| 1 |
|
\begin{thebibliography}{100} |
| 2 |
|
|
| 3 |
|
\bibitem{DAW:1993p1640} |
| 4 |
< |
M.~DAW, S.~FOILES and M.~BASKES, The embedded-atom method - a review of theory |
| 5 |
< |
and applications (Jan 1993). |
| 4 |
> |
M.~Daw, S.~Foiles and M.~Baskes, The embedded-atom method - a review of theory |
| 5 |
> |
and applications. {\em Mater. Sci. Rep.\/}, 9(7-8): 251--310 (Jan 1993). |
| 6 |
|
|
| 7 |
|
\bibitem{kimura-quantum} |
| 8 |
|
Y.~Kimura and T.~Cagin, The quantum sutton-chen manybody potential for |
| 12 |
|
A.~P. Sutton and J.~Chen, Long-range finnis sinclair potentials. {\em Phil. |
| 13 |
|
Mag. Lett.\/}, 61: 139--146 (1990). |
| 14 |
|
|
| 15 |
+ |
\bibitem{PhysRevB.59.3527} |
| 16 |
+ |
Y.~Qi, T.~\c{C}a\v{g}in, Y.~Kimura and W.~A. {Goddard III}, Molecular-dynamics |
| 17 |
+ |
simulations of glass formation and crystallization in binary liquid |
| 18 |
+ |
metals:\quad{}{C}u-{A}g and {C}u-{N}i. {\em Phys. Rev. B\/}, 59(5): |
| 19 |
+ |
3527--3533 (Feb 1999). |
| 20 |
+ |
|
| 21 |
|
\bibitem{wolde:9932} |
| 22 |
|
P.~R. ten Wolde, M.~J. Ruiz-Montero and D.~Frenkel, Numerical calculation of |
| 23 |
|
the rate of crystal nucleation in a lennard-jones system at moderate |
| 24 |
|
undercooling. {\em J. Chem. Phys.\/}, 104(24): 9932--9947 (1996). |
| 25 |
|
|
| 26 |
+ |
\bibitem{Greer:1995qy} |
| 27 |
+ |
A.~L. Greer, Metallic glasses. {\em Science\/}, 267(5206): 1947--1953 (Mar |
| 28 |
+ |
1995). |
| 29 |
+ |
|
| 30 |
|
\bibitem{Allen87} |
| 31 |
|
M.~P. Allen and D.~J. Tildesley, {\em Computer Simulations of Liquids\/}. |
| 32 |
|
Oxford University Press, New York (1987). |
| 70 |
|
P.~A. Egelstaff, {\em An introduction to the liquid state\/}, volume~7. |
| 71 |
|
Clarendon Press, Oxford, second edition (1992). |
| 72 |
|
|
| 63 |
– |
\bibitem{Nrskov:1980p1752} |
| 64 |
– |
J.~K. N{\o}rskov and N.~D. Lang, Effective-medium theory of chemical binding: |
| 65 |
– |
Application to chemisorption. {\em Phys Rev B\/}, 21(6): 2131--2136 (Mar |
| 66 |
– |
1980). |
| 67 |
– |
|
| 73 |
|
\bibitem{Nrskov:1982p1753} |
| 74 |
|
J.~K. N{\o}rskov, Covalent effects in the effective-medium theory of chemical |
| 75 |
< |
binding: Hydrogen heats of solution in the 3 dmetals. {\em Phys Rev B\/}, |
| 75 |
> |
binding: Hydrogen heats of solution in the 3 d metals. {\em Phys. Rev. B\/}, |
| 76 |
|
26(6): 2875--2885 (Sep 1982). |
| 77 |
|
|
| 78 |
+ |
\bibitem{Nrskov:1980p1752} |
| 79 |
+ |
J.~K. N{\o}rskov and N.~D. Lang, Effective-medium theory of chemical binding: |
| 80 |
+ |
Application to chemisorption. {\em Phys. Rev. B\/}, 21(6): 2131--2136 (Mar |
| 81 |
+ |
1980). |
| 82 |
+ |
|
| 83 |
|
\bibitem{Stott:1980p1754} |
| 84 |
|
M.~J. Stott and E.~Zaremba, Quasiatoms: An approach to atoms in nonuniform |
| 85 |
< |
electronic systems. {\em Phys Rev B\/}, 22(4): 1564--1583 (Aug 1980). |
| 85 |
> |
electronic systems. {\em Phys. Rev. B\/}, 22(4): 1564--1583 (Aug 1980). |
| 86 |
|
|
| 87 |
|
\bibitem{Puska:1981p1755} |
| 88 |
|
M.~J. Puska and M.~Manninen, Atoms embedded in an electron gas: Immersion |
| 89 |
< |
energies. {\em Phys Rev B\/}, 24(6): 3037--3047 (Sep 1981). |
| 89 |
> |
energies. {\em Phys. Rev. B\/}, 24(6): 3037--3047 (Sep 1981). |
| 90 |
|
|
| 91 |
+ |
\bibitem{DAW:1983ht} |
| 92 |
+ |
M.~Daw and M.~Baskes, Semiempirical, quantum-mechanical calculation of hydrogen |
| 93 |
+ |
embrittlement in metals. {\em Phys. Rev. Lett.\/}, 50(17): 1285--1288 (1983). |
| 94 |
+ |
|
| 95 |
|
\bibitem{Daw84} |
| 96 |
|
M.~S. Daw and M.~I. Baskes, Embedded-atom method: Derivation and application to |
| 97 |
< |
impurities, surfaces, and other defects in metals. 29(12): 6443--6453 (1984). |
| 97 |
> |
impurities, surfaces, and other defects in metals. {\em Phys. Rev. B\/}, |
| 98 |
> |
29(12): 6443--6453 (1984). |
| 99 |
|
|
| 85 |
– |
\bibitem{DAW:1983ht} |
| 86 |
– |
M.~DAW and M.~BASKES, Semiempirical, quantum-mechanical calculation of hydrogen |
| 87 |
– |
embrittlement in metals. {\em Physical Review Letters\/}, 50(17): 1285--1288 |
| 88 |
– |
(1983). |
| 89 |
– |
|
| 100 |
|
\bibitem{Hohenberg:1964bs} |
| 101 |
|
P.~Hohenberg and W.~Kohn, Inhomogeneous electron gas. {\em Phys. Rev.\/}, |
| 102 |
|
136(3B): B864--B871 (Nov 1964). |
| 103 |
|
|
| 104 |
|
\bibitem{DAW:1989p1673} |
| 105 |
< |
M.~DAW, Model of metallic cohesion - the embedded-atom method. {\em Phys Rev |
| 105 |
> |
M.~Daw, Model of metallic cohesion - the embedded-atom method. {\em Phys. Rev. |
| 106 |
|
B\/}, 39(11): 7441--7452 (Jan 1989). |
| 107 |
|
|
| 108 |
|
\bibitem{PhysRevB.33.7983} |
| 120 |
|
1984). |
| 121 |
|
|
| 122 |
|
\bibitem{BASKES:1987p1743} |
| 123 |
< |
M.~BASKES, Application of the embedded-atom method to covalent materials - a |
| 124 |
< |
semiempirical potential for silicon. {\em Phys Rev Lett\/}, 59(23): |
| 123 |
> |
M.~Baskes, Application of the embedded-atom method to covalent materials - a |
| 124 |
> |
semiempirical potential for silicon. {\em Phys. Rev. Lett.\/}, 59(23): |
| 125 |
|
2666--2669 (Jan 1987). |
| 126 |
|
|
| 127 |
+ |
\bibitem{BASKES:1992p1735} |
| 128 |
+ |
M.~Baskes, Modified embedded-atom potentials for cubic materials and |
| 129 |
+ |
impurities. {\em Phys. Rev. B\/}, 46(5): 2727--2742 (Jan 1992). |
| 130 |
+ |
|
| 131 |
|
\bibitem{BASKES:1989p1746} |
| 132 |
< |
M.~BASKES, J.~NELSON and A.~WRIGHT, Semiempirical modified embedded-atom |
| 133 |
< |
potentials for silicon and germanium. {\em Phys Rev B\/}, 40(9): 6085--6100 |
| 132 |
> |
M.~Baskes, J.~Nelson and A.~Wright, Semiempirical modified embedded-atom |
| 133 |
> |
potentials for silicon and germanium. {\em Phys. Rev. B\/}, 40(9): 6085--6100 |
| 134 |
|
(Jan 1989). |
| 135 |
|
|
| 136 |
< |
\bibitem{BASKES:1992p1735} |
| 137 |
< |
M.~BASKES, Modified embedded-atom potentials for cubic materials and |
| 138 |
< |
impurities. {\em Phys Rev B\/}, 46(5): 2727--2742 (Jan 1992). |
| 136 |
> |
\bibitem{Ercolessi88} |
| 137 |
> |
F.~Ercolessi, M.~Parrinello and E.~Tosatti, Simulation of gold in the glue |
| 138 |
> |
model. {\em Phil. Mag. A\/}, 58: 213--226 (1988). |
| 139 |
|
|
| 140 |
|
\bibitem{Finnis84} |
| 141 |
|
M.~W. Finnis and J.~E. Sinclair, A simple empirical n-body potential for |
| 142 |
|
transition-metals. {\em Phil. Mag. A\/}, 50: 45--55 (1984). |
| 143 |
|
|
| 130 |
– |
\bibitem{Ercolessi88} |
| 131 |
– |
F.~Ercolessi, M.~Parrinello and E.~Tosatti, Simulation of gold in the glue |
| 132 |
– |
model. {\em Phil. Mag. A\/}, 58: 213--226 (1988). |
| 133 |
– |
|
| 144 |
|
\bibitem{Qi99} |
| 145 |
|
Y.~Qi, T.~\c{C}a\v{g}in, Y.~Kimura and W.~A. {Goddard III}, Molecular-dynamics |
| 146 |
|
simulations of glass formation and crystallization in binary liquid metals: |
| 148 |
|
|
| 149 |
|
\bibitem{Ercolessi02} |
| 150 |
|
U.~Tartaglino, E.~Tosatti, D.~Passerone and F.~Ercolessi, Bending strain-driven |
| 151 |
< |
modification of surface resconstructions: Au(111). 65: 241406 (2002). |
| 151 |
> |
modification of surface resconstructions: Au(111). {\em Phys. Rev. B\/}, 65: |
| 152 |
> |
241406 (2002). |
| 153 |
|
|
| 154 |
+ |
\bibitem{Goldstein:2001uf} |
