Brooks and M.~Karplus, Stochastic boundary-conditions for + molecular-dynamics simulations of st2 water. {\em Chem. Phys. Lett.\/}, 105: + 495--500 (1984). + +\bibitem{Schlick:2002hc} +T.~Schlick, {\em Molecular modeling and simulation: an interdisciplinary + guide\/}, volume v. 21. Springer, New York (2002). + +\bibitem{Fox88} +G.~C. Fox, M.~A. Johnson, G.~A. Lyzenga, S.~W. Otto, J.~K. Salmon and D.~W. + Walker, {\em Solving Promblems on Concurrent Processors\/}, volume~I. + Prentice-Hall, Englewood Cliffs, NJ (1988). + +\bibitem{plimpton95} +S.~Plimpton, Fast parallel algorithms for short-range molecular dymanics. {\em + J. Comp. Phys.\/}, 117: 1--19 (1995). + +\bibitem{Paradyn} +S.~J. Plimpton and B.~A. Hendrickson, Parallel molecular dynamics with the + embedded atom method. In J.~Broughton, P.~Bristowe and J.~Newsam, editors, + {\em Materials Theory and Modelling\/}, volume 291 of {\em MRS + Proceedings\/}, page~37, Materials Research Society, Pittsburgh, PA (1993). + +\bibitem{hendrickson:95} +B.~Hendrickson and S.~Plimpton, Parallel many-body simulations without + all-to-all communication. {\em J. Parallel Distr. Com.\/}, 27: 15--25 (1995). + \bibitem{Pense92} A.~W. Pense, The decline and fall of the roman denarius. {\em Mat. Char.\/}, 29: 213 (1992). \bibitem{duwez:1136} P.~Duwez, R.~H. Willens, W.~Klement and Jr, Continuous series of metastable - solid solutions in silver-copper alloys. {\em Journal of Applied Physics\/}, - 31(6): 1136--1137 (1960). + solid solutions in silver-copper alloys. {\em J. Appl. Phys.\/}, 31(6): + 1136--1137 (1960). \bibitem{Peker93} A.~Peker and W.~L. Johnson, A highly processable metallic-glass - @@ -164,13 +232,13 @@ W.~Kob and H.~C. Andersen, Testing mode-coupling theor \bibitem{Kob95a} W.~Kob and H.~C. Andersen, Testing mode-coupling theory for a supercooled - binary lennard-jones mixtures: The van hove corraltion function. 51: - 4626--4641 (1995). + binary lennard-jones mixtures: The van hove corraltion function. {\em Phys. + Rev. E\/}, 51: 4626--4641 (1995). \bibitem{Kob95b} W.~Kob and H.~C. Andersen, Testing mode-coupling theory for a supercooled binary lennard-jones mixtures. ii. intermediate scattering function and - dynamic susceptibility. 52: 4134--4153 (1995). + dynamic susceptibility. {\em Phys. Rev. E\/}, 52: 4134--4153 (1995). \bibitem{Stillinger98} S.~Sastry, P.~G. Debenedetti and F.~H. Stillinger, Signatures of distinct @@ -186,30 +254,31 @@ C.~Gaukel and H.~R. Schober, Diffusion mechanisms in u liquids of $\mbox{Zr}_{67}\mbox{Cu}_{33}$. {\em Solid State Comm.\/}, 107: 1--5 (1998). +\bibitem{Gezelter99} +J.~D. Gezelter, E.~Rabani and B.~J. Berne, Methods for calculating the hopping + rate for orientational and spatial diffusion in a molecular liquid: + $\mbox{CS}_{2}$. {\em J. Chem. Phys.\/}, 110: 3444 (1999). + \bibitem{Rabani97} E.~Rabani, J.~D. Gezelter and B.~J. Berne, Calculating the hopping rate for self-diffusion on rough potential energy surfaces: Cage correlations. {\em J. Chem. Phys.\/}, 107: 6867--6876 (1997). -\bibitem{Gezelter99} -J.~D. Gezelter, E.~Rabani and B.~J. Berne, Methods for calculating the hopping - rate for orientational and spatial diffusion in a molecular liquid: - $\mbox{CS}_{2}$. 110: 3444 (1999). - \bibitem{Rabani99} E.~Rabani, J.~D. Gezelter and B.~J. Berne, Direct observation of stretched-exponential relaxation in low-temperature lennard-jones systems - using the cage correlation function. 82: 3649 (1999). + using the cage correlation function. {\em Phys. Rev. Lett.\/}, 82: 3649 + (1999). \bibitem{Rabani2000} E.~Rabani, J.~D. Gezelter and B.~J. Berne, Reply to `comment on ``direct observation of stretched-exponential relaxation in low-temperature - lennard-jones systems using th ecage correlation function'' '. 85: 467 - (2000). + lennard-jones systems using th ecage correlation function'' '. {\em Phys. + Rev. Lett.\/}, 85: 467 (2000). \bibitem{Zwanzig83} R.~Zwanzig, On the relation between self-diffusion and viscosity of liquids. - 79: 4507--4508 (1983). + {\em J. Chem. Phys.\/}, 79: 4507--4508 (1983). \bibitem{Blumen83} A.~Blumen, J.~Klafter and G.~Zumofen, Recombination in amorphous materials as a @@ -218,7 +287,8 @@ J.~Klafter and G.~Zumofen, Probability distributions f \bibitem{Klafter94} J.~Klafter and G.~Zumofen, Probability distributions for continuous-time random - walks with long tails. 98: 7366--7370 (1994). + walks with long tails. {\em Journal of Physical Chemistry\/}, 98: 7366--7370 + (1994). \bibitem{Klafter96} J.~Klafter, M.~Shlesinger and G.~Zumofen, Beyond brownian motion. {\em Physics @@ -229,21 +299,21 @@ M.~F. Shlesinger, J.~Klafter and G.~Zumofen, Above, be motion. {\em Am. J. Phys.\/}, 67: 1253--1259 (1999). \bibitem{Stillinger82} -F.