ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/chuckDissertation/dissertation.bbl
(Generate patch)

Comparing trunk/chuckDissertation/dissertation.bbl (file contents):
Revision 3483 by chuckv, Tue Jan 13 14:39:50 2009 UTC vs.
Revision 3496 by chuckv, Wed Apr 8 19:13:41 2009 UTC

# Line 1 | Line 1
1   \begin{thebibliography}{100}
2  
3   \bibitem{DAW:1993p1640}
4 < M.~DAW, S.~FOILES and M.~BASKES, The embedded-atom method - a review of theory
5 <  and applications (Jan 1993).
4 > M.~Daw, S.~Foiles and M.~Baskes, The embedded-atom method - a review of theory
5 >  and applications. {\em Mater. Sci. Rep.\/}, 9(7-8): 251--310 (Jan 1993).
6  
7   \bibitem{kimura-quantum}
8   Y.~Kimura and T.~Cagin, The quantum sutton-chen manybody potential for
# Line 12 | Line 12 | A.~P. Sutton and J.~Chen, Long-range finnis sinclair p
12   A.~P. Sutton and J.~Chen, Long-range finnis sinclair potentials. {\em Phil.
13    Mag. Lett.\/}, 61: 139--146 (1990).
14  
15 + \bibitem{PhysRevB.59.3527}
16 + Y.~Qi, T.~\c{C}a\v{g}in, Y.~Kimura and W.~A. {Goddard III}, Molecular-dynamics
17 +  simulations of glass formation and crystallization in binary liquid
18 +  metals:\quad{}{C}u-{A}g and {C}u-{N}i. {\em Phys. Rev. B\/}, 59(5):
19 +  3527--3533 (Feb 1999).
20 +
21   \bibitem{wolde:9932}
22   P.~R. ten Wolde, M.~J. Ruiz-Montero and D.~Frenkel, Numerical calculation of
23    the rate of crystal nucleation in a lennard-jones system at moderate
24    undercooling. {\em J. Chem. Phys.\/}, 104(24): 9932--9947 (1996).
25  
26 + \bibitem{Greer:1995qy}
27 + A.~L. Greer, Metallic glasses. {\em Science\/}, 267(5206): 1947--1953 (Mar
28 +  1995).
29 +
30   \bibitem{Allen87}
31   M.~P. Allen and D.~J. Tildesley, {\em Computer Simulations of Liquids\/}.
32    Oxford University Press, New York (1987).
# Line 60 | Line 70 | P.~A. Egelstaff, {\em An introduction to the liquid st
70   P.~A. Egelstaff, {\em An introduction to the liquid state\/}, volume~7.
71    Clarendon Press, Oxford, second edition (1992).
72  
63 \bibitem{Nrskov:1980p1752}
64 J.~K. N{\o}rskov and N.~D. Lang, Effective-medium theory of chemical binding:
65  Application to chemisorption. {\em Phys Rev B\/}, 21(6): 2131--2136 (Mar
66  1980).
67
73   \bibitem{Nrskov:1982p1753}
74   J.~K. N{\o}rskov, Covalent effects in the effective-medium theory of chemical
75 <  binding: Hydrogen heats of solution in the 3 dmetals. {\em Phys Rev B\/},
75 >  binding: Hydrogen heats of solution in the 3 d metals. {\em Phys. Rev. B\/},
76    26(6): 2875--2885 (Sep 1982).
77  
78 + \bibitem{Nrskov:1980p1752}
79 + J.~K. N{\o}rskov and N.~D. Lang, Effective-medium theory of chemical binding:
80 +  Application to chemisorption. {\em Phys. Rev. B\/}, 21(6): 2131--2136 (Mar
81 +  1980).
82 +
83   \bibitem{Stott:1980p1754}
84   M.~J. Stott and E.~Zaremba, Quasiatoms: An approach to atoms in nonuniform
85 <  electronic systems. {\em Phys Rev B\/}, 22(4): 1564--1583 (Aug 1980).
85 >  electronic systems. {\em Phys. Rev. B\/}, 22(4): 1564--1583 (Aug 1980).
86  
87   \bibitem{Puska:1981p1755}
88   M.~J. Puska and M.~Manninen, Atoms embedded in an electron gas: Immersion
89 <  energies. {\em Phys Rev B\/}, 24(6): 3037--3047 (Sep 1981).
89 >  energies. {\em Phys. Rev. B\/}, 24(6): 3037--3047 (Sep 1981).
90  
91 + \bibitem{DAW:1983ht}
92 + M.~Daw and M.~Baskes, Semiempirical, quantum-mechanical calculation of hydrogen
93 +  embrittlement in metals. {\em Phys. Rev. Lett.\/}, 50(17): 1285--1288 (1983).
94 +
95   \bibitem{Daw84}
96   M.~S. Daw and M.~I. Baskes, Embedded-atom method: Derivation and application to
97 <  impurities, surfaces, and other defects in metals. 29(12): 6443--6453 (1984).
97 >  impurities, surfaces, and other defects in metals. {\em Phys. Rev. B\/},
98 >  29(12): 6443--6453 (1984).
99  
85 \bibitem{DAW:1983ht}
86 M.~DAW and M.~BASKES, Semiempirical, quantum-mechanical calculation of hydrogen
87  embrittlement in metals. {\em Physical Review Letters\/}, 50(17): 1285--1288
88  (1983).
89
100   \bibitem{Hohenberg:1964bs}
101   P.~Hohenberg and W.~Kohn, Inhomogeneous electron gas. {\em Phys. Rev.\/},
102    136(3B): B864--B871 (Nov 1964).
103  
104   \bibitem{DAW:1989p1673}
105 < M.~DAW, Model of metallic cohesion - the embedded-atom method. {\em Phys Rev
105 > M.~Daw, Model of metallic cohesion - the embedded-atom method. {\em Phys. Rev.
106    B\/}, 39(11): 7441--7452 (Jan 1989).
107  
108   \bibitem{PhysRevB.33.7983}
# Line 110 | Line 120 | J.~H. Rose, J.~R. Smith, F.~Guinea and J.~Ferrante, Un
120    1984).
121  
122   \bibitem{BASKES:1987p1743}
123 < M.~BASKES, Application of the embedded-atom method to covalent materials - a
124 <  semiempirical potential for silicon. {\em Phys Rev Lett\/}, 59(23):
123 > M.~Baskes, Application of the embedded-atom method to covalent materials - a
124 >  semiempirical potential for silicon. {\em Phys. Rev. Lett.\/}, 59(23):
125    2666--2669 (Jan 1987).
126  
127 + \bibitem{BASKES:1992p1735}
128 + M.~Baskes, Modified embedded-atom potentials for cubic materials and
129 +  impurities. {\em Phys. Rev. B\/}, 46(5): 2727--2742 (Jan 1992).
130 +
131   \bibitem{BASKES:1989p1746}
132 < M.~BASKES, J.~NELSON and A.~WRIGHT, Semiempirical modified embedded-atom
133 <  potentials for silicon and germanium. {\em Phys Rev B\/}, 40(9): 6085--6100
132 > M.~Baskes, J.~Nelson and A.~Wright, Semiempirical modified embedded-atom
133 >  potentials for silicon and germanium. {\em Phys. Rev. B\/}, 40(9): 6085--6100
134    (Jan 1989).