| 155 |
+ |
H.~Goldstein, C.~Poole and J.~Safko, {\em Classical Mechanics\/}. Addison |
| 156 |
+ |
Wesley, San Francisco, third edition (2001). |
| 157 |
+ |
|
| 158 |
|
\bibitem{Tolman:1938kl} |
| 159 |
|
R.~C. Tolman, {\em The Principles of Statistical Mechanics\/}. Oxford |
| 160 |
|
University Press, Inc., New York (1938). |
| 161 |
|
|
| 162 |
< |
\bibitem{Goldstein:2001uf} |
| 163 |
< |
H.~Goldstein, C.~Poole and J.~Safko, {\em Classical Mechanics\/}. Addison |
| 164 |
< |
Wesley, San Francisco, third edition (2001). |
| 162 |
> |
\bibitem{McQuarrie:2000yt} |
| 163 |
> |
D.~A. McQuarrie, {\em Statistical mechanics\/}. University Science Books, |
| 164 |
> |
Sausalito, Calif. (2000). |
| 165 |
> |
|
| 166 |
> |
\bibitem{swope:637} |
| 167 |
> |
W.~C. Swope, H.~C. Andersen, P.~H. Berens and K.~R. Wilson, A computer |
| 168 |
> |
simulation method for the calculation of equilibrium constants for the |
| 169 |
> |
formation of physical clusters of molecules: Application to small water |
| 170 |
> |
clusters. {\em The Journal of Chemical Physics\/}, 76(1): 637--649 (1982). |
| 171 |
> |
|
| 172 |
> |
\bibitem{Verlet67} |
| 173 |
> |
L.~Verlet, Computer ``experiments" on classical fluids. \uppercase{I. |
| 174 |
> |
T}hermodynamic properties of \uppercase{L}ennard-\uppercase{J}ones molecules. |
| 175 |
> |
{\em Phys. Rev.\/}, 159(1): 98--103 (1967). |
| 176 |
> |
|
| 177 |
> |
\bibitem{tuckerman:2278} |
| 178 |
> |
M.~Tuckerman, B.~J. Berne and G.~J. Martyna, Reply to comment on: Reversible |
| 179 |
> |
multiple time scale molecular dynamics. {\em J. Chem. Phys.\/}, 99(3): |
| 180 |
> |
2278--2279 (1993). |
| 181 |
|
|
| 182 |
+ |
\bibitem{BROOKS:1983uq} |
| 183 |
+ |
B.~CL and M.~Karplus, Deformable stochastic boundaries in molecular-dynamics. |
| 184 |
+ |
{\em J. Chem. Phys.\/}, 79: 6312--6325 (1983). |
| 185 |
+ |
|
| 186 |
+ |
\bibitem{BROOKS:1985kx} |
| 187 |
+ |
C.~Brooks, A.~Brunger and M.~Karplus, Active-site dynamics in protein molecules |
| 188 |
+ |
- a stochastic boundary molecular-dynamics approach. {\em Biopolymers\/}, 24: |
| 189 |
+ |
843--865 (1985). |
| 190 |
+ |
|
| 191 |
+ |
\bibitem{BRUNGER:1984fj} |
| 192 |
+ |
A.~Brunger, C.~Brooks and M.~Karplus, Stochastic boundary-conditions for |
| 193 |
+ |
molecular-dynamics simulations of st2 water. {\em Chem. Phys. Lett.\/}, 105: |
| 194 |
+ |
495--500 (1984). |
| 195 |
+ |
|
| 196 |
+ |
\bibitem{Schlick:2002hc} |
| 197 |
+ |
T.~Schlick, {\em Molecular modeling and simulation: an interdisciplinary |
| 198 |
+ |
guide\/}, volume v. 21. Springer, New York (2002). |
| 199 |
+ |
|
| 200 |
+ |
\bibitem{Fox88} |
| 201 |
+ |
G.~C. Fox, M.~A. Johnson, G.~A. Lyzenga, S.~W. Otto, J.~K. Salmon and D.~W. |
| 202 |
+ |
Walker, {\em Solving Promblems on Concurrent Processors\/}, volume~I. |
| 203 |
+ |
Prentice-Hall, Englewood Cliffs, NJ (1988). |
| 204 |
+ |
|
| 205 |
+ |
\bibitem{plimpton95} |
| 206 |
+ |
S.~Plimpton, Fast parallel algorithms for short-range molecular dymanics. {\em |
| 207 |
+ |
J. Comp. Phys.\/}, 117: 1--19 (1995). |
| 208 |
+ |
|
| 209 |
+ |
\bibitem{Paradyn} |
| 210 |
+ |
S.~J. Plimpton and B.~A. Hendrickson, Parallel molecular dynamics with the |
| 211 |
+ |
embedded atom method. In J.~Broughton, P.~Bristowe and J.~Newsam, editors, |
| 212 |
+ |
{\em Materials Theory and Modelling\/}, volume 291 of {\em MRS |
| 213 |
+ |
Proceedings\/}, page~37, Materials Research Society, Pittsburgh, PA (1993). |
| 214 |
+ |
|
| 215 |
+ |
\bibitem{hendrickson:95} |
| 216 |
+ |
B.~Hendrickson and S.~Plimpton, Parallel many-body simulations without |
| 217 |
+ |
all-to-all communication. {\em J. Parallel Distr. Com.\/}, 27: 15--25 (1995). |
| 218 |
+ |
|
| 219 |
|
\bibitem{Pense92} |
| 220 |
|
A.~W. Pense, The decline and fall of the roman denarius. {\em Mat. Char.\/}, |
| 221 |
|
29: 213 (1992). |
| 222 |
|
|
| 223 |
|
\bibitem{duwez:1136} |
| 224 |
|
P.~Duwez, R.~H. Willens, W.~Klement and Jr, Continuous series of metastable |
| 225 |
< |
solid solutions in silver-copper alloys. {\em Journal of Applied Physics\/}, |
| 226 |
< |
31(6): 1136--1137 (1960). |
| 225 |
> |
solid solutions in silver-copper alloys. {\em J. Appl. Phys.\/}, 31(6): |
| 226 |
> |
1136--1137 (1960). |
| 227 |
|
|
| 228 |
|
\bibitem{Peker93} |
| 229 |
|
A.~Peker and W.~L. Johnson, A highly processable metallic-glass - |
| 232 |
|
|
| 233 |
|
\bibitem{Kob95a} |
| 234 |
|
W.~Kob and H.~C. Andersen, Testing mode-coupling theory for a supercooled |
| 235 |
< |
binary lennard-jones mixtures: The van hove corraltion function. 51: |
| 236 |
< |
4626--4641 (1995). |
| 235 |
> |
binary lennard-jones mixtures: The van hove corraltion function. {\em Phys. |
| 236 |
> |
Rev. E\/}, 51: 4626--4641 (1995). |
| 237 |
|
|
| 238 |
|
\bibitem{Kob95b} |
| 239 |
|
W.~Kob and H.~C. Andersen, Testing mode-coupling theory for a supercooled |
| 240 |
|
binary lennard-jones mixtures. ii. intermediate scattering function and |
| 241 |
< |
dynamic susceptibility. 52: 4134--4153 (1995). |
| 241 |
> |
dynamic susceptibility. {\em Phys. Rev. E\/}, 52: 4134--4153 (1995). |
| 242 |
|
|
| 243 |
|
\bibitem{Stillinger98} |
| 244 |
|
S.~Sastry, P.~G. Debenedetti and F.~H. Stillinger, Signatures of distinct |
| 254 |
|
liquids of $\mbox{Zr}_{67}\mbox{Cu}_{33}$. {\em Solid State Comm.\/}, 107: |
| 255 |
|
1--5 (1998). |
| 256 |
|
|
| 257 |
+ |
\bibitem{Gezelter99} |
| 258 |
+ |
J.~D. Gezelter, E.~Rabani and B.~J. Berne, Methods for calculating the hopping |
| 259 |
+ |
rate for orientational and spatial diffusion in a molecular liquid: |
| 260 |
+ |
$\mbox{CS}_{2}$. {\em J. Chem. Phys.\/}, 110: 3444 (1999). |
| 261 |
+ |
|
| 262 |
|
\bibitem{Rabani97} |
| 263 |
|
E.~Rabani, J.~D. Gezelter and B.~J. Berne, Calculating the hopping rate for |
| 264 |
|
self-diffusion on rough potential energy surfaces: Cage correlations. {\em J. |
| 265 |
|
Chem. Phys.\/}, 107: 6867--6876 (1997). |
| 266 |
|
|
| 194 |
– |
\bibitem{Gezelter99} |
| 195 |
– |
J.~D. Gezelter, E.~Rabani and B.~J. Berne, Methods for calculating the hopping |
| 196 |
– |
rate for orientational and spatial diffusion in a molecular liquid: |
| 197 |
– |
$\mbox{CS}_{2}$. 110: 3444 (1999). |
| 198 |
– |
|
| 267 |
|
\bibitem{Rabani99} |
| 268 |
|
E.~Rabani, J.~D. Gezelter and B.~J. Berne, Direct observation of |
| 269 |
|
stretched-exponential relaxation in low-temperature lennard-jones systems |
| 270 |
< |
using the cage correlation function. 82: 3649 (1999). |
| 270 |
> |
using the cage correlation function. {\em Phys. Rev. Lett.\/}, 82: 3649 |
| 271 |
> |
(1999). |
| 272 |
|
|
| 273 |
|
\bibitem{Rabani2000} |
| 274 |
|
E.~Rabani, J.~D. Gezelter and B.~J. Berne, Reply to `comment on ``direct |
| 275 |
|
observation of stretched-exponential relaxation in low-temperature |
| 276 |
< |
lennard-jones systems using th ecage correlation function'' '. 85: 467 |
| 277 |
< |
(2000). |
| 276 |
> |
lennard-jones systems using th ecage correlation function'' '. {\em Phys. |
| 277 |
> |
Rev. Lett.\/}, 85: 467 (2000). |
| 278 |
|
|
| 279 |
|
\bibitem{Zwanzig83} |
| 280 |
|