~H. Stillinger and T.~A. Weber, Hidden structure in liquids. 25(2): 978--989 - (1982). +F.~H. Stillinger and T.~A. Weber, Hidden structure in liquids. {\em Phys. Rev. + A\/}, 25(2): 978--989 (1982). \bibitem{Stillinger83} F.~H. Stillinger and T.~A. Weber, Dynamics of structural transitions in - liquids. 28(4): 2408--2416 (1983). + liquids. {\em Phys. Rev. A\/}, 28(4): 2408--2416 (1983). -\bibitem{Weber84} -T.~A. Weber and F.~H. Stillinger, The effect of density on the inherent - structure in liquids. 80(6): 2742--2746 (1984). - \bibitem{Stillinger85} F.~H. Stillinger and T.~A. Weber, Inherent structure theory of liquids in the - hard-sphere limit. 83(9): 4767--4775 (1985). + hard-sphere limit. {\em J. Chem. Phys.\/}, 83(9): 4767--4775 (1985). +\bibitem{Weber84} +T.~A. Weber and F.~H. Stillinger, The effect of density on the inherent + structure in liquids. {\em J. Chem. Phys.\/}, 80(6): 2742--2746 (1984). + \bibitem{Berne90} B.~J. Berne and R.~Pecora, {\em Dynamic Light Scattering\/}. Robert E. Krieger Publishing Company, Inc., Malabar, Florida (1990). @@ -251,42 +321,38 @@ H.~J. {Parkhurst, Jr.} and J.~Jonas, Dense liquids. i. \bibitem{Parkhurst75a} H.~J. {Parkhurst, Jr.} and J.~Jonas, Dense liquids. i. the effect of density and temperature on viscosity of tetramethylsilane and benzene-$\mbox{D}_6$. - 63(6): 2698--2704 (1975). + {\em J. Chem. Phys.\/}, 63(6): 2698--2704 (1975). \bibitem{Parkhurst75b} H.~J. {Parkhurst, Jr.} and J.~Jonas, Dense liquids. ii. the effect of density - and temperature on viscosity of tetramethylsilane and benzene. 63(6): - 2705--2709 (1975). + and temperature on viscosity of tetramethylsilane and benzene. {\em J. Chem. + Phys.\/}, 63(6): 2705--2709 (1975). \bibitem{Ngai81} K.~L. Ngai and F.-S. Liu, Dispersive diffusion transport and noise, time-dependent diffusion coefficient, generalized einstein-nernst relation, and dispersive diffusion-controlled unimolecular and bimolecular reactions. - 24: 1049--1065 (1981). + {\em Phys. Rev. B\/}, 24: 1049--1065 (1981). \bibitem{Gezelter97} J.~D. Gezelter, E.~Rabani and B.~J. Berne, Can imaginary instantaneous normal - mode frequencies predict barriers to self-diffusion? 107: 4618 (1997). + mode frequencies predict barriers to self-diffusion? {\em J. Chem. Phys.\/}, + 107: 4618 (1997). \bibitem{Gezelter98a} J.~D. Gezelter, E.~Rabani and B.~J. Berne, Response to 'comment on a critique - of the instantaneous normal mode (inm) approach to diffusion'. 109: 4695 - (1998). + of the instantaneous normal mode (inm) approach to diffusion'. {\em J. Chem. + Phys.\/}, 109: 4695 (1998). -\bibitem{Lu97} -J.~Lu and J.~A. Szpunar, Applications of the embedded-atom method to glass - formation and crystallization of liquid and glass transition-metal nickel. - {\em Phil. Mag. A\/}, 75: 1057--1066 (1997). +\bibitem{sheng:184203} +H.~W. Sheng, J.~H. He and E.~Ma, Molecular dynamics simulation studies of + atomic-level structures in rapidly quenched ag-cu nonequilibrium alloys. {\em + Phys. Rev. B\/}, 65(18): 184203 (2002). -\bibitem{Alemany98} -M.~M.~G. Alemany, C.~Rey and L.~J. Gallego, Transport coefficients of liquid - transition metals: A computer simulation study using the embedded atom model. - 109: 5175--5176 (1998). +\bibitem{MURRAY:1984lr} +J.~L. Murray, Calculations of stable and metastable equilibrium diagrams of the + ag-cu and cd-zn systems. {\em Metall Trans\/}, 15(2): 261--268 (1984). -\bibitem{Belonoshko00} -A.~B. Belonoshko, R.~Ahuja, O.~Eriksson and B.~Johansson, Quasi ab initio - molecular dynamic study of cu melting. 61: 3838--3844 (2000). - \bibitem{Banhart:1992sv} J.~Banhart, H.~Ebert, R.~Kuentzler and J.~Voitl\"{a}nder, Electronic properties of single-phased metastable ag-cu alloys. 46(16): 9968--9975 (1992). @@ -296,86 +362,205 @@ M.~Ediger, C.~Angell and S.~R. Nagel, Supercooled liqu 13200 (1996). \bibitem{Wendt78} -H.~Wendt and F.~F. Abraham. 41: 1244 (1978). +H.~Wendt and F.~F. Abraham. {\em Phys. Rev. Lett.\/}, 41: 1244 (1978). \bibitem{Lewis91} -L.~J. Lewis, Atomic dynamics through the glass transition. 44: 4245--4254 - (1991). +L.~J. Lewis, Atomic dynamics through the glass transition. {\em Phys. Rev. + B\/}, 44: 4245--4254 (1991). \bibitem{Liu92} R.~S. Liu, D.~W. Qi and S.~Wang, Subpeaks of structure factors for rapidly - quenched metals. 45: 451--453 (1992). + quenched metals. {\em Phys. Rev. B\/}, 45: 451--453 (1992). -\bibitem{Truhlar00} -D.~G. Truhlar and A.~Kohen. private correspondence. - \bibitem{Tolman20} -R.~C. Tolman, Statistical mechanics applied to chemical kinetics. 42: 2506 - (1920). +R.~C. Tolman, Statistical mechanics applied to chemical kinetics. {\em J. Am. + Chem. Soc.\/}, 42: 2506 (1920). \bibitem{Tolman27} R.