135  
136 < \bibitem{BASKES:1992p1735}
137 < M.~BASKES, Modified embedded-atom potentials for cubic materials and
138 <  impurities. {\em Phys Rev B\/}, 46(5): 2727--2742 (Jan 1992).
136 > \bibitem{Ercolessi88}
137 > F.~Ercolessi, M.~Parrinello and E.~Tosatti, Simulation of gold in the glue
138 >  model. {\em Phil. Mag. A\/}, 58: 213--226 (1988).
139  
140   \bibitem{Finnis84}
141   M.~W. Finnis and J.~E. Sinclair, A simple empirical n-body potential for
142    transition-metals. {\em Phil. Mag. A\/}, 50: 45--55 (1984).
143  
130 \bibitem{Ercolessi88}
131 F.~Ercolessi, M.~Parrinello and E.~Tosatti, Simulation of gold in the glue
132  model. {\em Phil. Mag. A\/}, 58: 213--226 (1988).
133
144   \bibitem{Qi99}
145   Y.~Qi, T.~\c{C}a\v{g}in, Y.~Kimura and W.~A. {Goddard III}, Molecular-dynamics
146    simulations of glass formation and crystallization in binary liquid metals:
# Line 138 | Line 148 | U.~Tartaglino, E.~Tosatti, D.~Passerone and F.~Ercoles
148  
149   \bibitem{Ercolessi02}
150   U.~Tartaglino, E.~Tosatti, D.~Passerone and F.~Ercolessi, Bending strain-driven
151 <  modification of surface resconstructions: Au(111). 65: 241406 (2002).
151 >  modification of surface resconstructions: Au(111). {\em Phys. Rev. B\/}, 65:
152 >  241406 (2002).
153  
154 + \bibitem{Goldstein:2001uf}
155 + H.~Goldstein, C.~Poole and J.~Safko, {\em Classical Mechanics\/}. Addison
156 +  Wesley, San Francisco, third edition (2001).
157 +
158   \bibitem{Tolman:1938kl}
159   R.~C. Tolman, {\em The Principles of Statistical Mechanics\/}. Oxford
160    University Press, Inc., New York (1938).
161  
162 < \bibitem{Goldstein:2001uf}
163 < H.~Goldstein, C.~Poole and J.~Safko, {\em Classical Mechanics\/}. Addison
164 <  Wesley, San Francisco, third edition (2001).
162 > \bibitem{McQuarrie:2000yt}
163 > D.~A. McQuarrie, {\em Statistical mechanics\/}. University Science Books,
164 >  Sausalito, Calif. (2000).
165 >
166 > \bibitem{swope:637}
167 > W.~C. Swope, H.~C. Andersen, P.~H. Berens and K.~R. Wilson, A computer
168 >  simulation method for the calculation of equilibrium constants for the
169 >  formation of physical clusters of molecules: Application to small water
170 >  clusters. {\em The Journal of Chemical Physics\/}, 76(1): 637--649 (1982).
171 >
172 > \bibitem{Verlet67}
173 > L.~Verlet, Computer ``experiments" on classical fluids. \uppercase{I.
174 >  T}hermodynamic properties of \uppercase{L}ennard-\uppercase{J}ones molecules.
175 >  {\em Phys. Rev.\/}, 159(1): 98--103 (1967).
176 >
177 > \bibitem{tuckerman:2278}
178 > M.~Tuckerman, B.~J. Berne and G.~J. Martyna, Reply to comment on: Reversible
179 >  multiple time scale molecular dynamics. {\em J. Chem. Phys.\/}, 99(3):
180 >  2278--2279 (1993).
181  
182 + \bibitem{BROOKS:1983uq}
183 + B.~CL and M.~Karplus, Deformable stochastic boundaries in molecular-dynamics.
184 +  {\em J. Chem. Phys.\/}, 79: 6312--6325 (1983).
185 +
186 + \bibitem{BROOKS:1985kx}
187 + C.~Brooks, A.~Brunger and M.~Karplus, Active-site dynamics in protein molecules
188 +  - a stochastic boundary molecular-dynamics approach. {\em Biopolymers\/}, 24:
189 +  843--865 (1985).
190 +
191 + \bibitem{BRUNGER:1984fj}
192 + A.~Brunger, C.~Brooks and M.~Karplus, Stochastic boundary-conditions for
193 +  molecular-dynamics simulations of st2 water. {\em Chem. Phys. Lett.\/}, 105:
194 +  495--500 (1984).
195 +
196 + \bibitem{Schlick:2002hc}
197 + T.~Schlick, {\em Molecular modeling and simulation: an interdisciplinary
198 +  guide\/}, volume v. 21. Springer, New York (2002).
199 +
200 + \bibitem{Fox88}
201 + G.~C. Fox, M.~A. Johnson, G.~A. Lyzenga, S.~W. Otto, J.~K. Salmon and D.~W.
202 +  Walker, {\em Solving Promblems on Concurrent Processors\/}, volume~I.
203 +  Prentice-Hall, Englewood Cliffs, NJ (1988).
204 +
205 + \bibitem{plimpton95}
206 + S.~Plimpton, Fast parallel algorithms for short-range molecular dymanics. {\em
207 +  J. Comp. Phys.\/}, 117: 1--19 (1995).
208 +
209 + \bibitem{Paradyn}
210 + S.~J. Plimpton and B.~A. Hendrickson, Parallel molecular dynamics with the
211 +  embedded atom method. In J.~Broughton, P.~Bristowe and J.~Newsam, editors,
212 +  {\em Materials Theory and Modelling\/}, volume 291 of {\em MRS
213 +  Proceedings\/}, page~37, Materials Research Society, Pittsburgh, PA (1993).
214 +
215 + \bibitem{hendrickson:95}
216 + B.~Hendrickson and S.~Plimpton, Parallel many-body simulations without
217 +  all-to-all communication. {\em J. Parallel Distr. Com.\/}, 27: 15--25 (1995).
218 +
219   \bibitem{Pense92}
220   A.~W. Pense, The decline and fall of the roman denarius. {\em Mat. Char.\/},
221    29: 213 (1992).
222  
223   \bibitem{duwez:1136}
224   P.~Duwez, R.~H. Willens, W.~Klement and Jr, Continuous series of metastable
225 <  solid solutions in silver-copper alloys. {\em Journal of Applied Physics\/},
226 <  31(6): 1136--1137 (1960).
225 >  solid solutions in silver-copper alloys. {\em J. Appl. Phys.\/}, 31(6):
226 >  1136--1137 (1960).
227  
228   \bibitem{Peker93}
229   A.~Peker and W.~L. Johnson, A highly processable metallic-glass -
# Line 164 | Line 232 | W.~Kob and H.~C. Andersen, Testing mode-coupling theor
232  
233   \bibitem{Kob95a}
234   W.~Kob and H.~C. Andersen, Testing mode-coupling theory for a supercooled
235 <  binary lennard-jones mixtures: The van hove corraltion function. 51:
236 <  4626--4641 (1995).
235 >  binary lennard-jones mixtures: The van hove corraltion function. {\em Phys.
236 >  Rev. E\/}, 51: 4626--4641 (1995).