R.~Zwanzig, On the relation between self-diffusion and viscosity of liquids. |
| 281 |
< |
79: 4507--4508 (1983). |
| 281 |
> |
{\em J. Chem. Phys.\/}, 79: 4507--4508 (1983). |
| 282 |
|
|
| 283 |
|
\bibitem{Blumen83} |
| 284 |
|
A.~Blumen, J.~Klafter and G.~Zumofen, Recombination in amorphous materials as a |
| 287 |
|
|
| 288 |
|
\bibitem{Klafter94} |
| 289 |
|
J.~Klafter and G.~Zumofen, Probability distributions for continuous-time random |
| 290 |
< |
walks with long tails. 98: 7366--7370 (1994). |
| 290 |
> |
walks with long tails. {\em Journal of Physical Chemistry\/}, 98: 7366--7370 |
| 291 |
> |
(1994). |
| 292 |
|
|
| 293 |
|
\bibitem{Klafter96} |
| 294 |
|
J.~Klafter, M.~Shlesinger and G.~Zumofen, Beyond brownian motion. {\em Physics |
| 299 |
|
motion. {\em Am. J. Phys.\/}, 67: 1253--1259 (1999). |
| 300 |
|
|
| 301 |
|
\bibitem{Stillinger82} |
| 302 |
< |
F.~H. Stillinger and T.~A. Weber, Hidden structure in liquids. 25(2): 978--989 |
| 303 |
< |
(1982). |
| 302 |
> |
F.~H. Stillinger and T.~A. Weber, Hidden structure in liquids. {\em Phys. Rev. |
| 303 |
> |
A\/}, 25(2): 978--989 (1982). |
| 304 |
|
|
| 305 |
|
\bibitem{Stillinger83} |
| 306 |
|
F.~H. Stillinger and T.~A. Weber, Dynamics of structural transitions in |
| 307 |
< |
liquids. 28(4): 2408--2416 (1983). |
| 307 |
> |
liquids. {\em Phys. Rev. A\/}, 28(4): 2408--2416 (1983). |
| 308 |
|
|
| 239 |
– |
\bibitem{Weber84} |
| 240 |
– |
T.~A. Weber and F.~H. Stillinger, The effect of density on the inherent |
| 241 |
– |
structure in liquids. 80(6): 2742--2746 (1984). |
| 242 |
– |
|
| 309 |
|
\bibitem{Stillinger85} |
| 310 |
|
F.~H. Stillinger and T.~A. Weber, Inherent structure theory of liquids in the |
| 311 |
< |
hard-sphere limit. 83(9): 4767--4775 (1985). |
| 311 |
> |
hard-sphere limit. {\em J. Chem. Phys.\/}, 83(9): 4767--4775 (1985). |
| 312 |
|
|
| 313 |
+ |
\bibitem{Weber84} |
| 314 |
+ |
T.~A. Weber and F.~H. Stillinger, The effect of density on the inherent |
| 315 |
+ |
structure in liquids. {\em J. Chem. Phys.\/}, 80(6): 2742--2746 (1984). |
| 316 |
+ |
|
| 317 |
|
\bibitem{Berne90} |
| 318 |
|
B.~J. Berne and R.~Pecora, {\em Dynamic Light Scattering\/}. Robert E. Krieger |
| 319 |
|
Publishing Company, Inc., Malabar, Florida (1990). |
| 321 |
|
\bibitem{Parkhurst75a} |
| 322 |
|
H.~J. {Parkhurst, Jr.} and J.~Jonas, Dense liquids. i. the effect of density |
| 323 |
|
and temperature on viscosity of tetramethylsilane and benzene-$\mbox{D}_6$. |
| 324 |
< |
63(6): 2698--2704 (1975). |
| 324 |
> |
{\em J. Chem. Phys.\/}, 63(6): 2698--2704 (1975). |
| 325 |
|
|
| 326 |
|
\bibitem{Parkhurst75b} |
| 327 |
|
H.~J. {Parkhurst, Jr.} and J.~Jonas, Dense liquids. ii. the effect of density |
| 328 |
< |
and temperature on viscosity of tetramethylsilane and benzene. 63(6): |
| 329 |
< |
2705--2709 (1975). |
| 328 |
> |
and temperature on viscosity of tetramethylsilane and benzene. {\em J. Chem. |
| 329 |
> |
Phys.\/}, 63(6): 2705--2709 (1975). |
| 330 |
|
|
| 331 |
|
\bibitem{Ngai81} |
| 332 |
|
K.~L. Ngai and F.-S. Liu, Dispersive diffusion transport and noise, |
| 333 |
|
time-dependent diffusion coefficient, generalized einstein-nernst relation, |
| 334 |
|
and dispersive diffusion-controlled unimolecular and bimolecular reactions. |
| 335 |
< |
24: 1049--1065 (1981). |
| 335 |
> |
{\em Phys. Rev. B\/}, 24: 1049--1065 (1981). |
| 336 |
|
|
| 337 |
|
\bibitem{Gezelter97} |
| 338 |
|
J.~D. Gezelter, E.~Rabani and B.~J. Berne, Can imaginary instantaneous normal |
| 339 |
< |
mode frequencies predict barriers to self-diffusion? 107: 4618 (1997). |
| 339 |
> |
mode frequencies predict barriers to self-diffusion? {\em J. Chem. Phys.\/}, |
| 340 |
> |
107: 4618 (1997). |
| 341 |
|
|
| 342 |
|
\bibitem{Gezelter98a} |
| 343 |
|
J.~D. Gezelter, E.~Rabani and B.~J. Berne, Response to 'comment on a critique |
| 344 |
< |
of the instantaneous normal mode (inm) approach to diffusion'. 109: 4695 |
| 345 |
< |
(1998). |
| 344 |
> |
of the instantaneous normal mode (inm) approach to diffusion'. {\em J. Chem. |
| 345 |
> |
Phys.\/}, 109: 4695 (1998). |
| 346 |
|
|
| 347 |
< |
\bibitem{Lu97} |
| 348 |
< |
J.~Lu and J.~A. Szpunar, Applications of the embedded-atom method to glass |
| 349 |
< |
formation and crystallization of liquid and glass transition-metal nickel. |
| 350 |
< |
{\em Phil. Mag. A\/}, 75: 1057--1066 (1997). |
| 347 |
> |
\bibitem{sheng:184203} |
| 348 |
> |
H.~W. Sheng, J.~H. He and E.~Ma, Molecular dynamics simulation studies of |
| 349 |
> |
atomic-level structures in rapidly quenched ag-cu nonequilibrium alloys. {\em |
| 350 |
> |
Phys. Rev. B\/}, 65(18): 184203 (2002). |
| 351 |
|
|
| 352 |
< |
\bibitem{Alemany98} |
| 353 |
< |
M.~M.~G. Alemany, C.~Rey and L.~J. Gallego, Transport coefficients of liquid |
| 354 |
< |
transition metals: A computer simulation study using the embedded atom model. |
| 284 |
< |
109: 5175--5176 (1998). |
| 352 |
> |
\bibitem{MURRAY:1984lr} |
| 353 |
> |
J.~L. Murray, Calculations of stable and metastable equilibrium diagrams of the |
| 354 |
> |
ag-cu and cd-zn systems. {\em Metall Trans\/}, 15(2): 261--268 (1984). |
| 355 |
|
|
| 286 |
– |
\bibitem{Belonoshko00} |
| 287 |
– |
A.~B. Belonoshko, R.~Ahuja, O.~Eriksson and B.~Johansson, Quasi ab initio |
| 288 |
– |
molecular dynamic study of cu melting. 61: 3838--3844 (2000). |
| 289 |
– |
|
| 356 |
|
\bibitem{Banhart:1992sv} |
| 357 |
|
J.~Banhart, H.~Ebert, R.~Kuentzler and J.~Voitl\"{a}nder, Electronic properties |
| 358 |
|
of single-phased metastable ag-cu alloys. 46(16): 9968--9975 (1992). |
| 362 |
|
13200 (1996). |
| 363 |
|
|
| 364 |
|
\bibitem{Wendt78} |
| 365 |
< |
H.~Wendt and F.~F. Abraham. 41: 1244 (1978). |
| 365 |
> |
H.~Wendt and F.~F. Abraham. {\em Phys. Rev. Lett.\/}, 41: 1244 (1978). |
| 366 |
|
|
| 367 |
|
\bibitem{Lewis91} |
| 368 |
< |
L.~J. Lewis, Atomic dynamics through the glass transition. 44: 4245--4254 |
| 369 |
< |
(1991). |
| 368 |
> |
L.~J. Lewis, Atomic dynamics through the glass transition. {\em Phys. Rev. |
| 369 |
> |
B\/}, 44: 4245--4254 (1991). |
| 370 |
|
|
| 371 |
|
\bibitem{Liu92} |
| 372 |
|
R.~S. Liu, D.~W. Qi and S.~Wang, Subpeaks of structure factors for rapidly |
| 373 |
< |
quenched metals. 45: 451--453 (1992). |
| 373 |
> |
quenched metals. {\em Phys. Rev. B\/}, 45: 451--453 (1992). |
| 374 |
|
|
| 309 |
– |
\bibitem{Truhlar00} |
| 310 |
– |
D.~G. Truhlar and A.~Kohen. private correspondence. |
| 311 |
– |
|
| 375 |
|
\bibitem{Tolman20} |
| 376 |
< |
R.~C. Tolman, Statistical mechanics applied to chemical kinetics. 42: 2506 |
| 377 |
< |
(1920). |
| 376 |
> |
R.~C. Tolman, Statistical mechanics applied to chemical kinetics. {\em J. Am. |
| 377 |
> |
Chem. Soc.\/}, 42: 2506 (1920). |
| 378 |
|
|
| 379 |
|
\bibitem{Tolman27} |
| 380 |
|
R.~C. Tolman, {\em Statistical Mechanics with Applications to Physics and |
| 381 |
|
Chemistry\/}. Chemical Catalog Co., New York (1927). |
| 382 |
|
|
| 383 |
+ |
\bibitem{Truhlar00} |
| 384 |
+ |
D.~G. Truhlar and A.~Kohen. private correspondence. |
| 385 |
+ |
|
| 386 |
|
\bibitem{Buffat:1976yq} |
| 387 |