~C. Tolman, {\em Statistical Mechanics with Applications to Physics and Chemistry\/}. Chemical Catalog Co., New York (1927). +\bibitem{Truhlar00} +D.~G. Truhlar and A.~Kohen. private correspondence. + \bibitem{Buffat:1976yq} P.~Buffat and J.-P. Borel, Size effect on the melting temperature of gold particles. {\em Phys. Rev. A\/}, 13: 2287--2298 (1976). -\bibitem{el-sayed00} -S.~Link, Z.~L. Wang and M.~A. El-Sayed, How does a gold nanorod melt? 104: - 7867--7870 (2000). +\bibitem{Chen:1997p2142} +C.~Chen, A.~Herhold, C.~Johnson and A.~ALIVISATOS, Size dependence of + structural metastability in semiconductor nanocrystals. {\em Science\/}, + 276(5311): 398--401 (Jan 1997). -\bibitem{el-sayed01} -S.~Link and M.~A. El-Sayed, Spectroscopic determination of the melting energy - of a gold nanorod. 114: 2362--2368 (2001). +\bibitem{GOLDSTEIN:1992p2138} +A.~Goldstein, C.~Echer and A.~Alivisatos, Melting in semiconductor + nanocrystals. {\em Science\/}, 256(5062): 1425--1427 (Jan 1992). +\bibitem{Pawlow:1909p2134} +P.~Pawlow, The dependency of the melting point on the surface energy of a solid + body. (supplement.). {\em Z Phys Chem-Stoch Ve\/}, 65(5): 545--548 (Jan + 1909). + +\bibitem{SOLLIARD:1985p2137} +C.~Solliard and M.~Flueli, Surface stress and size effect on the + lattice-parameter in small particles of gold and platinum. {\em Surf. + Sci.\/}, 156(JUN): 487--494 (Jan 1985). + +\bibitem{TOLBERT:1996p2141} +S.~Tolbert, A.~Herhold, L.~Brus and A.~Alivisatos, Pressure-induced structural + transformations in si nanocrystals: Surface and shape effects. {\em Phys. + Rev. Lett.\/}, 76(23): 4384--4387 (Jan 1996). + +\bibitem{MORI:1991p2144} +H.~Mori, M.~Komatsu, K.~Takeda and H.~Fujita, Spontaneous alloying of copper + into gold atom clusters. {\em Phil. Mag. Lett.\/}, 63(3): 173--178 (Jan + 1991). + +\bibitem{MORI:1994p2372} +H.~Mori, H.~Yasuda and T.~Kamino, High-resolution electron-microscopy study of + spontaneous alloying in gold clusters. {\em Phil. Mag. Lett.\/}, 69(5): + 279--283 (Jan 1994). + +\bibitem{YASUDA:1996p2387} +H.~Yasuda and H.~Mori, Phase stability and transformation in nanometre-sized + au-pb alloy clusters produced by spontaneous alloying. {\em Philos. Mag. + A\/}, 73(3): 567--573 (Jan 1996). + +\bibitem{yasuda:1100} +H.~Yasuda, H.~Mori, M.~Komatsu and K.~Takeda, Spontaneous alloying of copper + atoms into gold clusters at reduced temperatures. {\em J. Appl. Phys.\/}, + 73(3): 1100--1103 (1993). + +\bibitem{PhysRevLett.69.3747} +H.~Yasuda and H.~Mori, Spontaneous alloying of zinc atoms into gold clusters + and formation of compound clusters. {\em Phys. Rev. Lett.\/}, 69(26): + 3747--3750 (Dec 1992). + +\bibitem{Mori1996244} +H.~Mori and H.~Yasuda, Effect of cluster size on phase stability in nm-sized + {A}u-{S}b alloy clusters. {\em Mat. Sci. Eng. A\/}, 217-218: 244 -- 248 + (1996), International Conference on Nano-Clusters and Granular Materials. + +\bibitem{Schmid:2000ul} +A.~K. Schmid, N.~C. Bartelt and R.~Q. Hwang, Alloying at surfaces by the + migration of reactive two-dimensional islands. {\em Science\/}, 290(5496): + 1561--1564 (2000). + +\bibitem{Das:1999p2397} +D.~Das, P.~Chatterjee, I.~Manna and S.~Pabi, A measure of enhanced diffusion + kinetics in mechanical alloying of cu-18 at.% al by planetary ball milling. + {\em Scripta Mater\/}, 41(8): 861--866 (Jan 1999). + \bibitem{ShibataT._ja026764r} T.~Shibata, B.~Bunker, Z.~Zhang, D.~Meisel, C.~Vardeman and J.~Gezelter, - Size-dependent spontaneous alloying of {A}u-{A}g nanoparticles. {\em JACS\/}, - 124(40): 11989--11996 (2002). + Size-dependent spontaneous alloying of {A}u-{A}g nanoparticles. {\em J. Am. + Chem. Soc.\/}, 124(40): 11989--11996 (2002). +\bibitem{Frenkel:2000p2400} +A.~Frenkel, V.~Machavariani, A.~Rubshtein, Y.~Rosenberg, A.~Voronel and + E.~Stern, Local structure of disordered au-cu and au-ag alloys. {\em Phys. + Rev. B\/}, 62(14): 9364--9371 (Jan 2000). + +\bibitem{Hodak:2000rb} +J.~H. Hodak, A.~Henglein, M.~Giersig and G.~V. Hartland, Laser-induced + inter-diffusion in {A}u{A}g core-shell nanoparticles. {\em J. Phys. Chem. + B\/}, 104: 11708 -- 11718 (2000). + +\bibitem{HENGLEIN:1999p2419} +A.~Henglein, Radiolytic preparation of ultrafine colloidal gold particles in + aqueous solution: Optical spectrum, controlled growth, and some chemical + reactions. {\em Langmuir\/}, 15(20): 6738--6744 (Jan 1999). + +\bibitem{HengleinA._la981278w} +A.~Henglein and D.~Meisel, Radiolytic control of the size of colloidal gold + nanoparticles. {\em Langmuir\/}, 14(26): 7392--7396 (1998). + +\bibitem{MULVANEY:1993p2409} +P.~Mulvaney, M.~Giersig and A.~Henglein, Electrochemistry of multilayer + colloids - preparation and absorption-spectrum of gold-coated silver + particles. {\em J. Phys. Chem.