237  
238   \bibitem{Kob95b}
239   W.~Kob and H.~C. Andersen, Testing mode-coupling theory for a supercooled
240    binary lennard-jones mixtures. ii. intermediate scattering function and
241 <  dynamic susceptibility. 52: 4134--4153 (1995).
241 >  dynamic susceptibility. {\em Phys. Rev. E\/}, 52: 4134--4153 (1995).
242  
243   \bibitem{Stillinger98}
244   S.~Sastry, P.~G. Debenedetti and F.~H. Stillinger, Signatures of distinct
# Line 186 | Line 254 | C.~Gaukel and H.~R. Schober, Diffusion mechanisms in u
254    liquids of $\mbox{Zr}_{67}\mbox{Cu}_{33}$. {\em Solid State Comm.\/}, 107:
255    1--5 (1998).
256  
257 + \bibitem{Gezelter99}
258 + J.~D. Gezelter, E.~Rabani and B.~J. Berne, Methods for calculating the hopping
259 +  rate for orientational and spatial diffusion in a molecular liquid:
260 +  $\mbox{CS}_{2}$. {\em J. Chem. Phys.\/}, 110: 3444 (1999).
261 +
262   \bibitem{Rabani97}
263   E.~Rabani, J.~D. Gezelter and B.~J. Berne, Calculating the hopping rate for
264    self-diffusion on rough potential energy surfaces: Cage correlations. {\em J.
265    Chem. Phys.\/}, 107: 6867--6876 (1997).
266  
194 \bibitem{Gezelter99}
195 J.~D. Gezelter, E.~Rabani and B.~J. Berne, Methods for calculating the hopping
196  rate for orientational and spatial diffusion in a molecular liquid:
197  $\mbox{CS}_{2}$. 110: 3444 (1999).
198
267   \bibitem{Rabani99}
268   E.~Rabani, J.~D. Gezelter and B.~J. Berne, Direct observation of
269    stretched-exponential relaxation in low-temperature lennard-jones systems
270 <  using the cage correlation function. 82: 3649 (1999).
270 >  using the cage correlation function. {\em Phys. Rev. Lett.\/}, 82: 3649
271 >  (1999).
272  
273   \bibitem{Rabani2000}
274   E.~Rabani, J.~D. Gezelter and B.~J. Berne, Reply to `comment on ``direct
275    observation of stretched-exponential relaxation in low-temperature
276 <  lennard-jones systems using th ecage correlation function'' '. 85: 467
277 <  (2000).
276 >  lennard-jones systems using th ecage correlation function'' '. {\em Phys.
277 >  Rev. Lett.\/}, 85: 467 (2000).
278  
279   \bibitem{Zwanzig83}
280   R.~Zwanzig, On the relation between self-diffusion and viscosity of liquids.
281 <  79: 4507--4508 (1983).
281 >  {\em J. Chem. Phys.\/}, 79: 4507--4508 (1983).
282  
283   \bibitem{Blumen83}
284   A.~Blumen, J.~Klafter and G.~Zumofen, Recombination in amorphous materials as a
# Line 218 | Line 287 | J.~Klafter and G.~Zumofen, Probability distributions f
287  
288   \bibitem{Klafter94}
289   J.~Klafter and G.~Zumofen, Probability distributions for continuous-time random
290 <  walks with long tails. 98: 7366--7370 (1994).
290 >  walks with long tails. {\em Journal of Physical Chemistry\/}, 98: 7366--7370
291 >  (1994).
292  
293   \bibitem{Klafter96}
294   J.~Klafter, M.~Shlesinger and G.~Zumofen, Beyond brownian motion. {\em Physics
# Line 229 | Line 299 | M.~F. Shlesinger, J.~Klafter and G.~Zumofen, Above, be
299    motion. {\em Am. J. Phys.\/}, 67: 1253--1259 (1999).
300  
301   \bibitem{Stillinger82}
302 < F.~H. Stillinger and T.~A. Weber, Hidden structure in liquids. 25(2): 978--989
303 <  (1982).
302 > F.~H. Stillinger and T.~A. Weber, Hidden structure in liquids. {\em Phys. Rev.
303 >  A\/}, 25(2): 978--989 (1982).
304  
305   \bibitem{Stillinger83}
306   F.~H. Stillinger and T.~A. Weber, Dynamics of structural transitions in
307 <  liquids. 28(4): 2408--2416 (1983).
307 >  liquids. {\em Phys. Rev. A\/}, 28(4): 2408--2416 (1983).
308  
239 \bibitem{Weber84}
240 T.~A. Weber and F.~H. Stillinger, The effect of density on the inherent
241  structure in liquids. 80(6): 2742--2746 (1984).
242
309   \bibitem{Stillinger85}
310   F.~H. Stillinger and T.~A. Weber, Inherent structure theory of liquids in the
311 <  hard-sphere limit. 83(9): 4767--4775 (1985).
311 >  hard-sphere limit. {\em J. Chem. Phys.\/}, 83(9): 4767--4775 (1985).
312  
313 + \bibitem{Weber84}
314 + T.~A. Weber and F.~H. Stillinger, The effect of density on the inherent
315 +  structure in liquids. {\em J. Chem. Phys.\/}, 80(6): 2742--2746 (1984).
316 +
317   \bibitem{Berne90}
318   B.~J. Berne and R.~Pecora, {\em Dynamic Light Scattering\/}. Robert E. Krieger
319    Publishing Company, Inc., Malabar, Florida (1990).
# Line 251 | Line 321 | H.~J. {Parkhurst, Jr.} and J.~Jonas, Dense liquids. i.
321   \bibitem{Parkhurst75a}
322   H.~J. {Parkhurst, Jr.} and J.~Jonas, Dense liquids. i. the effect of density
323    and temperature on viscosity of tetramethylsilane and benzene-$\mbox{D}_6$.
324 <  63(6): 2698--2704 (1975).
324 >  {\em J. Chem. Phys.\/}, 63(6): 2698--2704 (1975).
325  
326   \bibitem{Parkhurst75b}
327   H.~J. {Parkhurst, Jr.} and J.~Jonas, Dense liquids. ii. the effect of density
328 <  and temperature on viscosity of tetramethylsilane and benzene. 63(6):
329 <  2705--2709 (1975).
328 >  and temperature on viscosity of tetramethylsilane and benzene. {\em J. Chem.
329 >  Phys.\/}, 63(6): 2705--2709 (1975).
330  
331   \bibitem{Ngai81}
332   K.~L. Ngai and F.-S. Liu, Dispersive diffusion transport and noise,
333    time-dependent diffusion coefficient, generalized einstein-nernst relation,
334    and dispersive diffusion-controlled unimolecular and bimolecular reactions.
335 <  24: 1049--1065 (1981).
335 >  {\em Phys. Rev. B\/}, 24: 1049--1065 (1981).
336  
337   \bibitem{Gezelter97}
338   J.~D. Gezelter, E.~Rabani and B.~J. Berne, Can imaginary instantaneous normal
339 <  mode frequencies predict barriers to self-diffusion? 107: 4618 (1997).
339 >  mode frequencies predict barriers to self-diffusion? {\em J. Chem. Phys.\/},
340 >  107: 4618 (1997).