|
P.~Buffat and J.-P. Borel, Size effect on the melting temperature of gold |
| 388 |
|
particles. {\em Phys. Rev. A\/}, 13: 2287--2298 (1976). |
| 389 |
|
|
| 390 |
< |
\bibitem{el-sayed00} |
| 391 |
< |
S.~Link, Z.~L. Wang and M.~A. El-Sayed, How does a gold nanorod melt? 104: |
| 392 |
< |
7867--7870 (2000). |
| 390 |
> |
\bibitem{Chen:1997p2142} |
| 391 |
> |
C.~Chen, A.~Herhold, C.~Johnson and A.~ALIVISATOS, Size dependence of |
| 392 |
> |
structural metastability in semiconductor nanocrystals. {\em Science\/}, |
| 393 |
> |
276(5311): 398--401 (Jan 1997). |
| 394 |
|
|
| 395 |
< |
\bibitem{el-sayed01} |
| 396 |
< |
S.~Link and M.~A. El-Sayed, Spectroscopic determination of the melting energy |
| 397 |
< |
of a gold nanorod. 114: 2362--2368 (2001). |
| 395 |
> |
\bibitem{GOLDSTEIN:1992p2138} |
| 396 |
> |
A.~Goldstein, C.~Echer and A.~Alivisatos, Melting in semiconductor |
| 397 |
> |
nanocrystals. {\em Science\/}, 256(5062): 1425--1427 (Jan 1992). |
| 398 |
|
|
| 399 |
+ |
\bibitem{Pawlow:1909p2134} |
| 400 |
+ |
P.~Pawlow, The dependency of the melting point on the surface energy of a solid |
| 401 |
+ |
body. (supplement.). {\em Z Phys Chem-Stoch Ve\/}, 65(5): 545--548 (Jan |
| 402 |
+ |
1909). |
| 403 |
+ |
|
| 404 |
+ |
\bibitem{SOLLIARD:1985p2137} |
| 405 |
+ |
C.~Solliard and M.~Flueli, Surface stress and size effect on the |
| 406 |
+ |
lattice-parameter in small particles of gold and platinum. {\em Surf. |
| 407 |
+ |
Sci.\/}, 156(JUN): 487--494 (Jan 1985). |
| 408 |
+ |
|
| 409 |
+ |
\bibitem{TOLBERT:1996p2141} |
| 410 |
+ |
S.~Tolbert, A.~Herhold, L.~Brus and A.~Alivisatos, Pressure-induced structural |
| 411 |
+ |
transformations in si nanocrystals: Surface and shape effects. {\em Phys. |
| 412 |
+ |
Rev. Lett.\/}, 76(23): 4384--4387 (Jan 1996). |
| 413 |
+ |
|
| 414 |
+ |
\bibitem{MORI:1991p2144} |
| 415 |
+ |
H.~Mori, M.~Komatsu, K.~Takeda and H.~Fujita, Spontaneous alloying of copper |
| 416 |
+ |
into gold atom clusters. {\em Phil. Mag. Lett.\/}, 63(3): 173--178 (Jan |
| 417 |
+ |
1991). |
| 418 |
+ |
|
| 419 |
+ |
\bibitem{MORI:1994p2372} |
| 420 |
+ |
H.~Mori, H.~Yasuda and T.~Kamino, High-resolution electron-microscopy study of |
| 421 |
+ |
spontaneous alloying in gold clusters. {\em Phil. Mag. Lett.\/}, 69(5): |
| 422 |
+ |
279--283 (Jan 1994). |
| 423 |
+ |
|
| 424 |
+ |
\bibitem{YASUDA:1996p2387} |
| 425 |
+ |
H.~Yasuda and H.~Mori, Phase stability and transformation in nanometre-sized |
| 426 |
+ |
au-pb alloy clusters produced by spontaneous alloying. {\em Philos. Mag. |
| 427 |
+ |
A\/}, 73(3): 567--573 (Jan 1996). |
| 428 |
+ |
|
| 429 |
+ |
\bibitem{yasuda:1100} |
| 430 |
+ |
H.~Yasuda, H.~Mori, M.~Komatsu and K.~Takeda, Spontaneous alloying of copper |
| 431 |
+ |
atoms into gold clusters at reduced temperatures. {\em J. Appl. Phys.\/}, |
| 432 |
+ |
73(3): 1100--1103 (1993). |
| 433 |
+ |
|
| 434 |
+ |
\bibitem{PhysRevLett.69.3747} |
| 435 |
+ |
H.~Yasuda and H.~Mori, Spontaneous alloying of zinc atoms into gold clusters |
| 436 |
+ |
and formation of compound clusters. {\em Phys. Rev. Lett.\/}, 69(26): |
| 437 |
+ |
3747--3750 (Dec 1992). |
| 438 |
+ |
|
| 439 |
+ |
\bibitem{Mori1996244} |
| 440 |
+ |
H.~Mori and H.~Yasuda, Effect of cluster size on phase stability in nm-sized |
| 441 |
+ |
{A}u-{S}b alloy clusters. {\em Mat. Sci. Eng. A\/}, 217-218: 244 -- 248 |
| 442 |
+ |
(1996), International Conference on Nano-Clusters and Granular Materials. |
| 443 |
+ |
|
| 444 |
+ |
\bibitem{Schmid:2000ul} |
| 445 |
+ |
A.~K. Schmid, N.~C. Bartelt and R.~Q. Hwang, Alloying at surfaces by the |
| 446 |
+ |
migration of reactive two-dimensional islands. {\em Science\/}, 290(5496): |
| 447 |
+ |
1561--1564 (2000). |
| 448 |
+ |
|
| 449 |
+ |
\bibitem{Das:1999p2397} |
| 450 |
+ |
D.~Das, P.~Chatterjee, I.~Manna and S.~Pabi, A measure of enhanced diffusion |
| 451 |
+ |
kinetics in mechanical alloying of cu-18 at.% al by planetary ball milling. |
| 452 |
+ |
{\em Scripta Mater\/}, 41(8): 861--866 (Jan 1999). |
| 453 |
+ |
|
| 454 |
|
\bibitem{ShibataT._ja026764r} |
| 455 |
|
T.~Shibata, B.~Bunker, Z.~Zhang, D.~Meisel, C.~Vardeman and J.~Gezelter, |
| 456 |
< |
Size-dependent spontaneous alloying of {A}u-{A}g nanoparticles. {\em JACS\/}, |
| 457 |
< |
124(40): 11989--11996 (2002). |
| 456 |
> |
Size-dependent spontaneous alloying of {A}u-{A}g nanoparticles. {\em J. Am. |
| 457 |
> |
Chem. Soc.\/}, 124(40): 11989--11996 (2002). |
| 458 |
|
|
| 459 |
+ |
\bibitem{Frenkel:2000p2400} |
| 460 |
+ |
A.~Frenkel, V.~Machavariani, A.~Rubshtein, Y.~Rosenberg, A.~Voronel and |
| 461 |
+ |
E.~Stern, Local structure of disordered au-cu and au-ag alloys. {\em Phys. |
| 462 |
+ |
Rev. B\/}, 62(14): 9364--9371 (Jan 2000). |
| 463 |
+ |
|
| 464 |
+ |
\bibitem{Hodak:2000rb} |
| 465 |
+ |
J.~H. Hodak, A.~Henglein, M.~Giersig and G.~V. Hartland, Laser-induced |
| 466 |
+ |
inter-diffusion in {A}u{A}g core-shell nanoparticles. {\em J. Phys. Chem. |
| 467 |
+ |
B\/}, 104: 11708 -- 11718 (2000). |
| 468 |
+ |
|
| 469 |
+ |
\bibitem{HENGLEIN:1999p2419} |
| 470 |
+ |
A.~Henglein, Radiolytic preparation of ultrafine colloidal gold particles in |
| 471 |
+ |
aqueous solution: Optical spectrum, controlled growth, and some chemical |
| 472 |
+ |
reactions. {\em Langmuir\/}, 15(20): 6738--6744 (Jan 1999). |
| 473 |
+ |
|
| 474 |
+ |
\bibitem{HengleinA._la981278w} |
| 475 |
+ |
A.~Henglein and D.~Meisel, Radiolytic control of the size of colloidal gold |
| 476 |
+ |
nanoparticles. {\em Langmuir\/}, 14(26): 7392--7396 (1998). |
| 477 |
+ |
|
| 478 |
+ |
\bibitem{MULVANEY:1993p2409} |
| 479 |
+ |
P.~Mulvaney, M.~Giersig and A.~Henglein, Electrochemistry of multilayer |
| 480 |
+ |
colloids - preparation and absorption-spectrum of gold-coated silver |
| 481 |
+ |
particles. {\em J. Phys. Chem.\/}, 97(27): 7061--7064 (Jan 1993). |
| 482 |
+ |
|
| 483 |
+ |
\bibitem{Hodak:2000ek} |
| 484 |
+ |
J.~H. Hodak, A.~Henglein and G.~V. Hartland, Coherent excitation of acoustic |
| 485 |
+ |
breathing modes in bimetallic core−shell nanoparticles. {\em J. Phys. |
| 486 |
+ |
Chem. B\/}, 104(21): 5053--5055 (2000). |
| 487 |
+ |
|
| 488 |
+ |
\bibitem{Link:1999p2468} |
| 489 |
+ |
S.~Link, Z.~Wang and M.~El-Sayed, Alloy formation of gold-silver nanoparticles |
| 490 |
+ |
and the dependence of the plasmon absorption on their composition (Jan 1999). |
| 491 |
+ |
|
| 492 |
+ |
\bibitem{JOHNSON:1989p2479} |
| 493 |
+ |
R.~Johnson, Alloy models with the embedded-atom method. {\em Phys Rev B\/}, |
| 494 |
+ |
39(17): 12554--12559 (Jan 1989). |
| 495 |
+ |
|
| 496 |
+ |
\bibitem{Kohlrausch:1863zv} |
| 497 |
+ |
F.~Kohlrausch. {\em Pogg. Ann. Physik\/}, 119: 352 (1863). |
| 498 |
+ |
|
| 499 |
+ |
\bibitem{Williams:1970fk} |
| 500 |
+ |
G.~Williams and D.~C. Watts, Non-symmeric dielectric relaxation behaviour |
| 501 |
+ |
arising from a simple empirical decay function. {\em Trans. Faraday Soc.\/}, |
| 502 |
+ |
66: 80--85 (1970). |
| 503 |
+ |
|
| 504 |
+ |
\bibitem{Vardeman-II:2001jn} |
| 505 |
+ |
C.~F. {Vardeman II} and J.~D. Gezelter, Comparing models for diffusion in |