\/}, 97(27): 7061--7064 (Jan 1993). + +\bibitem{Hodak:2000ek} +J.~H. Hodak, A.~Henglein and G.~V. Hartland, Coherent excitation of acoustic + breathing modes in bimetallic core−shell nanoparticles. {\em J. Phys. + Chem. B\/}, 104(21): 5053--5055 (2000). + +\bibitem{Link:1999p2468} +S.~Link, Z.~Wang and M.~El-Sayed, Alloy formation of gold-silver nanoparticles + and the dependence of the plasmon absorption on their composition (Jan 1999). + +\bibitem{JOHNSON:1989p2479} +R.~Johnson, Alloy models with the embedded-atom method. {\em Phys Rev B\/}, + 39(17): 12554--12559 (Jan 1989). + +\bibitem{Kohlrausch:1863zv} +F.~Kohlrausch. {\em Pogg. Ann. Physik\/}, 119: 352 (1863). + +\bibitem{Williams:1970fk} +G.~Williams and D.~C. Watts, Non-symmeric dielectric relaxation behaviour + arising from a simple empirical decay function. {\em Trans. Faraday Soc.\/}, + 66: 80--85 (1970). + +\bibitem{Vardeman-II:2001jn} +C.~F. {Vardeman II} and J.~D. Gezelter, Comparing models for diffusion in + supercooled liquids: The eutectic composition of the {A}g-{C}u alloy. {\em J. + Phys. Chem. A\/}, 105(12): 2568 (2001). + +\bibitem{Tu:1992uq} +K.~N. Tu and J.~W. Mayer, {\em Electronic Thin Film Science\/}. Macmillian: New + York (1992). + +\bibitem{el-sayed01} +S.~Link and M.~A. El-Sayed, Spectroscopic determination of the melting energy + of a gold nanorod. {\em J. Chem. Phys.\/}, 114: 2362--2368 (2001). + +\bibitem{el-sayed00} +S.~Link, Z.~L. Wang and M.~A. El-Sayed, How does a gold nanorod melt? {\em J. + Phys. Chem. B\/}, 104: 7867--7870 (2000). + \bibitem{delfatti99} N.~{Del Fatti}, C.~Voisin, F.~Chevy, F.~Vallee and C.~Flytzanis, Coherent - acoustic mode oscillation and damping in silver nanoparticles. 110: - 11484--11487 (1999). + acoustic mode oscillation and damping in silver nanoparticles. {\em J. Chem. + Phys.\/}, 110: 11484--11487 (1999). +\bibitem{hartland02a} +G.~V. Hartland, Coherent vibrational motion in metal particles: Determination + of the vibrational amplitude and excitation mechanism. {\em J. Chem. + Phys.\/}, 116: 8048--8055 (2002). + \bibitem{henglein99} J.~H. Hodak, A.~Henglein and G.~V. Hartland, Size dependent properties of au particles: Coherent excitation and dephasing of acoustic vibrational modes. - 111: 8613--8621 (1999). + {\em J. Chem. Phys.\/}, 111: 8613--8621 (1999). -\bibitem{hartland02a} -G.~V. Hartland, Coherent vibrational motion in metal particles: Determination - of the vibrational amplitude and excitation mechanism. 116: 8048--8055 - (2002). - \bibitem{hartland02c} J.~E. Sader, G.~V. Hartland and P.~Mulvaney, Theory of acoustic breathing modes - of core-shell nanoparticles. 106: 1399--1402 (2002). + of core-shell nanoparticles. {\em J. Phys. Chem. B\/}, 106: 1399--1402 + (2002). \bibitem{HuM._jp020581+} M.~Hu and G.~Hartland, Heat dissipation for {A}u particles in aqueous solution: - Relaxation time versus size. {\em Journal of Physical Chemistry B\/}, - 106(28): 7029--7033 (2002). + Relaxation time versus size. {\em J. Phys. Chem. B\/}, 106(28): 7029--7033 + (2002). \bibitem{hartland02d} M.~Hu and G.~V. Hartland, Photophysics of metal nanoparticles: Heat dissipation and coherent excitation of phonon modes. {\em Proceeding of SPIE\/}, 4803 (July 2002). -\bibitem{Simon2001} -D.~T. Simon and M.~R. Geller, Electron-phonon dynamics in an ensemble of nearly - isolated nanoparticles. 64: 115412 (2001). - \bibitem{HartlandG.V._jp0276092} G.~Hartland, M.~Hu and J.~Sader, Softening of the symmetric breathing mode in - gold particles by laser-induced heating. {\em Journal of Physical Chemistry - B\/}, 107(30): 7472--7478 (2003). + gold particles by laser-induced heating. {\em J. Phys. Chem. B\/}, 107(30): + 7472--7478 (2003). +\bibitem{Simon2001} +D.~T. Simon and M.~R. Geller, Electron-phonon dynamics in an ensemble of nearly + isolated nanoparticles. {\em Phys. Rev. B\/}, 64: 115412 (2001). + \bibitem{Hartland00} J.~H. Hodak, A.~Henglein and G.~V. Hartland, Coherent excitation of acoustic - breathing modes in bimetallic core-shell nanoparticles. 104: 5053--5055 - (2000). + breathing modes in bimetallic core-shell nanoparticles. {\em J. Chem. + Phys\/}, 104: 5053--5055 (2000). \bibitem{Voter:87} A.~Voter and S.~Chen, Accurate interatomic potentials for ni, al, and ni3al. @@ -386,20 +571,20 @@ S.~J. Plimpton and B.~A. Hendrickson, Parallel molecul embedded atom method. {\em MRS Proceedings\/}, 291: 37 (1993). \bibitem{hoover85} -W.~G. Hoover, Canonical dynamics: Equilibrium phase-space distributions. 31: - 1695 (1985). +W.~G. Hoover, Canonical dynamics: Equilibrium phase-space distributions. {\em + Phys. Rev. A\/}, 31: 1695 (1985). -\bibitem{barber96quickhull} -C.~B. Barber, D.