341  
342   \bibitem{Gezelter98a}
343   J.~D. Gezelter, E.~Rabani and B.~J. Berne, Response to 'comment on a critique
344 <  of the instantaneous normal mode (inm) approach to diffusion'. 109: 4695
345 <  (1998).
344 >  of the instantaneous normal mode (inm) approach to diffusion'. {\em J. Chem.
345 >  Phys.\/}, 109: 4695 (1998).
346  
347 < \bibitem{Lu97}
348 < J.~Lu and J.~A. Szpunar, Applications of the embedded-atom method to glass
349 <  formation and crystallization of liquid and glass transition-metal nickel.
350 <  {\em Phil. Mag. A\/}, 75: 1057--1066 (1997).
347 > \bibitem{sheng:184203}
348 > H.~W. Sheng, J.~H. He and E.~Ma, Molecular dynamics simulation studies of
349 >  atomic-level structures in rapidly quenched ag-cu nonequilibrium alloys. {\em
350 >  Phys. Rev. B\/}, 65(18): 184203 (2002).
351  
352 < \bibitem{Alemany98}
353 < M.~M.~G. Alemany, C.~Rey and L.~J. Gallego, Transport coefficients of liquid
354 <  transition metals: A computer simulation study using the embedded atom model.
284 <  109: 5175--5176 (1998).
352 > \bibitem{MURRAY:1984lr}
353 > J.~L. Murray, Calculations of stable and metastable equilibrium diagrams of the
354 >  ag-cu and cd-zn systems. {\em Metall Trans\/}, 15(2): 261--268 (1984).
355  
286 \bibitem{Belonoshko00}
287 A.~B. Belonoshko, R.~Ahuja, O.~Eriksson and B.~Johansson, Quasi ab initio
288  molecular dynamic study of cu melting. 61: 3838--3844 (2000).
289
356   \bibitem{Banhart:1992sv}
357   J.~Banhart, H.~Ebert, R.~Kuentzler and J.~Voitl\"{a}nder, Electronic properties
358    of single-phased metastable ag-cu alloys. 46(16): 9968--9975 (1992).
# Line 296 | Line 362 | M.~Ediger, C.~Angell and S.~R. Nagel, Supercooled liqu
362    13200 (1996).
363  
364   \bibitem{Wendt78}
365 < H.~Wendt and F.~F. Abraham. 41: 1244 (1978).
365 > H.~Wendt and F.~F. Abraham. {\em Phys. Rev. Lett.\/}, 41: 1244 (1978).
366  
367   \bibitem{Lewis91}
368 < L.~J. Lewis, Atomic dynamics through the glass transition. 44: 4245--4254
369 <  (1991).
368 > L.~J. Lewis, Atomic dynamics through the glass transition. {\em Phys. Rev.
369 >  B\/}, 44: 4245--4254 (1991).
370  
371   \bibitem{Liu92}
372   R.~S. Liu, D.~W. Qi and S.~Wang, Subpeaks of structure factors for rapidly
373 <  quenched metals. 45: 451--453 (1992).
373 >  quenched metals. {\em Phys. Rev. B\/}, 45: 451--453 (1992).
374  
309 \bibitem{Truhlar00}
310 D.~G. Truhlar and A.~Kohen. private correspondence.
311
375   \bibitem{Tolman20}
376 < R.~C. Tolman, Statistical mechanics applied to chemical kinetics. 42: 2506
377 <  (1920).
376 > R.~C. Tolman, Statistical mechanics applied to chemical kinetics. {\em J. Am.
377 >  Chem. Soc.\/}, 42: 2506 (1920).
378  
379   \bibitem{Tolman27}
380   R.~C. Tolman, {\em Statistical Mechanics with Applications to Physics and
381    Chemistry\/}. Chemical Catalog Co., New York (1927).
382  
383 + \bibitem{Truhlar00}
384 + D.~G. Truhlar and A.~Kohen. private correspondence.
385 +
386   \bibitem{Buffat:1976yq}
387   P.~Buffat and J.-P. Borel, Size effect on the melting temperature of gold
388    particles. {\em Phys. Rev. A\/}, 13: 2287--2298 (1976).
389  
390 < \bibitem{el-sayed00}
391 < S.~Link, Z.~L. Wang and M.~A. El-Sayed, How does a gold nanorod melt? 104:
392 <  7867--7870 (2000).
390 > \bibitem{Chen:1997p2142}
391 > C.~Chen, A.~Herhold, C.~Johnson and A.~ALIVISATOS, Size dependence of
392 >  structural metastability in semiconductor nanocrystals. {\em Science\/},
393 >  276(5311): 398--401 (Jan 1997).
394  
395 < \bibitem{el-sayed01}
396 < S.~Link and M.~A. El-Sayed, Spectroscopic determination of the melting energy
397 <  of a gold nanorod. 114: 2362--2368 (2001).
395 > \bibitem{GOLDSTEIN:1992p2138}
396 > A.~Goldstein, C.~Echer and A.~Alivisatos, Melting in semiconductor
397 >  nanocrystals. {\em Science\/}, 256(5062): 1425--1427 (Jan 1992).
398  
399 + \bibitem{Pawlow:1909p2134}
400 + P.~Pawlow, The dependency of the melting point on the surface energy of a solid
401 +  body. (supplement.). {\em Z Phys Chem-Stoch Ve\/}, 65(5): 545--548 (Jan
402 +  1909).
403 +
404 + \bibitem{SOLLIARD:1985p2137}
405 + C.~Solliard and M.~Flueli, Surface stress and size effect on the
406 +  lattice-parameter in small particles of gold and platinum. {\em Surf.
407 +  Sci.\/}, 156(JUN): 487--494 (Jan 1985).
408 +
409 + \bibitem{TOLBERT:1996p2141}
410 + S.~Tolbert, A.~Herhold, L.~Brus and A.~Alivisatos, Pressure-induced structural
411 +  transformations in si nanocrystals: Surface and shape effects. {\em Phys.
412 +  Rev. Lett.\/}, 76(23): 4384--4387 (Jan 1996).
413 +
414 + \bibitem{MORI:1991p2144}
415 + H.~Mori, M.~Komatsu, K.~Takeda and H.~Fujita, Spontaneous alloying of copper
416 +  into gold atom clusters. {\em Phil. Mag. Lett.\/}, 63(3): 173--178 (Jan
417 +  1991).
418 +
419 + \bibitem{MORI:1994p2372}
420 + H.~Mori, H.~Yasuda and T.~Kamino, High-resolution electron-microscopy study of
421 +  spontaneous alloying in gold clusters. {\em Phil. Mag. Lett.\/}, 69(5):
422 +  279--283 (Jan 1994).
423 +
424 + \bibitem{YASUDA:1996p2387}
425 + H.~Yasuda and H.~Mori, Phase stability and transformation in nanometre-sized
426 +  au-pb alloy clusters produced by spontaneous alloying. {\em Philos. Mag.
427 +  A\/}, 73(3): 567--573 (Jan 1996).
428 +
429 + \bibitem{yasuda:1100}
430 + H.~Yasuda, H.~Mori, M.~Komatsu and K.~Takeda, Spontaneous alloying of copper
431 +  atoms into gold clusters at reduced temperatures. {\em J. Appl. Phys.\/},
432 +  73(3): 1100--1103 (1993).