| 506 |
+ |
supercooled liquids: The eutectic composition of the {A}g-{C}u alloy. {\em J. |
| 507 |
+ |
Phys. Chem. A\/}, 105(12): 2568 (2001). |
| 508 |
+ |
|
| 509 |
+ |
\bibitem{Tu:1992uq} |
| 510 |
+ |
K.~N. Tu and J.~W. Mayer, {\em Electronic Thin Film Science\/}. Macmillian: New |
| 511 |
+ |
York (1992). |
| 512 |
+ |
|
| 513 |
+ |
\bibitem{el-sayed01} |
| 514 |
+ |
S.~Link and M.~A. El-Sayed, Spectroscopic determination of the melting energy |
| 515 |
+ |
of a gold nanorod. {\em J. Chem. Phys.\/}, 114: 2362--2368 (2001). |
| 516 |
+ |
|
| 517 |
+ |
\bibitem{el-sayed00} |
| 518 |
+ |
S.~Link, Z.~L. Wang and M.~A. El-Sayed, How does a gold nanorod melt? {\em J. |
| 519 |
+ |
Phys. Chem. B\/}, 104: 7867--7870 (2000). |
| 520 |
+ |
|
| 521 |
|
\bibitem{delfatti99} |
| 522 |
|
N.~{Del Fatti}, C.~Voisin, F.~Chevy, F.~Vallee and C.~Flytzanis, Coherent |
| 523 |
< |
acoustic mode oscillation and damping in silver nanoparticles. 110: |
| 524 |
< |
11484--11487 (1999). |
| 523 |
> |
acoustic mode oscillation and damping in silver nanoparticles. {\em J. Chem. |
| 524 |
> |
Phys.\/}, 110: 11484--11487 (1999). |
| 525 |
|
|
| 526 |
+ |
\bibitem{hartland02a} |
| 527 |
+ |
G.~V. Hartland, Coherent vibrational motion in metal particles: Determination |
| 528 |
+ |
of the vibrational amplitude and excitation mechanism. {\em J. Chem. |
| 529 |
+ |
Phys.\/}, 116: 8048--8055 (2002). |
| 530 |
+ |
|
| 531 |
|
\bibitem{henglein99} |
| 532 |
|
J.~H. Hodak, A.~Henglein and G.~V. Hartland, Size dependent properties of au |
| 533 |
|
particles: Coherent excitation and dephasing of acoustic vibrational modes. |
| 534 |
< |
111: 8613--8621 (1999). |
| 534 |
> |
{\em J. Chem. Phys.\/}, 111: 8613--8621 (1999). |
| 535 |
|
|
| 347 |
– |
\bibitem{hartland02a} |
| 348 |
– |
G.~V. Hartland, Coherent vibrational motion in metal particles: Determination |
| 349 |
– |
of the vibrational amplitude and excitation mechanism. 116: 8048--8055 |
| 350 |
– |
(2002). |
| 351 |
– |
|
| 536 |
|
\bibitem{hartland02c} |
| 537 |
|
J.~E. Sader, G.~V. Hartland and P.~Mulvaney, Theory of acoustic breathing modes |
| 538 |
< |
of core-shell nanoparticles. 106: 1399--1402 (2002). |
| 538 |
> |
of core-shell nanoparticles. {\em J. Phys. Chem. B\/}, 106: 1399--1402 |
| 539 |
> |
(2002). |
| 540 |
|
|
| 541 |
|
\bibitem{HuM._jp020581+} |
| 542 |
|
M.~Hu and G.~Hartland, Heat dissipation for {A}u particles in aqueous solution: |
| 543 |
< |
Relaxation time versus size. {\em Journal of Physical Chemistry B\/}, |
| 544 |
< |
106(28): 7029--7033 (2002). |
| 543 |
> |
Relaxation time versus size. {\em J. Phys. Chem. B\/}, 106(28): 7029--7033 |
| 544 |
> |
(2002). |
| 545 |
|
|
| 546 |
|
\bibitem{hartland02d} |
| 547 |
|
M.~Hu and G.~V. Hartland, Photophysics of metal nanoparticles: Heat dissipation |
| 548 |
|
and coherent excitation of phonon modes. {\em Proceeding of SPIE\/}, 4803 |
| 549 |
|
(July 2002). |
| 550 |
|
|
| 366 |
– |
\bibitem{Simon2001} |
| 367 |
– |
D.~T. Simon and M.~R. Geller, Electron-phonon dynamics in an ensemble of nearly |
| 368 |
– |
isolated nanoparticles. 64: 115412 (2001). |
| 369 |
– |
|
| 551 |
|
\bibitem{HartlandG.V._jp0276092} |
| 552 |
|
G.~Hartland, M.~Hu and J.~Sader, Softening of the symmetric breathing mode in |
| 553 |
< |
gold particles by laser-induced heating. {\em Journal of Physical Chemistry |
| 554 |
< |
B\/}, 107(30): 7472--7478 (2003). |
| 553 |
> |
gold particles by laser-induced heating. {\em J. Phys. Chem. B\/}, 107(30): |
| 554 |
> |
7472--7478 (2003). |
| 555 |
|
|
| 556 |
+ |
\bibitem{Simon2001} |
| 557 |
+ |
D.~T. Simon and M.~R. Geller, Electron-phonon dynamics in an ensemble of nearly |
| 558 |
+ |
isolated nanoparticles. {\em Phys. Rev. B\/}, 64: 115412 (2001). |
| 559 |
+ |
|
| 560 |
|
\bibitem{Hartland00} |
| 561 |
|
J.~H. Hodak, A.~Henglein and G.~V. Hartland, Coherent excitation of acoustic |
| 562 |
< |
breathing modes in bimetallic core-shell nanoparticles. 104: 5053--5055 |
| 563 |
< |
(2000). |
| 562 |
> |
breathing modes in bimetallic core-shell nanoparticles. {\em J. Chem. |
| 563 |
> |
Phys\/}, 104: 5053--5055 (2000). |
| 564 |
|
|
| 565 |
|
\bibitem{Voter:87} |
| 566 |
|
A.~Voter and S.~Chen, Accurate interatomic potentials for ni, al, and ni3al. |
| 571 |
|
embedded atom method. {\em MRS Proceedings\/}, 291: 37 (1993). |
| 572 |
|
|
| 573 |
|
\bibitem{hoover85} |
| 574 |
< |
W.~G. Hoover, Canonical dynamics: Equilibrium phase-space distributions. 31: |
| 575 |
< |
1695 (1985). |
| 574 |
> |
W.~G. Hoover, Canonical dynamics: Equilibrium phase-space distributions. {\em |
| 575 |
> |
Phys. Rev. A\/}, 31: 1695 (1985). |
| 576 |
|
|
| 392 |
– |
\bibitem{barber96quickhull} |
| 393 |
– |
C.~B. Barber, D.~P. Dobkin and H.~Huhdanpaa, The quickhull algorithm for convex |
| 394 |
– |
hulls. {\em ACM Transactions on Mathematical Software\/}, 22(4): 469--483 |
| 395 |
– |
(1996). |
| 396 |
– |
|
| 577 |
|
\bibitem{qhull} |
| 578 |
|
Qhull (1993), software library is available from the National Science and |
| 579 |
|
Technology Research Center for Computation and Visualization of Geometric |
| 580 |
|
Structures (The Geometry Center), University of Minnesota. {\tt |
| 581 |
|
http://www.geom.umn.edu/software/qhull/}. |
| 582 |
|
|
| 583 |
+ |
\bibitem{barber96quickhull} |
| 584 |
+ |
C.~B. Barber, D.~P. Dobkin and H.~Huhdanpaa, The quickhull algorithm for convex |
| 585 |
+ |
hulls. {\em ACM Transactions on Mathematical Software\/}, 22(4): 469--483 |
| 586 |
+ |
(1996). |
| 587 |
+ |
|
| 588 |
|
\bibitem{BernePecora} |
| 589 |
|
B.~J. Berne and R.~Pecora, {\em Dynamic Light Scattering\/}. Dover |
| 590 |
|
Publications, Inc., Mineola, New York (2000). |
| 599 |
|
|
| 600 |
|
\bibitem{Cerullo1999} |
| 601 |
|
G.~Cerullo, S.~D. Silvestri and U.~Banin, Size-dependent dynamics of coherent |
| 602 |
< |
acoustic phonons in nanocrystal quantum dots. 60: 1928--1932 (1999). |
| 602 |
> |
acoustic phonons in nanocrystal quantum dots. {\em Phys. Rev. B\/}, 60: |
| 603 |
> |
1928--1932 (1999). |
| 604 |
|
|
| 605 |
|
\bibitem{Iida1988} |
| 606 |
|
T.~Iida and R.~I.~L. Guthrie, {\em The Physical Properties of Liquid Metals\/}. |
| 607 |
|
Clarendon Press, Oxford (1988). |
| 608 |
|
|
| 423 |
– |
\bibitem{West:2003fk} |
| 424 |
– |
J.~West and N.~Halas, Engineered nanomaterials for biophotonics applications: |
| 425 |
– |
Improving sensing, imaging, and therapeutics (2003), Annu. Rev. Biomed. Eng. |
| 426 |
– |
|
| 609 |
|
\bibitem{Hu:2006lr} |
| 610 |
|
M.~Hu, J.~Chen, Z.-Y. Li, L.~Au, G.~V. Hartland, X.~Li, M.~Marquez and Y.~Xia, |
| 611 |
|
Gold nanostructures: engineering their plasmonic properties for biomedical |
| 612 |
|
applications (2006), Chem. Soc. Rev. |
| 613 |
|
|
| 614 |
+ |
\bibitem{West:2003fk} |
| 615 |
+ |
J.~West and N.~Halas, Engineered nanomaterials for biophotonics applications: |
| 616 |
+ |
Improving sensing, imaging, and therapeutics (2003), Annu. Rev. Biomed. Eng. |
| 617 |
+ |
|
| 618 |
|
\bibitem{Dick:2002qy} |
| 619 |
|
K.~Dick, T.~Dhanasekaran, Z.~Zhang and D.~Meisel, Size-dependent melting of |