~P. Dobkin and H.~Huhdanpaa, The quickhull algorithm for convex - hulls. {\em ACM Transactions on Mathematical Software\/}, 22(4): 469--483 - (1996). - \bibitem{qhull} Qhull (1993), software library is available from the National Science and Technology Research Center for Computation and Visualization of Geometric Structures (The Geometry Center), University of Minnesota. {\tt http://www.geom.umn.edu/software/qhull/}. +\bibitem{barber96quickhull} +C.~B. Barber, D.~P. Dobkin and H.~Huhdanpaa, The quickhull algorithm for convex + hulls. {\em ACM Transactions on Mathematical Software\/}, 22(4): 469--483 + (1996). + \bibitem{BernePecora} B.~J. Berne and R.~Pecora, {\em Dynamic Light Scattering\/}. Dover Publications, Inc., Mineola, New York (2000). @@ -414,36 +599,37 @@ G.~Cerullo, S.~D. Silvestri and U.~Banin, Size-depende \bibitem{Cerullo1999} G.~Cerullo, S.~D. Silvestri and U.~Banin, Size-dependent dynamics of coherent - acoustic phonons in nanocrystal quantum dots. 60: 1928--1932 (1999). + acoustic phonons in nanocrystal quantum dots. {\em Phys. Rev. B\/}, 60: + 1928--1932 (1999). \bibitem{Iida1988} T.~Iida and R.~I.~L. Guthrie, {\em The Physical Properties of Liquid Metals\/}. Clarendon Press, Oxford (1988). -\bibitem{West:2003fk} -J.~West and N.~Halas, Engineered nanomaterials for biophotonics applications: - Improving sensing, imaging, and therapeutics (2003), Annu. Rev. Biomed. Eng. - \bibitem{Hu:2006lr} M.~Hu, J.~Chen, Z.-Y. Li, L.~Au, G.~V. Hartland, X.~Li, M.~Marquez and Y.~Xia, Gold nanostructures: engineering their plasmonic properties for biomedical applications (2006), Chem. Soc. Rev. +\bibitem{West:2003fk} +J.~West and N.~Halas, Engineered nanomaterials for biophotonics applications: + Improving sensing, imaging, and therapeutics (2003), Annu. Rev. Biomed. Eng. + \bibitem{Dick:2002qy} K.~Dick, T.~Dhanasekaran, Z.~Zhang and D.~Meisel, Size-dependent melting of silica-encapsulated gold nanoparticles. {\em J. Amer. Chem. Soc.\/}, 124: 2312--2317 (2002). -\bibitem{Mafune01} -F.~Mafune, J.~Kohno, Y.~Takeda and T.~Kondow, Dissociation and aggregation of - gold nanoparticles under laser irradiation. {\em J. Phys. Chem. B\/}, - 105(38): 9050--9056 (Sep 2001). - \bibitem{Link:2000lr} S.~Link and M.~A. El-Sayed, Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. {\em International Reviews in Physical Chemistry\/}, 19(3): 409--453 (2000). +\bibitem{Mafune01} +F.~Mafune, J.~Kohno, Y.~Takeda and T.~Kondow, Dissociation and aggregation of + gold nanoparticles under laser irradiation. {\em J. Phys. Chem. B\/}, + 105(38): 9050--9056 (Sep 2001). + \bibitem{Plech:2003yq} A.~Plech, S.~Kurbitz, K.~Berg, H.~Graener, G.~Berg, S.~Gresillon, M.~Kaempfe, J.~Feldmann, M.~Wulff and G.~von Plessen, Time-resolved x-ray diffraction on @@ -460,11 +646,6 @@ A.~Plech, R.~Cerna, V.~Kotaidis, F.~Hudert, A.~Bartels surface phase transition of supported gold nanoparticles. {\em Nano Lett.\/}, 7: 1026--1031 (2007). -\bibitem{Hodak:2000rb} -J.~H. Hodak, A.~Henglein, M.~Giersig and G.~V. Hartland, Laser-induced - inter-diffusion in {A}u{A}g core-shell nanoparticles. {\em J. Phys. Chem. - B\/}, 104: 11708 -- 11718 (2000). - \bibitem{Hartland:2003lr} G.~Hartland, S.~Guillaudeu and J.~Hodak, Laser-induced alloying in metal nanoparticles: Controlling spectral properties with light (2003), Molecules @@ -487,18 +668,9 @@ C.~Vardeman, P.~Conforti, M.~Sprague and J.~Gezelter, \bibitem{VardemanC.F._jp051575r} C.~Vardeman, P.~Conforti, M.~Sprague and J.~Gezelter, Breathing mode dynamics - and elastic properties of gold nanoparticles. {\em Journal of Physical - Chemistry B\/}, 109(35): 16695--16699 (2005). - -\bibitem{Greer:1995qy} -A.~L. Greer, Metallic glasses. {\em Science\/}, 267(5206): 1947--1953 (mar - 1995). + and elastic properties of gold nanoparticles. {\em J. Phys. Chem. B\/}, + 109(35): 16695--16699 (2005). -\bibitem{Vardeman-II:2001jn} -C.~F. {Vardeman II} and J.~D. Gezelter, Comparing models for diffusion in - supercooled liquids: The eutectic composition of the {A}g-{C}u alloy. {\em J. - Phys. Chem. A\/}, 105(12): 2568 (2001). - \bibitem{Massalski:1986rt} T.~B. Massalski, J.~L. Murray, L.~H. Bennett and H.~Baker, {\em Binary alloy phase diagrams\/}. American Society for Metals, Metals Park, Ohio (1986). @@ -509,19 +681,12 @@ R.~Najafabadi, D.~J. Srolovitz, E.~Ma and M.~Atzmon, T \bibitem{najafabadi:3144} R.~Najafabadi, D.~J. Srolovitz, E.~Ma and M.~Atzmon, Thermodynamic properties - of metastable ag-cu alloys. {\em Journal of Applied Physics\/}, 74(5): - 3144--3149 (1993). + of metastable ag-cu alloys. {\em J. Appl. Phys.\/}, 74(5): 3144--3149 (1993). -\bibitem{sheng:184203} -H.~W. Sheng, J.~H. He and E.