433 +
434 + \bibitem{PhysRevLett.69.3747}
435 + H.~Yasuda and H.~Mori, Spontaneous alloying of zinc atoms into gold clusters
436 +  and formation of compound clusters. {\em Phys. Rev. Lett.\/}, 69(26):
437 +  3747--3750 (Dec 1992).
438 +
439 + \bibitem{Mori1996244}
440 + H.~Mori and H.~Yasuda, Effect of cluster size on phase stability in nm-sized
441 +  {A}u-{S}b alloy clusters. {\em Mat. Sci. Eng. A\/}, 217-218: 244 -- 248
442 +  (1996), International Conference on Nano-Clusters and Granular Materials.
443 +
444 + \bibitem{Schmid:2000ul}
445 + A.~K. Schmid, N.~C. Bartelt and R.~Q. Hwang, Alloying at surfaces by the
446 +  migration of reactive two-dimensional islands. {\em Science\/}, 290(5496):
447 +  1561--1564 (2000).
448 +
449 + \bibitem{Das:1999p2397}
450 + D.~Das, P.~Chatterjee, I.~Manna and S.~Pabi, A measure of enhanced diffusion
451 +  kinetics in mechanical alloying of cu-18 at.% al by planetary ball milling.
452 +  {\em Scripta Mater\/}, 41(8): 861--866 (Jan 1999).
453 +
454   \bibitem{ShibataT._ja026764r}
455   T.~Shibata, B.~Bunker, Z.~Zhang, D.~Meisel, C.~Vardeman and J.~Gezelter,
456 <  Size-dependent spontaneous alloying of {A}u-{A}g nanoparticles. {\em JACS\/},
457 <  124(40): 11989--11996 (2002).
456 >  Size-dependent spontaneous alloying of {A}u-{A}g nanoparticles. {\em J. Am.
457 >  Chem. Soc.\/}, 124(40): 11989--11996 (2002).
458  
459 + \bibitem{Frenkel:2000p2400}
460 + A.~Frenkel, V.~Machavariani, A.~Rubshtein, Y.~Rosenberg, A.~Voronel and
461 +  E.~Stern, Local structure of disordered au-cu and au-ag alloys. {\em Phys.
462 +  Rev. B\/}, 62(14): 9364--9371 (Jan 2000).
463 +
464 + \bibitem{Hodak:2000rb}
465 + J.~H. Hodak, A.~Henglein, M.~Giersig and G.~V. Hartland, Laser-induced
466 +  inter-diffusion in {A}u{A}g core-shell nanoparticles. {\em J. Phys. Chem.
467 +  B\/}, 104: 11708 -- 11718 (2000).
468 +
469 + \bibitem{HENGLEIN:1999p2419}
470 + A.~Henglein, Radiolytic preparation of ultrafine colloidal gold particles in
471 +  aqueous solution: Optical spectrum, controlled growth, and some chemical
472 +  reactions. {\em Langmuir\/}, 15(20): 6738--6744 (Jan 1999).
473 +
474 + \bibitem{HengleinA._la981278w}
475 + A.~Henglein and D.~Meisel, Radiolytic control of the size of colloidal gold
476 +  nanoparticles. {\em Langmuir\/}, 14(26): 7392--7396 (1998).
477 +
478 + \bibitem{MULVANEY:1993p2409}
479 + P.~Mulvaney, M.~Giersig and A.~Henglein, Electrochemistry of multilayer
480 +  colloids - preparation and absorption-spectrum of gold-coated silver
481 +  particles. {\em J. Phys. Chem.\/}, 97(27): 7061--7064 (Jan 1993).
482 +
483 + \bibitem{Hodak:2000ek}
484 + J.~H. Hodak, A.~Henglein and G.~V. Hartland, Coherent excitation of acoustic
485 +  breathing modes in bimetallic core&#x2212;shell nanoparticles. {\em J. Phys.
486 +  Chem. B\/}, 104(21): 5053--5055 (2000).
487 +
488 + \bibitem{Link:1999p2468}
489 + S.~Link, Z.~Wang and M.~El-Sayed, Alloy formation of gold-silver nanoparticles
490 +  and the dependence of the plasmon absorption on their composition (Jan 1999).
491 +
492 + \bibitem{JOHNSON:1989p2479}
493 + R.~Johnson, Alloy models with the embedded-atom method. {\em Phys Rev B\/},
494 +  39(17): 12554--12559 (Jan 1989).
495 +
496 + \bibitem{Kohlrausch:1863zv}
497 + F.~Kohlrausch. {\em Pogg. Ann. Physik\/}, 119: 352 (1863).
498 +
499 + \bibitem{Williams:1970fk}
500 + G.~Williams and D.~C. Watts, Non-symmeric dielectric relaxation behaviour
501 +  arising from a simple empirical decay function. {\em Trans. Faraday Soc.\/},
502 +  66: 80--85 (1970).
503 +
504 + \bibitem{Vardeman-II:2001jn}
505 + C.~F. {Vardeman II} and J.~D. Gezelter, Comparing models for diffusion in
506 +  supercooled liquids: The eutectic composition of the {A}g-{C}u alloy. {\em J.
507 +  Phys. Chem. A\/}, 105(12): 2568 (2001).
508 +
509 + \bibitem{Tu:1992uq}
510 + K.~N. Tu and J.~W. Mayer, {\em Electronic Thin Film Science\/}. Macmillian: New
511 +  York (1992).
512 +
513 + \bibitem{el-sayed01}
514 + S.~Link and M.~A. El-Sayed, Spectroscopic determination of the melting energy
515 +  of a gold nanorod. {\em J. Chem. Phys.\/}, 114: 2362--2368 (2001).
516 +
517 + \bibitem{el-sayed00}
518 + S.~Link, Z.~L. Wang and M.~A. El-Sayed, How does a gold nanorod melt? {\em J.
519 +  Phys. Chem. B\/}, 104: 7867--7870 (2000).
520 +
521   \bibitem{delfatti99}
522   N.~{Del Fatti}, C.~Voisin, F.~Chevy, F.~Vallee and C.~Flytzanis, Coherent
523 <  acoustic mode oscillation and damping in silver nanoparticles. 110:
524 <  11484--11487 (1999).
523 >  acoustic mode oscillation and damping in silver nanoparticles. {\em J. Chem.
524 >  Phys.\/}, 110: 11484--11487 (1999).
525  
526 + \bibitem{hartland02a}
527 + G.~V. Hartland, Coherent vibrational motion in metal particles: Determination
528 +  of the vibrational amplitude and excitation mechanism. {\em J. Chem.
529 +  Phys.\/}, 116: 8048--8055 (2002).
530 +
531   \bibitem{henglein99}
532   J.~H. Hodak, A.~Henglein and G.~V. Hartland, Size dependent properties of au
533    particles: Coherent excitation and dephasing of acoustic vibrational modes.
534 <  111: 8613--8621 (1999).
534 >  {\em J. Chem. Phys.\/}, 111: 8613--8621 (1999).
535  
347 \bibitem{hartland02a}
348 G.~V. Hartland, Coherent vibrational motion in metal particles: Determination
349  of the vibrational amplitude and excitation mechanism. 116: 8048--8055
350  (2002).