| 620 |
|
silica-encapsulated gold nanoparticles. {\em J. Amer. Chem. Soc.\/}, 124: |
| 621 |
|
2312--2317 (2002). |
| 622 |
|
|
| 437 |
– |
\bibitem{Mafune01} |
| 438 |
– |
F.~Mafune, J.~Kohno, Y.~Takeda and T.~Kondow, Dissociation and aggregation of |
| 439 |
– |
gold nanoparticles under laser irradiation. {\em J. Phys. Chem. B\/}, |
| 440 |
– |
105(38): 9050--9056 (Sep 2001). |
| 441 |
– |
|
| 623 |
|
\bibitem{Link:2000lr} |
| 624 |
|
S.~Link and M.~A. El-Sayed, Shape and size dependence of radiative, |
| 625 |
|
non-radiative and photothermal properties of gold nanocrystals. {\em |
| 626 |
|
International Reviews in Physical Chemistry\/}, 19(3): 409--453 (2000). |
| 627 |
|
|
| 628 |
+ |
\bibitem{Mafune01} |
| 629 |
+ |
F.~Mafune, J.~Kohno, Y.~Takeda and T.~Kondow, Dissociation and aggregation of |
| 630 |
+ |
gold nanoparticles under laser irradiation. {\em J. Phys. Chem. B\/}, |
| 631 |
+ |
105(38): 9050--9056 (Sep 2001). |
| 632 |
+ |
|
| 633 |
|
\bibitem{Plech:2003yq} |
| 634 |
|
A.~Plech, S.~Kurbitz, K.~Berg, H.~Graener, G.~Berg, S.~Gresillon, M.~Kaempfe, |
| 635 |
|
J.~Feldmann, M.~Wulff and G.~von Plessen, Time-resolved x-ray diffraction on |
| 646 |
|
surface phase transition of supported gold nanoparticles. {\em Nano Lett.\/}, |
| 647 |
|
7: 1026--1031 (2007). |
| 648 |
|
|
| 463 |
– |
\bibitem{Hodak:2000rb} |
| 464 |
– |
J.~H. Hodak, A.~Henglein, M.~Giersig and G.~V. Hartland, Laser-induced |
| 465 |
– |
inter-diffusion in {A}u{A}g core-shell nanoparticles. {\em J. Phys. Chem. |
| 466 |
– |
B\/}, 104: 11708 -- 11718 (2000). |
| 467 |
– |
|
| 649 |
|
\bibitem{Hartland:2003lr} |
| 650 |
|
G.~Hartland, S.~Guillaudeu and J.~Hodak, Laser-induced alloying in metal |
| 651 |
|
nanoparticles: Controlling spectral properties with light (2003), Molecules |
| 668 |
|
|
| 669 |
|
\bibitem{VardemanC.F._jp051575r} |
| 670 |
|
C.~Vardeman, P.~Conforti, M.~Sprague and J.~Gezelter, Breathing mode dynamics |
| 671 |
< |
and elastic properties of gold nanoparticles. {\em Journal of Physical |
| 672 |
< |
Chemistry B\/}, 109(35): 16695--16699 (2005). |
| 492 |
< |
|
| 493 |
< |
\bibitem{Greer:1995qy} |
| 494 |
< |
A.~L. Greer, Metallic glasses. {\em Science\/}, 267(5206): 1947--1953 (mar |
| 495 |
< |
1995). |
| 671 |
> |
and elastic properties of gold nanoparticles. {\em J. Phys. Chem. B\/}, |
| 672 |
> |
109(35): 16695--16699 (2005). |
| 673 |
|
|
| 497 |
– |
\bibitem{Vardeman-II:2001jn} |
| 498 |
– |
C.~F. {Vardeman II} and J.~D. Gezelter, Comparing models for diffusion in |
| 499 |
– |
supercooled liquids: The eutectic composition of the {A}g-{C}u alloy. {\em J. |
| 500 |
– |
Phys. Chem. A\/}, 105(12): 2568 (2001). |
| 501 |
– |
|
| 674 |
|
\bibitem{Massalski:1986rt} |
| 675 |
|
T.~B. Massalski, J.~L. Murray, L.~H. Bennett and H.~Baker, {\em Binary alloy |
| 676 |
|
phase diagrams\/}. American Society for Metals, Metals Park, Ohio (1986). |
| 681 |
|
|
| 682 |
|
\bibitem{najafabadi:3144} |
| 683 |
|
R.~Najafabadi, D.~J. Srolovitz, E.~Ma and M.~Atzmon, Thermodynamic properties |
| 684 |
< |
of metastable ag-cu alloys. {\em Journal of Applied Physics\/}, 74(5): |
| 513 |
< |
3144--3149 (1993). |
| 684 |
> |
of metastable ag-cu alloys. {\em J. Appl. Phys.\/}, 74(5): 3144--3149 (1993). |
| 685 |
|
|
| 515 |
– |
\bibitem{sheng:184203} |
| 516 |
– |
H.~W. Sheng, J.~H. He and E.~Ma, Molecular dynamics simulation studies of |
| 517 |
– |
atomic-level structures in rapidly quenched ag-cu nonequilibrium alloys. {\em |
| 518 |
– |
Phys. Rev. B\/}, 65(18): 184203 (2002). |
| 519 |
– |
|
| 686 |
|
\bibitem{Malyavantham:2004cu} |
| 687 |
|
G.~Malyavantham, D.~T. O'Brien, M.~F. Becker, J.~W. Keto and D.~Kovar, Au-cu |
| 688 |
|
nanoparticles produced by laser ablation of mixtures of au and cu |
| 689 |
< |
microparticles. {\em Journal of Nanoparticle Research\/}, 6(6): 661 --664 |
| 524 |
< |
(2004). |
| 689 |
> |
microparticles. {\em J. Nanopart. Res.\/}, 6(6): 661 --664 (2004). |
| 690 |
|
|
| 691 |
|
\bibitem{Kim:2003lv} |
| 692 |
|
M.~Kim, H.~Na, K.~C. Lee, E.~A. Yoo and M.~Lee, Preperation and |
| 696 |
|
\bibitem{De:1996ta} |
| 697 |
|
G.~De, M.~Gusso, L.~Tapfer, M.~Catalano, F.~Gonella, G.~Mattei, P.~Mazzoldi and |
| 698 |
|
G.~Battaglin, Annealing behavior of silver, copper, and silver--copper |
| 699 |
< |
nanoclusters in a silica matrix synthesized by the sol-gel technique. {\em |
| 700 |
< |
Journal of Applied Physics\/}, 80(12): 6734--6739 (1996). |
| 699 |
> |
nanoclusters in a silica matrix synthesized by the sol-gel technique. {\em J. |
| 700 |
> |
Appl. Phys.\/}, 80(12): 6734--6739 (1996). |
| 701 |
|
|
| 702 |
|
\bibitem{Magruder:1994rg} |
| 703 |
|
R.~H. Magruder, III, D.~H. Osborne, Jr. and R.~A. Zuhr, Non-linear optical |
| 704 |
< |
properties of nanometer dimension ag---cu particles in silica formed by |
| 705 |
< |
sequential ion implantation (1994). |
| 704 |
> |
properties of nanometer dimension {A}g-{C}u particles in silica formed by |
| 705 |
> |
sequential ion implantation. {\em J. Non-Cryst. Solids\/}, 176(2-3): 299 |
| 706 |
> |
--303 (1994). |
| 707 |
|
|
| 708 |
|
\bibitem{gonzalo:5163} |
| 709 |
|
J.~Gonzalo, D.~Babonneau, C.~N. Afonso and J.-P. Barnes, Optical response of |
| 710 |
< |
mixed ag-cu nanocrystals produced by pulsed laser deposition. {\em Journal of |
| 711 |
< |
Applied Physics\/}, 96(9): 5163--5168 (2004). |
| 710 |
> |
mixed ag-cu nanocrystals produced by pulsed laser deposition. {\em J. Appl. |
| 711 |
> |
Phys.\/}, 96(9): 5163--5168 (2004). |
| 712 |
|
|
| 713 |
|
\bibitem{HengleinA._jp992950g} |
| 714 |
|
A.~Henglein, Formation and absorption spectrum of copper nanoparticles from the |
| 715 |
< |
radiolytic reduction of cu(cn)2-. {\em Journal of Physical Chemistry B\/}, |
| 716 |
< |
104(6): 1206--1211 (2000). |
| 715 |
> |
radiolytic reduction of {C}u({CN})2-. {\em J. Phys. Chem. B\/}, 104(6): |
| 716 |
> |
1206--1211 (2000). |
| 717 |
|
|
| 718 |
|
\bibitem{Kob:1999fk} |
| 719 |
|
W.~Kob, Computer simulations of supercooled liquids and glasses. {\em Journal |
| 745 |
|
|
| 746 |
|
\bibitem{Qi:2001nn} |
| 747 |
|
Y.~Qi, T.~Cagin, W.~L. Johnson and W.~A.~G. III, Melting and crystallization in |
| 748 |
< |
ni nanoclusters: The mesoscale regime. {\em The Journal of Chemical |
| 749 |
< |
Physics\/}, 115(1): 385--394 (2001). |
| 748 |
> |
ni nanoclusters: The mesoscale regime. {\em J. Chem. Phys.\/}, 115(1): |
| 749 |
> |
385--394 (2001). |
| 750 |
|
|
| 751 |
|
\bibitem{Strandburg:1992qy} |
| 752 |
|
K.~J. Strandburg, {\em Bond-orientational order in condensed matter systems\/}. |
| 773 |
|
Processes, Properties and Interfaces, 2005. Proceedings. International |
| 774 |
|
Symposium on\/}, pages 173--177 (2005). |
| 775 |
|
|
| 610 |
– |
\bibitem{BROOKS:1985kx} |
| 611 |
– |
C.~BROOKS, A.~BRUNGER and M.~KARPLUS, Active-site dynamics in protein molecules |
| 612 |
– |
- a stochastic boundary molecular-dynamics approach. {\em Biopolymers\/}, 24: |
| 613 |
– |
843--865 (1985). |
| 614 |
– |
|
| 615 |
– |
\bibitem{BROOKS:1983uq} |
| 616 |
– |