~Ma, Molecular dynamics simulation studies of - atomic-level structures in rapidly quenched ag-cu nonequilibrium alloys. {\em - Phys. Rev. B\/}, 65(18): 184203 (2002). - \bibitem{Malyavantham:2004cu} G.~Malyavantham, D.~T. O'Brien, M.~F. Becker, J.~W. Keto and D.~Kovar, Au-cu nanoparticles produced by laser ablation of mixtures of au and cu - microparticles. {\em Journal of Nanoparticle Research\/}, 6(6): 661 --664 - (2004). + microparticles. {\em J. Nanopart. Res.\/}, 6(6): 661 --664 (2004). \bibitem{Kim:2003lv} M.~Kim, H.~Na, K.~C. Lee, E.~A. Yoo and M.~Lee, Preperation and @@ -531,23 +696,24 @@ G.~De, M.~Gusso, L.~Tapfer, M.~Catalano, F.~Gonella, G \bibitem{De:1996ta} G.~De, M.~Gusso, L.~Tapfer, M.~Catalano, F.~Gonella, G.~Mattei, P.~Mazzoldi and G.~Battaglin, Annealing behavior of silver, copper, and silver--copper - nanoclusters in a silica matrix synthesized by the sol-gel technique. {\em - Journal of Applied Physics\/}, 80(12): 6734--6739 (1996). + nanoclusters in a silica matrix synthesized by the sol-gel technique. {\em J. + Appl. Phys.\/}, 80(12): 6734--6739 (1996). \bibitem{Magruder:1994rg} R.~H. Magruder, III, D.~H. Osborne, Jr. and R.~A. Zuhr, Non-linear optical - properties of nanometer dimension ag---cu particles in silica formed by - sequential ion implantation (1994). + properties of nanometer dimension {A}g-{C}u particles in silica formed by + sequential ion implantation. {\em J. Non-Cryst. Solids\/}, 176(2-3): 299 + --303 (1994). \bibitem{gonzalo:5163} J.~Gonzalo, D.~Babonneau, C.~N. Afonso and J.-P. Barnes, Optical response of - mixed ag-cu nanocrystals produced by pulsed laser deposition. {\em Journal of - Applied Physics\/}, 96(9): 5163--5168 (2004). + mixed ag-cu nanocrystals produced by pulsed laser deposition. {\em J. Appl. + Phys.\/}, 96(9): 5163--5168 (2004). \bibitem{HengleinA._jp992950g} A.~Henglein, Formation and absorption spectrum of copper nanoparticles from the - radiolytic reduction of cu(cn)2-. {\em Journal of Physical Chemistry B\/}, - 104(6): 1206--1211 (2000). + radiolytic reduction of {C}u({CN})2-. {\em J. Phys. Chem. B\/}, 104(6): + 1206--1211 (2000). \bibitem{Kob:1999fk} W.~Kob, Computer simulations of supercooled liquids and glasses. {\em Journal @@ -579,8 +745,8 @@ Y.~Qi, T.~Cagin, W.~L. Johnson and W.~A.~G. III, Melti \bibitem{Qi:2001nn} Y.~Qi, T.~Cagin, W.~L. Johnson and W.~A.~G. III, Melting and crystallization in - ni nanoclusters: The mesoscale regime. {\em The Journal of Chemical - Physics\/}, 115(1): 385--394 (2001). + ni nanoclusters: The mesoscale regime. {\em J. Chem. Phys.\/}, 115(1): + 385--394 (2001). \bibitem{Strandburg:1992qy} K.~J. Strandburg, {\em Bond-orientational order in condensed matter systems\/}. @@ -607,55 +773,11 @@ H.~Jiang, K.~sik Moon and C.~P. Wong, Synthesis of ag- Processes, Properties and Interfaces, 2005. Proceedings. International Symposium on\/}, pages 173--177 (2005). -\bibitem{BROOKS:1985kx} -C.~BROOKS, A.~BRUNGER and M.~KARPLUS, Active-site dynamics in protein molecules - - a stochastic boundary molecular-dynamics approach. {\em Biopolymers\/}, 24: - 843--865 (1985). - -\bibitem{BROOKS:1983uq} -C.~BROOKS and M.~KARPLUS, Deformable stochastic boundaries in - molecular-dynamics. {\em Journal of Chemical Physics\/}, 79: 6312--6325 - (1983). - -\bibitem{BRUNGER:1984fj} -A.~BRUNGER, C.~BROOKS and M.~KARPLUS, Stochastic boundary-conditions for - molecular-dynamics simulations of st2 water. {\em Chemical Physics - Letters\/}, 105: 495--500 (1984). - \bibitem{kotaidis:184702} V.~Kotaidis, C.~Dahmen, G.~von Plessen, F.~Springer and A.~Plech, Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water. {\em - The Journal of Chemical Physics\/}, 124(18): 184702 (2006). + J. Chem. Phys.\/}, 124(18): 184702 (2006). -\bibitem{Sankaranarayanan:2005lr} -S.~Sankaranarayanan, V.~Bhethanabotla and B.~Joseph, Molecular dynamics - simulation study of the melting of pd-pt nanoclusters. {\em Phys. Rev. B\/}, - 71 (2005). - -\bibitem{Chui:2003fk} -Y.~Chui and K.~Chan, Analyses of surface and core atoms in a platinum - nanoparticle. {\em Phys. Chem. Chem. Phys.\/}, 5: 2869--2874 (2003). - -\bibitem{Wang:2005qy} -G.~Wang, M.~Van~Hove, P.~Ross and M.~Baskes, Surface structures of - cubo-octahedral pt-mo catalyst nanoparticles from monte carlo simulations. - {\em J. Phys. Chem. B\/}, 109: 11683--11692 (2005). - -\bibitem{Medasani:2007uq} -B.~Medasani, Y.~H. Park and I.~Vasiliev, Theoretical study of the surface - energy, stress, and lattice contraction of silver nanoparticles. {\em Phys. - Rev. B\/}, 75 (2007). - -\bibitem{PhysRevB.59.3527} -Y.~Qi, T.~\c{C}a\v{g}in, Y.~Kimura and W.~A. {Goddard III}, Molecular-dynamics - simulations of glass formation and crystallization in binary liquid - metals:\quad{}{C}u-{A}g and {C}u-{N}i. {\em Phys. Rev. B\/}, 59(5): - 3527--3533 (Feb 1999). - -\bibitem{MURRAY:1984lr} -J.