351
536   \bibitem{hartland02c}
537   J.~E. Sader, G.~V. Hartland and P.~Mulvaney, Theory of acoustic breathing modes
538 <  of core-shell nanoparticles. 106: 1399--1402 (2002).
538 >  of core-shell nanoparticles. {\em J. Phys. Chem. B\/}, 106: 1399--1402
539 >  (2002).
540  
541   \bibitem{HuM._jp020581+}
542   M.~Hu and G.~Hartland, Heat dissipation for {A}u particles in aqueous solution:
543 <  Relaxation time versus size. {\em Journal of Physical Chemistry B\/},
544 <  106(28): 7029--7033 (2002).
543 >  Relaxation time versus size. {\em J. Phys. Chem. B\/}, 106(28): 7029--7033
544 >  (2002).
545  
546   \bibitem{hartland02d}
547   M.~Hu and G.~V. Hartland, Photophysics of metal nanoparticles: Heat dissipation
548    and coherent excitation of phonon modes. {\em Proceeding of SPIE\/}, 4803
549    (July 2002).
550  
366 \bibitem{Simon2001}
367 D.~T. Simon and M.~R. Geller, Electron-phonon dynamics in an ensemble of nearly
368  isolated nanoparticles. 64: 115412 (2001).
369
551   \bibitem{HartlandG.V._jp0276092}
552   G.~Hartland, M.~Hu and J.~Sader, Softening of the symmetric breathing mode in
553 <  gold particles by laser-induced heating. {\em Journal of Physical Chemistry
554 <  B\/}, 107(30): 7472--7478 (2003).
553 >  gold particles by laser-induced heating. {\em J. Phys. Chem. B\/}, 107(30):
554 >  7472--7478 (2003).
555  
556 + \bibitem{Simon2001}
557 + D.~T. Simon and M.~R. Geller, Electron-phonon dynamics in an ensemble of nearly
558 +  isolated nanoparticles. {\em Phys. Rev. B\/}, 64: 115412 (2001).
559 +
560   \bibitem{Hartland00}
561   J.~H. Hodak, A.~Henglein and G.~V. Hartland, Coherent excitation of acoustic
562 <  breathing modes in bimetallic core-shell nanoparticles. 104: 5053--5055
563 <  (2000).
562 >  breathing modes in bimetallic core-shell nanoparticles. {\em J. Chem.
563 >  Phys\/}, 104: 5053--5055 (2000).
564  
565   \bibitem{Voter:87}
566   A.~Voter and S.~Chen, Accurate interatomic potentials for ni, al, and ni3al.
# Line 386 | Line 571 | S.~J. Plimpton and B.~A. Hendrickson, Parallel molecul
571    embedded atom method. {\em MRS Proceedings\/}, 291: 37 (1993).
572  
573   \bibitem{hoover85}
574 < W.~G. Hoover, Canonical dynamics: Equilibrium phase-space distributions. 31:
575 <  1695 (1985).
574 > W.~G. Hoover, Canonical dynamics: Equilibrium phase-space distributions. {\em
575 >  Phys. Rev. A\/}, 31: 1695 (1985).
576  
392 \bibitem{barber96quickhull}
393 C.~B. Barber, D.~P. Dobkin and H.~Huhdanpaa, The quickhull algorithm for convex
394  hulls. {\em ACM Transactions on Mathematical Software\/}, 22(4): 469--483
395  (1996).
396
577   \bibitem{qhull}
578   Qhull (1993), software library is available from the National Science and
579    Technology Research Center for Computation and Visualization of Geometric
580    Structures (The Geometry Center), University of Minnesota. {\tt
581    http://www.geom.umn.edu/software/qhull/}.
582  
583 + \bibitem{barber96quickhull}
584 + C.~B. Barber, D.~P. Dobkin and H.~Huhdanpaa, The quickhull algorithm for convex
585 +  hulls. {\em ACM Transactions on Mathematical Software\/}, 22(4): 469--483
586 +  (1996).
587 +
588   \bibitem{BernePecora}
589   B.~J. Berne and R.~Pecora, {\em Dynamic Light Scattering\/}. Dover
590    Publications, Inc., Mineola, New York (2000).
# Line 414 | Line 599 | G.~Cerullo, S.~D. Silvestri and U.~Banin, Size-depende
599  
600   \bibitem{Cerullo1999}
601   G.~Cerullo, S.~D. Silvestri and U.~Banin, Size-dependent dynamics of coherent
602 <  acoustic phonons in nanocrystal quantum dots. 60: 1928--1932 (1999).
602 >  acoustic phonons in nanocrystal quantum dots. {\em Phys. Rev. B\/}, 60:
603 >  1928--1932 (1999).
604  
605   \bibitem{Iida1988}
606   T.~Iida and R.~I.~L. Guthrie, {\em The Physical Properties of Liquid Metals\/}.
607    Clarendon Press, Oxford (1988).
608  
423 \bibitem{West:2003fk}
424 J.~West and N.~Halas, Engineered nanomaterials for biophotonics applications:
425  Improving sensing, imaging, and therapeutics (2003), Annu. Rev. Biomed. Eng.
426
609   \bibitem{Hu:2006lr}
610   M.~Hu, J.~Chen, Z.-Y. Li, L.~Au, G.~V. Hartland, X.~Li, M.~Marquez and Y.~Xia,
611    Gold nanostructures: engineering their plasmonic properties for biomedical
612    applications (2006), Chem. Soc. Rev.
613  
614 + \bibitem{West:2003fk}
615 + J.~West and N.~Halas, Engineered nanomaterials for biophotonics applications:
616 +  Improving sensing, imaging, and therapeutics (2003), Annu. Rev. Biomed. Eng.
617 +
618   \bibitem{Dick:2002qy}
619   K.~Dick, T.~Dhanasekaran, Z.~Zhang and D.~Meisel, Size-dependent melting of
620    silica-encapsulated gold nanoparticles. {\em J. Amer. Chem. Soc.\/}, 124:
621    2312--2317 (2002).
622  
437 \bibitem{Mafune01}
438 F.~Mafune, J.~Kohno, Y.~Takeda and T.~Kondow, Dissociation and aggregation of
439  gold nanoparticles under laser irradiation. {\em J. Phys. Chem. B\/},
440  105(38): 9050--9056 (Sep 2001).
441
623   \bibitem{Link:2000lr}
624   S.~Link and M.~A. El-Sayed, Shape and size dependence of radiative,
625    non-radiative and photothermal properties of gold nanocrystals. {\em
626    International Reviews in Physical Chemistry\/}, 19(3): 409--453 (2000).
627  
628 + \bibitem{Mafune01}
629 + F.~Mafune, J.~Kohno, Y.~Takeda and T.~Kondow, Dissociation and aggregation of
630 +  gold nanoparticles under laser irradiation. {\em J. Phys. Chem. B\/},
631 +  105(38): 9050--9056 (Sep 2001).
632 +
633   \bibitem{Plech:2003yq}
634   A.~Plech, S.~Kurbitz, K.~Berg, H.~Graener, G.~Berg, S.~Gresillon, M.~Kaempfe,
635    J.~Feldmann, M.~Wulff and G.~von Plessen, Time-resolved x-ray diffraction on
# Line 460 | Line 646 | A.~Plech, R.~Cerna, V.~Kotaidis, F.~Hudert, A.~Bartels
646    surface phase transition of supported gold nanoparticles. {\em Nano Lett.\/},
647    7: 1026--1031 (2007).