C.~BROOKS and M.~KARPLUS, Deformable stochastic boundaries in |
| 617 |
– |
molecular-dynamics. {\em Journal of Chemical Physics\/}, 79: 6312--6325 |
| 618 |
– |
(1983). |
| 619 |
– |
|
| 620 |
– |
\bibitem{BRUNGER:1984fj} |
| 621 |
– |
A.~BRUNGER, C.~BROOKS and M.~KARPLUS, Stochastic boundary-conditions for |
| 622 |
– |
molecular-dynamics simulations of st2 water. {\em Chemical Physics |
| 623 |
– |
Letters\/}, 105: 495--500 (1984). |
| 624 |
– |
|
| 776 |
|
\bibitem{kotaidis:184702} |
| 777 |
|
V.~Kotaidis, C.~Dahmen, G.~von Plessen, F.~Springer and A.~Plech, Excitation of |
| 778 |
|
nanoscale vapor bubbles at the surface of gold nanoparticles in water. {\em |
| 779 |
< |
The Journal of Chemical Physics\/}, 124(18): 184702 (2006). |
| 779 |
> |
J. Chem. Phys.\/}, 124(18): 184702 (2006). |
| 780 |
|
|
| 630 |
– |
\bibitem{Sankaranarayanan:2005lr} |
| 631 |
– |
S.~Sankaranarayanan, V.~Bhethanabotla and B.~Joseph, Molecular dynamics |
| 632 |
– |
simulation study of the melting of pd-pt nanoclusters. {\em Phys. Rev. B\/}, |
| 633 |
– |
71 (2005). |
| 634 |
– |
|
| 635 |
– |
\bibitem{Chui:2003fk} |
| 636 |
– |
Y.~Chui and K.~Chan, Analyses of surface and core atoms in a platinum |
| 637 |
– |
nanoparticle. {\em Phys. Chem. Chem. Phys.\/}, 5: 2869--2874 (2003). |
| 638 |
– |
|
| 639 |
– |
\bibitem{Wang:2005qy} |
| 640 |
– |
G.~Wang, M.~Van~Hove, P.~Ross and M.~Baskes, Surface structures of |
| 641 |
– |
cubo-octahedral pt-mo catalyst nanoparticles from monte carlo simulations. |
| 642 |
– |
{\em J. Phys. Chem. B\/}, 109: 11683--11692 (2005). |
| 643 |
– |
|
| 644 |
– |
\bibitem{Medasani:2007uq} |
| 645 |
– |
B.~Medasani, Y.~H. Park and I.~Vasiliev, Theoretical study of the surface |
| 646 |
– |
energy, stress, and lattice contraction of silver nanoparticles. {\em Phys. |
| 647 |
– |
Rev. B\/}, 75 (2007). |
| 648 |
– |
|
| 649 |
– |
\bibitem{PhysRevB.59.3527} |
| 650 |
– |
Y.~Qi, T.~\c{C}a\v{g}in, Y.~Kimura and W.~A. {Goddard III}, Molecular-dynamics |
| 651 |
– |
simulations of glass formation and crystallization in binary liquid |
| 652 |
– |
metals:\quad{}{C}u-{A}g and {C}u-{N}i. {\em Phys. Rev. B\/}, 59(5): |
| 653 |
– |
3527--3533 (Feb 1999). |
| 654 |
– |
|
| 655 |
– |
\bibitem{MURRAY:1984lr} |
| 656 |
– |
J.~L. Murray, Calculations of stable and metastable equilibrium diagrams of the |
| 657 |
– |
ag-cu and cd-zn systems. {\em Metall Trans\/}, 15(2): 261--268 (1984). |
| 658 |
– |
|
| 781 |
|
\bibitem{19521106} |
| 782 |
|
F.~C. Frank, Supercooling of liquids. {\em Proceedings of the Royal Society of |
| 783 |
|
London. Series A, Mathematical and Physical Sciences\/}, 215(1120): 43--46 |
| 802 |
|
|
| 803 |
|
\bibitem{Waal:1995lr} |
| 804 |
|
B.~W. van~de Waal, On the origin of second-peak splitting in the static |
| 805 |
< |
structure factor of metallic glasses. {\em Journal of Non-Crystalline |
| 806 |
< |
Solids\/}, 189(1-2): 118--128 (1995). |
| 805 |
> |
structure factor of metallic glasses. {\em J Non-Cryst. Solids\/}, 189(1-2): |
| 806 |
> |
118--128 (1995). |
| 807 |
|
|
| 808 |
|
\bibitem{HoneycuttJ.Dana_j100303a014} |
| 809 |
|
J.~D. Honeycutt and H.~C. Andersen, Molecular dynamics study of melting and |
| 810 |
< |
freezing of small lennard-jones clusters. {\em Journal of Physical |
| 811 |
< |
Chemistry\/}, 91(19): 4950--4963 (1987). |
| 810 |
> |
freezing of small lennard-jones clusters. {\em J. Phys. Chem.\/}, 91(19): |
| 811 |
> |
4950--4963 (1987). |
| 812 |
|
|
| 691 |
– |
\bibitem{Iwamatsu:2007lr} |
| 692 |
– |
M.~Iwamatsu, Icosahedral binary clusters of glass-forming lennard-jones binary |
| 693 |
– |
alloy. {\em Materials Science and Engineering: A\/}, 449-451: 975--978 |
| 694 |
– |
(2007). |
| 695 |
– |
|
| 813 |
|
\bibitem{hsu:4974} |
| 814 |
|
C.~S. Hsu and A.~Rahman, Interaction potentials and their effect on crystal |
| 815 |
< |
nucleation and symmetry. {\em The Journal of Chemical Physics\/}, 71(12): |
| 699 |
< |
4974--4986 (1979). |
| 815 |
> |
nucleation and symmetry. {\em J. Chem. Phys.\/}, 71(12): 4974--4986 (1979). |
| 816 |
|
|
| 817 |
+ |
\bibitem{Iwamatsu:2007lr} |
| 818 |
+ |
M.~Iwamatsu, Icosahedral binary clusters of glass-forming lennard-jones binary |
| 819 |
+ |
alloy. {\em Mat. Sci. Eng. A\/}, 449-451: 975--978 (2007). |
| 820 |
+ |
|
| 821 |
|
\bibitem{nose:1803} |
| 822 |
|
S.~Nose and F.~Yonezawa, Isothermal--isobaric computer simulations of melting |
| 823 |
< |
and crystallization of a lennard-jones system. {\em The Journal of Chemical |
| 824 |
< |
Physics\/}, 84(3): 1803--1814 (1986). |
| 823 |
> |
and crystallization of a lennard-jones system. {\em J. Chem. Phys.\/}, 84(3): |
| 824 |
> |
1803--1814 (1986). |
| 825 |
|
|
| 826 |
|
\bibitem{duijneveldt:4655} |
| 827 |
|
J.~S. van Duijneveldt and D.~Frenkel, Computer simulation study of free energy |
| 828 |
< |
barriers in crystal nucleation. {\em The Journal of Chemical Physics\/}, |
| 829 |
< |
96(6): 4655--4668 (1992). |
| 828 |
> |
barriers in crystal nucleation. {\em J. Chem. Phys.\/}, 96(6): 4655--4668 |
| 829 |
> |
(1992). |
| 830 |
|
|
| 831 |
|
\bibitem{Zhu:1997lr} |
| 832 |
|
L.~Zhu and A.~E. DePristo, Microstructures of bimetallic clusters: Bond order |
| 833 |
< |
metal simulator for disordered alloys. {\em Journal of Catalysis\/}, 167(2): |
| 834 |
< |
400--407 (1997). |
| 833 |
> |
metal simulator for disordered alloys. {\em J. Catal.\/}, 167(2): 400--407 |
| 834 |
> |
(1997). |
| 835 |
|
|
| 836 |
+ |
\bibitem{HuangS.-P._jp0204206} |
| 837 |
+ |
S.-P. Huang and P.~Balbuena, Melting of bimetallic {C}u-{N}i nanoclusters. {\em |
| 838 |
+ |
J. Phys. Chem. B\/}, 106(29): 7225--7236 (2002). |
| 839 |
+ |
|
| 840 |
|
\bibitem{MainardiD.S._la0014306} |
| 841 |
|
D.~Mainardi and P.~Balbuena, Monte carlo simulation of {C}u-{N}i nanoclusters: |
| 842 |
|
Surface segregation studies. {\em Langmuir\/}, 17(6): 2047--2050 (2001). |
| 843 |
|
|
| 720 |
– |
\bibitem{HuangS.-P._jp0204206} |
| 721 |
– |
S.-P. Huang and P.~Balbuena, Melting of bimetallic {C}u-{N}i nanoclusters. {\em |
| 722 |
– |
Journal of Physical Chemistry B\/}, 106(29): 7225--7236 (2002). |
| 723 |
– |
|
| 844 |
|
\bibitem{Ramirez-Caballero:2006lr} |
| 845 |
|
G.~E. Ramirez~Caballero and P.~B. Balbuena, Surface segregation phenomena in |
| 846 |
< |
{P}t{P}d nanoparticles: dependence on nanocluster size. {\em Molecular |
| 847 |
< |
Simulation\/}, 32(3/4): 297--303 (2006). |
| 846 |
> |
{P}t{P}d nanoparticles: dependence on nanocluster size. {\em Mol. Sim.\/}, |
| 847 |
> |
32(3/4): 297--303 (2006). |
| 848 |
|
|
| 849 |
+ |
\bibitem{0953-8984-18-39-037} |
| 850 |
+ |
S.~E. Baltazar, A.~H. Romero, J.~L. Rodr\'{i}guez-L\'{o}pez and |
| 851 |
+ |
R.~Marto\ň\'{a}k, Finite single wall capped carbon nanotubes under |
| 852 |
+ |
hydrostatic pressure. {\em J. Phys.: Condens. Matter\/}, 18(39): 9119--9128 |
| 853 |
+ |
(2006). |
| 854 |
+ |
|
| 855 |
+ |
\bibitem{Baltazar:2006lr} |
| 856 |
+ |
S.~E. Baltazar, A.~H. Romero, J.~L. Rodriguez-Lopez, H.~Terrones and |
| 857 |
+ |
R.~Martonak, Assessment of isobaric-isothermal (npt) simulations for finite |
| 858 |
+ |