~L. Murray, Calculations of stable and metastable equilibrium diagrams of the - ag-cu and cd-zn systems. {\em Metall Trans\/}, 15(2): 261--268 (1984). - \bibitem{19521106} F.~C. Frank, Supercooling of liquids. {\em Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences\/}, 215(1120): 43--46 @@ -680,50 +802,185 @@ B.~W. van~de Waal, On the origin of second-peak splitt \bibitem{Waal:1995lr} B.~W. van~de Waal, On the origin of second-peak splitting in the static - structure factor of metallic glasses. {\em Journal of Non-Crystalline - Solids\/}, 189(1-2): 118--128 (1995). + structure factor of metallic glasses. {\em J Non-Cryst. Solids\/}, 189(1-2): + 118--128 (1995). \bibitem{HoneycuttJ.Dana_j100303a014} J.~D. Honeycutt and H.~C. Andersen, Molecular dynamics study of melting and - freezing of small lennard-jones clusters. {\em Journal of Physical - Chemistry\/}, 91(19): 4950--4963 (1987). + freezing of small lennard-jones clusters. {\em J. Phys. Chem.\/}, 91(19): + 4950--4963 (1987). -\bibitem{Iwamatsu:2007lr} -M.~Iwamatsu, Icosahedral binary clusters of glass-forming lennard-jones binary - alloy. {\em Materials Science and Engineering: A\/}, 449-451: 975--978 - (2007). - \bibitem{hsu:4974} C.~S. Hsu and A.~Rahman, Interaction potentials and their effect on crystal - nucleation and symmetry. {\em The Journal of Chemical Physics\/}, 71(12): - 4974--4986 (1979). + nucleation and symmetry. {\em J. Chem. Phys.\/}, 71(12): 4974--4986 (1979). +\bibitem{Iwamatsu:2007lr} +M.~Iwamatsu, Icosahedral binary clusters of glass-forming lennard-jones binary + alloy. {\em Mat. Sci. Eng. A\/}, 449-451: 975--978 (2007). + \bibitem{nose:1803} S.~Nose and F.~Yonezawa, Isothermal--isobaric computer simulations of melting - and crystallization of a lennard-jones system. {\em The Journal of Chemical - Physics\/}, 84(3): 1803--1814 (1986). + and crystallization of a lennard-jones system. {\em J. Chem. Phys.\/}, 84(3): + 1803--1814 (1986). \bibitem{duijneveldt:4655} J.~S. van Duijneveldt and D.~Frenkel, Computer simulation study of free energy - barriers in crystal nucleation. {\em The Journal of Chemical Physics\/}, - 96(6): 4655--4668 (1992). + barriers in crystal nucleation. {\em J. Chem. Phys.\/}, 96(6): 4655--4668 + (1992). \bibitem{Zhu:1997lr} L.~Zhu and A.~E. DePristo, Microstructures of bimetallic clusters: Bond order - metal simulator for disordered alloys. {\em Journal of Catalysis\/}, 167(2): - 400--407 (1997). + metal simulator for disordered alloys. {\em J. Catal.\/}, 167(2): 400--407 + (1997). +\bibitem{HuangS.-P._jp0204206} +S.-P. Huang and P.~Balbuena, Melting of bimetallic {C}u-{N}i nanoclusters. {\em + J. Phys. Chem. B\/}, 106(29): 7225--7236 (2002). + \bibitem{MainardiD.S._la0014306} D.~Mainardi and P.~Balbuena, Monte carlo simulation of {C}u-{N}i nanoclusters: Surface segregation studies. {\em Langmuir\/}, 17(6): 2047--2050 (2001). -\bibitem{HuangS.-P._jp0204206} -S.-P. Huang and P.~Balbuena, Melting of bimetallic {C}u-{N}i nanoclusters. {\em - Journal of Physical Chemistry B\/}, 106(29): 7225--7236 (2002). - \bibitem{Ramirez-Caballero:2006lr} G.~E. Ramirez~Caballero and P.~B. Balbuena, Surface segregation phenomena in - {P}t{P}d nanoparticles: dependence on nanocluster size. {\em Molecular - Simulation\/}, 32(3/4): 297--303 (2006). + {P}t{P}d nanoparticles: dependence on nanocluster size. {\em Mol. Sim.\/}, + 32(3/4): 297--303 (2006). +\bibitem{0953-8984-18-39-037} +S.~E. Baltazar, A.~H. Romero, J.~L. Rodr\'{i}guez-L\'{o}pez and + R.~Marto\ň\'{a}k, Finite single wall capped carbon nanotubes under + hydrostatic pressure. {\em J. Phys.: Condens. Matter\/}, 18(39): 9119--9128 + (2006). + +\bibitem{Baltazar:2006lr} +S.~E. Baltazar, A.~H. Romero, J.~L. Rodriguez-Lopez, H.~Terrones and + R.~Martonak, Assessment of isobaric-isothermal (npt) simulations for finite + systems. {\em Comp. Mat. Sci.\/}, 37(4): 526--536 (2006). + +\bibitem{calvo:125414} +F.~Calvo and J.~P.~K. Doye, Pressure effects on the structure of nanoclusters. + {\em Phys. Rev. B\/}, 69(12): 125414 (2004). + +\bibitem{Kohanoff:2005} +J.~Kohanoff, A.~Caro and M.~Finnis, An isothermal-isobaric langevin thermostat + for simulating nanoparticles under pressure: Application to {A}u clusters. + {\em Chem. Phys. Chem.\/}, 6(9): 1848 -- 1852 (2005). + +\bibitem{0953-8984-14-26-101} +D.~Y. Sun and X.~G. Gong, A new constant-pressure molecular dynamics method for + finite systems. {\em J. Phys.: Condens. Matter\/}, 14(26): L487--L493 (2002). + +\bibitem{SpohrE._j100353a043} +E.~Spohr, Computer simulation of the water/platinum interface. {\em J. Phys. + Chem.