648  
463 \bibitem{Hodak:2000rb}
464 J.~H. Hodak, A.~Henglein, M.~Giersig and G.~V. Hartland, Laser-induced
465  inter-diffusion in {A}u{A}g core-shell nanoparticles. {\em J. Phys. Chem.
466  B\/}, 104: 11708 -- 11718 (2000).
467
649   \bibitem{Hartland:2003lr}
650   G.~Hartland, S.~Guillaudeu and J.~Hodak, Laser-induced alloying in metal
651    nanoparticles: Controlling spectral properties with light (2003), Molecules
# Line 487 | Line 668 | C.~Vardeman, P.~Conforti, M.~Sprague and J.~Gezelter,
668  
669   \bibitem{VardemanC.F._jp051575r}
670   C.~Vardeman, P.~Conforti, M.~Sprague and J.~Gezelter, Breathing mode dynamics
671 <  and elastic properties of gold nanoparticles. {\em Journal of Physical
672 <  Chemistry B\/}, 109(35): 16695--16699 (2005).
492 <
493 < \bibitem{Greer:1995qy}
494 < A.~L. Greer, Metallic glasses. {\em Science\/}, 267(5206): 1947--1953 (mar
495 <  1995).
671 >  and elastic properties of gold nanoparticles. {\em J. Phys. Chem. B\/},
672 >  109(35): 16695--16699 (2005).
673  
497 \bibitem{Vardeman-II:2001jn}
498 C.~F. {Vardeman II} and J.~D. Gezelter, Comparing models for diffusion in
499  supercooled liquids: The eutectic composition of the {A}g-{C}u alloy. {\em J.
500  Phys. Chem. A\/}, 105(12): 2568 (2001).
501
674   \bibitem{Massalski:1986rt}
675   T.~B. Massalski, J.~L. Murray, L.~H. Bennett and H.~Baker, {\em Binary alloy
676    phase diagrams\/}. American Society for Metals, Metals Park, Ohio (1986).
# Line 509 | Line 681 | R.~Najafabadi, D.~J. Srolovitz, E.~Ma and M.~Atzmon, T
681  
682   \bibitem{najafabadi:3144}
683   R.~Najafabadi, D.~J. Srolovitz, E.~Ma and M.~Atzmon, Thermodynamic properties
684 <  of metastable ag-cu alloys. {\em Journal of Applied Physics\/}, 74(5):
513 <  3144--3149 (1993).
684 >  of metastable ag-cu alloys. {\em J. Appl. Phys.\/}, 74(5): 3144--3149 (1993).
685  
515 \bibitem{sheng:184203}
516 H.~W. Sheng, J.~H. He and E.~Ma, Molecular dynamics simulation studies of
517  atomic-level structures in rapidly quenched ag-cu nonequilibrium alloys. {\em
518  Phys. Rev. B\/}, 65(18): 184203 (2002).
519
686   \bibitem{Malyavantham:2004cu}
687   G.~Malyavantham, D.~T. O'Brien, M.~F. Becker, J.~W. Keto and D.~Kovar, Au-cu
688    nanoparticles produced by laser ablation of mixtures of au and cu
689 <  microparticles. {\em Journal of Nanoparticle Research\/}, 6(6): 661 --664
524 <  (2004).
689 >  microparticles. {\em J. Nanopart. Res.\/}, 6(6): 661 --664 (2004).
690  
691   \bibitem{Kim:2003lv}
692   M.~Kim, H.~Na, K.~C. Lee, E.~A. Yoo and M.~Lee, Preperation and
# Line 531 | Line 696 | G.~De, M.~Gusso, L.~Tapfer, M.~Catalano, F.~Gonella, G
696   \bibitem{De:1996ta}
697   G.~De, M.~Gusso, L.~Tapfer, M.~Catalano, F.~Gonella, G.~Mattei, P.~Mazzoldi and
698    G.~Battaglin, Annealing behavior of silver, copper, and silver--copper
699 <  nanoclusters in a silica matrix synthesized by the sol-gel technique. {\em
700 <  Journal of Applied Physics\/}, 80(12): 6734--6739 (1996).
699 >  nanoclusters in a silica matrix synthesized by the sol-gel technique. {\em J.
700 >  Appl. Phys.\/}, 80(12): 6734--6739 (1996).
701  
702   \bibitem{Magruder:1994rg}
703   R.~H. Magruder, III, D.~H. Osborne, Jr. and R.~A. Zuhr, Non-linear optical
704 <  properties of nanometer dimension ag---cu particles in silica formed by
705 <  sequential ion implantation (1994).
704 >  properties of nanometer dimension {A}g-{C}u particles in silica formed by
705 >  sequential ion implantation. {\em J. Non-Cryst. Solids\/}, 176(2-3): 299
706 >  --303 (1994).
707  
708   \bibitem{gonzalo:5163}
709   J.~Gonzalo, D.~Babonneau, C.~N. Afonso and J.-P. Barnes, Optical response of
710 <  mixed ag-cu nanocrystals produced by pulsed laser deposition. {\em Journal of
711 <  Applied Physics\/}, 96(9): 5163--5168 (2004).
710 >  mixed ag-cu nanocrystals produced by pulsed laser deposition. {\em J. Appl.
711 >  Phys.\/}, 96(9): 5163--5168 (2004).
712  
713   \bibitem{HengleinA._jp992950g}
714   A.~Henglein, Formation and absorption spectrum of copper nanoparticles from the
715 <  radiolytic reduction of cu(cn)2-. {\em Journal of Physical Chemistry B\/},
716 <  104(6): 1206--1211 (2000).
715 >  radiolytic reduction of {C}u({CN})2-. {\em J. Phys. Chem. B\/}, 104(6):
716 >  1206--1211 (2000).
717  
718   \bibitem{Kob:1999fk}
719   W.~Kob, Computer simulations of supercooled liquids and glasses. {\em Journal
# Line 579 | Line 745 | Y.~Qi, T.~Cagin, W.~L. Johnson and W.~A.~G. III, Melti
745  
746   \bibitem{Qi:2001nn}
747   Y.~Qi, T.~Cagin, W.~L. Johnson and W.~A.~G. III, Melting and crystallization in
748 <  ni nanoclusters: The mesoscale regime. {\em The Journal of Chemical
749 <  Physics\/}, 115(1): 385--394 (2001).
748 >  ni nanoclusters: The mesoscale regime. {\em J. Chem. Phys.\/}, 115(1):
749 >  385--394 (2001).
750  
751   \bibitem{Strandburg:1992qy}
752   K.~J. Strandburg, {\em Bond-orientational order in condensed matter systems\/}.
# Line 607 | Line 773 | H.~Jiang, K.~sik Moon and C.~P. Wong, Synthesis of ag-
773    Processes, Properties and Interfaces, 2005. Proceedings. International
774    Symposium on\/}, pages 173--177 (2005).
775  
610 \bibitem{BROOKS:1985kx}
611 C.~BROOKS, A.~BRUNGER and M.~KARPLUS, Active-site dynamics in protein molecules
612  - a stochastic boundary molecular-dynamics approach. {\em Biopolymers\/}, 24:
613  843--865 (1985).