systems. {\em Comp. Mat. Sci.\/}, 37(4): 526--536 (2006). |
| 859 |
+ |
|
| 860 |
+ |
\bibitem{calvo:125414} |
| 861 |
+ |
F.~Calvo and J.~P.~K. Doye, Pressure effects on the structure of nanoclusters. |
| 862 |
+ |
{\em Phys. Rev. B\/}, 69(12): 125414 (2004). |
| 863 |
+ |
|
| 864 |
+ |
\bibitem{Kohanoff:2005} |
| 865 |
+ |
J.~Kohanoff, A.~Caro and M.~Finnis, An isothermal-isobaric langevin thermostat |
| 866 |
+ |
for simulating nanoparticles under pressure: Application to {A}u clusters. |
| 867 |
+ |
{\em Chem. Phys. Chem.\/}, 6(9): 1848 -- 1852 (2005). |
| 868 |
+ |
|
| 869 |
+ |
\bibitem{0953-8984-14-26-101} |
| 870 |
+ |
D.~Y. Sun and X.~G. Gong, A new constant-pressure molecular dynamics method for |
| 871 |
+ |
finite systems. {\em J. Phys.: Condens. Matter\/}, 14(26): L487--L493 (2002). |
| 872 |
+ |
|
| 873 |
+ |
\bibitem{SpohrE._j100353a043} |
| 874 |
+ |
E.~Spohr, Computer simulation of the water/platinum interface. {\em J. Phys. |
| 875 |
+ |
Chem.\/}, 93(16): 6171--6180 (1989). |
| 876 |
+ |
|
| 877 |
+ |
\bibitem{Spohr:1995lr} |
| 878 |
+ |
E.~Spohr, Ion adsorption on metal surfaces. the role of water-metal |
| 879 |
+ |
interactions. {\em J. Mol. Liq.\/}, 64(1-2): 91--100 (1995). |
| 880 |
+ |
|
| 881 |
+ |
\bibitem{DouY._jp003913o} |
| 882 |
+ |
Y.~Dou, L.~Zhigilei, N.~Winograd and B.~Garrison, Explosive boiling of water |
| 883 |
+ |
films adjacent to heated surfaces: A microscopic description. {\em J. Phys. |
| 884 |
+ |
Chem. A\/}, 105(12): 2748--2755 (2001). |
| 885 |
+ |
|
| 886 |
+ |
\bibitem{Meng:2004p151} |
| 887 |
+ |
S.~Meng, E.~Wang and S.~Gao, Water adsorption on metal surfaces: A general |
| 888 |
+ |
picture from density functional theory studies. {\em Phys. Rev. B\/}, 69: |
| 889 |
+ |
195404 (Jan 2004). |
| 890 |
+ |
|
| 891 |
+ |
\bibitem{Meng:2003p289} |
| 892 |
+ |
S.~Meng, E.~Wang and S.~Gao, A molecular picture of hydrophilic and hydrophobic |
| 893 |
+ |
interactions from ab initio density functional theory calculations. {\em J. |
| 894 |
+ |
Chem. Phys.\/}, 119: 7617--7620 (Jan 2003). |
| 895 |
+ |
|
| 896 |
+ |
\bibitem{liu96:new_model} |
| 897 |
+ |
Y.~Liu and T.~Ichiye, Soft sticky dipole potential for liquid water: a new |
| 898 |
+ |
model. {\em J. Phys. Chem.\/}, 100: 2723--2730 (1996). |
| 899 |
+ |
|
| 900 |
+ |
\bibitem{Bratko85} |
| 901 |
+ |
D.~Bratko, L.~Blum and A.~Luzar, A simple model for the intermolecular |
| 902 |
+ |
potential of water. {\em J. Chem. Phys.\/}, 83(12): 6367--6370 (1985). |
| 903 |
+ |
|
| 904 |
+ |
\bibitem{Bratko95} |
| 905 |
+ |
L.~Blum, F.~Vericat and D.~Bratko, Towards an analytical model of water: The |
| 906 |
+ |
octupolar model. {\em J. Phys. Chem.\/}, 102(3): 1461--1462 (1995). |
| 907 |
+ |
|
| 908 |
+ |
\bibitem{fennell04} |
| 909 |
+ |
C.~J. Fennell and J.~D. Gezelter, On the structural and transport properties of |
| 910 |
+ |
the soft sticky dipole(ssd) and related single point water models. {\em J. |
| 911 |
+ |
Chem. Phys.\/}, 120(19): 9175--9184 (2004). |
| 912 |
+ |
|
| 913 |
+ |
\bibitem{Slater} |
| 914 |
+ |
J.~C. Slater, {\em Quantum Theory of Molecules and Solids Vol. 4: The |
| 915 |
+ |
Self-Consistent Field for Molecules and Solids\/}. McGraw-Hill, New York |
| 916 |
+ |
(1974). |
| 917 |
+ |
|
| 918 |
+ |
\bibitem{Perdew1991} |
| 919 |
+ |
J.~P. Perdew, {\em Unified Theory of Exchange and Correlation Beyond the Local |
| 920 |
+ |
Density Approximation\/}, page~11. Electronic Structure of Solids, Akademie |
| 921 |
+ |
Verlag, Berlin (1991). |
| 922 |
+ |
|
| 923 |
+ |
\bibitem{PERDEW:1992xi} |
| 924 |
+ |
J.~Perdew, J.~Chevary, S.~Vosko, K.~Jackson, P.~MR, D.~Singh and C.~Fiolhais, |
| 925 |
+ |
Atoms, molecules, solids, and surfaces - applications of the generalized |
| 926 |
+ |
gradient approximation for exchange and correlation (1992), Physical Review |
| 927 |
+ |
B. |
| 928 |
+ |
|
| 929 |
+ |
\bibitem{HAY:1985xt} |
| 930 |
+ |
P.~Hay and W.~Wadt, Abinitio effective core potentials for molecular |
| 931 |
+ |
calculations - potentials for k to au including the outermost core orbitals. |
| 932 |
+ |
{\em J. Chem. Phys.\/}, 82: 299--310 (1985). |
| 933 |
+ |
|
| 934 |
+ |
\bibitem{LACV3P} |
| 935 |
+ |
The lacv3p basis set is a triple-zeta contraction of the lacvp basis set |
| 936 |
+ |
developed and tested at schr{\"o}dinger, inc. |
| 937 |
+ |
|
| 938 |
+ |
\bibitem{MCLEAN:1980xi} |
| 939 |
+ |
A.~Mclean and G.~Chandler, Contracted gaussian-basis sets for molecular |
| 940 |
+ |
calculations .1. 2nd row atoms, z=11-18. {\em J. Chem. Phys.\/}, 72: |
| 941 |
+ |
5639--5648 (1980). |
| 942 |
+ |
|
| 943 |
+ |
\bibitem{KRISHNAN:1980aw} |
| 944 |
+ |
R.~Krishnan, B.~JS, R.~Seeger and J.~Pople, Self-consistent molecular-orbital |
| 945 |
+ |
methods .20. basis set for correlated wave-functions. {\em J. Chem. Phys.\/}, |
| 946 |
+ |
72: 650--654 (1980). |
| 947 |
+ |
|
| 948 |
+ |
\bibitem{CLARK:1983sb} |
| 949 |
+ |
T.~Clark, J.~Chandrasekhar, G.~Spitznagel and P.~Schleyer, Efficient diffuse |
| 950 |
+ |
function-augmented basis-sets for anion calculations .3. the 3-21+g basis set |
| 951 |
+ |
for 1st-row elements, li-f. {\em J. Comp. Chem.\/}, 4: 294--301 (1983). |
| 952 |
+ |
|
| 953 |
+ |
\bibitem{FRISCH:1984dp} |
| 954 |
+ |
M.~Frisch, J.~Pople and J.~Binkley, Self-consistent molecular-orbital methods |
| 955 |
+ |
.25. supplementary functions for gaussian-basis sets. {\em J. Chem. Phys.\/}, |
| 956 |
+ |
80: 3265--3269 (1984). |
| 957 |
+ |
|
| 958 |
+ |
\bibitem{Kresse:1996zm} |
| 959 |
+ |
G.~Kresse and J.~Furthm{\"u}ller, Efficiency of ab-initio total energy |
| 960 |
+ |
calculations for metals and semiconductors using a plane-wave basis set. {\em |
| 961 |
+ |
Computational Materials Science\/}, 6(1): 15--50 (1996). |
| 962 |
+ |
|
| 963 |
+ |
\bibitem{PhysRevB.50.17953} |
| 964 |
+ |
P.~E. Bl\"ochl, Projector augmented-wave method. {\em Phys. Rev. B\/}, 50(24): |
| 965 |
+ |
17953--17979 (Dec 1994). |
| 966 |
+ |
|
| 967 |
+ |
\bibitem{PhysRevB.59.1758} |
| 968 |
+ |
G.~Kresse and D.~Joubert, From ultrasoft pseudopotentials to the projector |
| 969 |
+ |
augmented-wave method. {\em Phys. Rev. B\/}, 59(3): 1758--1775 (Jan 1999). |
| 970 |
+ |
|
| 971 |
+ |
\bibitem{PhysRevB.45.13244} |
| 972 |
+ |
J.~P. Perdew and Y.~Wang, Accurate and simple analytic representation of the |
| 973 |
+ |
electron-gas correlation energy. {\em Phys. Rev. B\/}, 45(23): 13244--13249 |
| 974 |
+ |
(Jun 1992). |
| 975 |
+ |
|
| 976 |
+ |
\bibitem{PhysRevB.46.6671} |
| 977 |
+ |
J.~P. Perdew, J.~A. Chevary, S.~H. Vosko, K.~A. Jackson, M.~R. Pederson, D.~J. |
| 978 |
+ |
Singh and C.~Fiolhais, Atoms, molecules, solids, and surfaces: Applications |
| 979 |
+ |
of the generalized gradient approximation for exchange and correlation. {\em |
| 980 |
+ |
Phys. Rev. B\/}, 46(11): 6671--6687 (Sep 1992). |
| 981 |
+ |
|
| 982 |
+ |
\bibitem{PhysRevB.13.5188} |
| 983 |
+ |
H.~J. Monkhorst and J.~D. Pack, Special points for brillouin-zone integrations. |
| 984 |
+ |
{\em Phys. Rev. B\/}, 13(12): 5188--5192 (Jun 1976). |
| 985 |
+ |
|
| 986 |
|
\end{thebibliography} |