\/}, 93(16): 6171--6180 (1989). + +\bibitem{Spohr:1995lr} +E.~Spohr, Ion adsorption on metal surfaces. the role of water-metal + interactions. {\em J. Mol. Liq.\/}, 64(1-2): 91--100 (1995). + +\bibitem{DouY._jp003913o} +Y.~Dou, L.~Zhigilei, N.~Winograd and B.~Garrison, Explosive boiling of water + films adjacent to heated surfaces: A microscopic description. {\em J. Phys. + Chem. A\/}, 105(12): 2748--2755 (2001). + +\bibitem{Meng:2004p151} +S.~Meng, E.~Wang and S.~Gao, Water adsorption on metal surfaces: A general + picture from density functional theory studies. {\em Phys. Rev. B\/}, 69: + 195404 (Jan 2004). + +\bibitem{Meng:2003p289} +S.~Meng, E.~Wang and S.~Gao, A molecular picture of hydrophilic and hydrophobic + interactions from ab initio density functional theory calculations. {\em J. + Chem. Phys.\/}, 119: 7617--7620 (Jan 2003). + +\bibitem{liu96:new_model} +Y.~Liu and T.~Ichiye, Soft sticky dipole potential for liquid water: a new + model. {\em J. Phys. Chem.\/}, 100: 2723--2730 (1996). + +\bibitem{Bratko85} +D.~Bratko, L.~Blum and A.~Luzar, A simple model for the intermolecular + potential of water. {\em J. Chem. Phys.\/}, 83(12): 6367--6370 (1985). + +\bibitem{Bratko95} +L.~Blum, F.~Vericat and D.~Bratko, Towards an analytical model of water: The + octupolar model. {\em J. Phys. Chem.\/}, 102(3): 1461--1462 (1995). + +\bibitem{fennell04} +C.~J. Fennell and J.~D. Gezelter, On the structural and transport properties of + the soft sticky dipole(ssd) and related single point water models. {\em J. + Chem. Phys.\/}, 120(19): 9175--9184 (2004). + +\bibitem{Slater} +J.~C. Slater, {\em Quantum Theory of Molecules and Solids Vol. 4: The + Self-Consistent Field for Molecules and Solids\/}. McGraw-Hill, New York + (1974). + +\bibitem{Perdew1991} +J.~P. Perdew, {\em Unified Theory of Exchange and Correlation Beyond the Local + Density Approximation\/}, page~11. Electronic Structure of Solids, Akademie + Verlag, Berlin (1991). + +\bibitem{PERDEW:1992xi} +J.~Perdew, J.~Chevary, S.~Vosko, K.~Jackson, P.~MR, D.~Singh and C.~Fiolhais, + Atoms, molecules, solids, and surfaces - applications of the generalized + gradient approximation for exchange and correlation (1992), Physical Review + B. + +\bibitem{HAY:1985xt} +P.~Hay and W.~Wadt, Abinitio effective core potentials for molecular + calculations - potentials for k to au including the outermost core orbitals. + {\em J. Chem. Phys.\/}, 82: 299--310 (1985). + +\bibitem{LACV3P} +The lacv3p basis set is a triple-zeta contraction of the lacvp basis set + developed and tested at schr{\"o}dinger, inc. + +\bibitem{MCLEAN:1980xi} +A.~Mclean and G.~Chandler, Contracted gaussian-basis sets for molecular + calculations .1. 2nd row atoms, z=11-18. {\em J. Chem. Phys.\/}, 72: + 5639--5648 (1980). + +\bibitem{KRISHNAN:1980aw} +R.~Krishnan, B.~JS, R.~Seeger and J.~Pople, Self-consistent molecular-orbital + methods .20. basis set for correlated wave-functions. {\em J. Chem. Phys.\/}, + 72: 650--654 (1980). + +\bibitem{CLARK:1983sb} +T.~Clark, J.~Chandrasekhar, G.~Spitznagel and P.~Schleyer, Efficient diffuse + function-augmented basis-sets for anion calculations .3. the 3-21+g basis set + for 1st-row elements, li-f. {\em J. Comp. Chem.\/}, 4: 294--301 (1983). + +\bibitem{FRISCH:1984dp} +M.~Frisch, J.~Pople and J.~Binkley, Self-consistent molecular-orbital methods + .25. supplementary functions for gaussian-basis sets. {\em J. Chem. Phys.\/}, + 80: 3265--3269 (1984). + +\bibitem{Kresse:1996zm} +G.~Kresse and J.~Furthm{\"u}ller, Efficiency of ab-initio total energy + calculations for metals and semiconductors using a plane-wave basis set. {\em + Computational Materials Science\/}, 6(1): 15--50 (1996). + +\bibitem{PhysRevB.50.17953} +P.~E. Bl\"ochl, Projector augmented-wave method. {\em Phys. Rev. B\/}, 50(24): + 17953--17979 (Dec 1994). + +\bibitem{PhysRevB.59.1758} +G.~Kresse and D.~Joubert, From ultrasoft pseudopotentials to the projector + augmented-wave method. {\em Phys. Rev. B\/}, 59(3): 1758--1775 (Jan 1999). + +\bibitem{PhysRevB.45.13244} +J.~P. Perdew and Y.~Wang, Accurate and simple analytic representation of the + electron-gas correlation energy. {\em Phys. Rev. B\/}, 45(23): 13244--13249 + (Jun 1992). + +\bibitem{PhysRevB.46.6671} +J.~P. Perdew, J.~A. Chevary, S.~H. Vosko, K.~A. Jackson, M.~R. Pederson, D.~J. + Singh and C.~Fiolhais, Atoms, molecules, solids, and surfaces: Applications + of the generalized gradient approximation for exchange and correlation. {\em + Phys. Rev. B\/}, 46(11): 6671--6687 (Sep 1992). + +\bibitem{PhysRevB.13.5188} +H.~J. Monkhorst and J.~D. Pack, Special points for brillouin-zone integrations. + {\em Phys. Rev. B\/}, 13(12): 5188--5192 (Jun 1976). + \end{thebibliography}