614
615 \bibitem{BROOKS:1983uq}
616 C.~BROOKS and M.~KARPLUS, Deformable stochastic boundaries in
617  molecular-dynamics. {\em Journal of Chemical Physics\/}, 79: 6312--6325
618  (1983).
619
620 \bibitem{BRUNGER:1984fj}
621 A.~BRUNGER, C.~BROOKS and M.~KARPLUS, Stochastic boundary-conditions for
622  molecular-dynamics simulations of st2 water. {\em Chemical Physics
623  Letters\/}, 105: 495--500 (1984).
624
776   \bibitem{kotaidis:184702}
777   V.~Kotaidis, C.~Dahmen, G.~von Plessen, F.~Springer and A.~Plech, Excitation of
778    nanoscale vapor bubbles at the surface of gold nanoparticles in water. {\em
779 <  The Journal of Chemical Physics\/}, 124(18): 184702 (2006).
779 >  J. Chem. Phys.\/}, 124(18): 184702 (2006).
780  
630 \bibitem{Sankaranarayanan:2005lr}
631 S.~Sankaranarayanan, V.~Bhethanabotla and B.~Joseph, Molecular dynamics
632  simulation study of the melting of pd-pt nanoclusters. {\em Phys. Rev. B\/},
633  71 (2005).
634
635 \bibitem{Chui:2003fk}
636 Y.~Chui and K.~Chan, Analyses of surface and core atoms in a platinum
637  nanoparticle. {\em Phys. Chem. Chem. Phys.\/}, 5: 2869--2874 (2003).
638
639 \bibitem{Wang:2005qy}
640 G.~Wang, M.~Van~Hove, P.~Ross and M.~Baskes, Surface structures of
641  cubo-octahedral pt-mo catalyst nanoparticles from monte carlo simulations.
642  {\em J. Phys. Chem. B\/}, 109: 11683--11692 (2005).
643
644 \bibitem{Medasani:2007uq}
645 B.~Medasani, Y.~H. Park and I.~Vasiliev, Theoretical study of the surface
646  energy, stress, and lattice contraction of silver nanoparticles. {\em Phys.
647  Rev. B\/}, 75 (2007).
648
649 \bibitem{PhysRevB.59.3527}
650 Y.~Qi, T.~\c{C}a\v{g}in, Y.~Kimura and W.~A. {Goddard III}, Molecular-dynamics
651  simulations of glass formation and crystallization in binary liquid
652  metals:\quad{}{C}u-{A}g and {C}u-{N}i. {\em Phys. Rev. B\/}, 59(5):
653  3527--3533 (Feb 1999).
654
655 \bibitem{MURRAY:1984lr}
656 J.~L. Murray, Calculations of stable and metastable equilibrium diagrams of the
657  ag-cu and cd-zn systems. {\em Metall Trans\/}, 15(2): 261--268 (1984).
658
781   \bibitem{19521106}
782   F.~C. Frank, Supercooling of liquids. {\em Proceedings of the Royal Society of
783    London. Series A, Mathematical and Physical Sciences\/}, 215(1120): 43--46
# Line 680 | Line 802 | B.~W. van~de Waal, On the origin of second-peak splitt
802  
803   \bibitem{Waal:1995lr}
804   B.~W. van~de Waal, On the origin of second-peak splitting in the static
805 <  structure factor of metallic glasses. {\em Journal of Non-Crystalline
806 <  Solids\/}, 189(1-2): 118--128 (1995).
805 >  structure factor of metallic glasses. {\em J Non-Cryst. Solids\/}, 189(1-2):
806 >  118--128 (1995).
807  
808   \bibitem{HoneycuttJ.Dana_j100303a014}
809   J.~D. Honeycutt and H.~C. Andersen, Molecular dynamics study of melting and
810 <  freezing of small lennard-jones clusters. {\em Journal of Physical
811 <  Chemistry\/}, 91(19): 4950--4963 (1987).
810 >  freezing of small lennard-jones clusters. {\em J. Phys. Chem.\/}, 91(19):
811 >  4950--4963 (1987).
812  
691 \bibitem{Iwamatsu:2007lr}
692 M.~Iwamatsu, Icosahedral binary clusters of glass-forming lennard-jones binary
693  alloy. {\em Materials Science and Engineering: A\/}, 449-451: 975--978
694  (2007).
695
813   \bibitem{hsu:4974}
814   C.~S. Hsu and A.~Rahman, Interaction potentials and their effect on crystal
815 <  nucleation and symmetry. {\em The Journal of Chemical Physics\/}, 71(12):
699 <  4974--4986 (1979).
815 >  nucleation and symmetry. {\em J. Chem. Phys.\/}, 71(12): 4974--4986 (1979).
816  
817 + \bibitem{Iwamatsu:2007lr}
818 + M.~Iwamatsu, Icosahedral binary clusters of glass-forming lennard-jones binary
819 +  alloy. {\em Mat. Sci. Eng. A\/}, 449-451: 975--978 (2007).
820 +
821   \bibitem{nose:1803}
822   S.~Nose and F.~Yonezawa, Isothermal--isobaric computer simulations of melting
823 <  and crystallization of a lennard-jones system. {\em The Journal of Chemical
824 <  Physics\/}, 84(3): 1803--1814 (1986).
823 >  and crystallization of a lennard-jones system. {\em J. Chem. Phys.\/}, 84(3):
824 >  1803--1814 (1986).
825  
826   \bibitem{duijneveldt:4655}
827   J.~S. van Duijneveldt and D.~Frenkel, Computer simulation study of free energy
828 <  barriers in crystal nucleation. {\em The Journal of Chemical Physics\/},
829 <  96(6): 4655--4668 (1992).
828 >  barriers in crystal nucleation. {\em J. Chem. Phys.\/}, 96(6): 4655--4668
829 >  (1992).
830  
831   \bibitem{Zhu:1997lr}
832   L.~Zhu and A.~E. DePristo, Microstructures of bimetallic clusters: Bond order
833 <  metal simulator for disordered alloys. {\em Journal of Catalysis\/}, 167(2):
834 <  400--407 (1997).
833 >  metal simulator for disordered alloys. {\em J. Catal.\/}, 167(2): 400--407
834 >  (1997).
835  
836 + \bibitem{HuangS.-P._jp0204206}
837 + S.-P. Huang and P.~Balbuena, Melting of bimetallic {C}u-{N}i nanoclusters. {\em
838 +  J. Phys. Chem. B\/}, 106(29): 7225--7236 (2002).
839 +
840   \bibitem{MainardiD.S._la0014306}
841   D.~Mainardi and P.~Balbuena, Monte carlo simulation of {C}u-{N}i nanoclusters:
842    Surface segregation studies. {\em Langmuir\/}, 17(6): 2047--2050 (2001).
843  
720 \bibitem{HuangS.-P._jp0204206}
721 S.-P. Huang and P.~Balbuena, Melting of bimetallic {C}u-{N}i nanoclusters. {\em
722  Journal of Physical Chemistry B\/}, 106(29): 7225--7236 (2002).
723
844   \bibitem{Ramirez-Caballero:2006lr}
845   G.~E. Ramirez~Caballero and P.~B. Balbuena, Surface segregation phenomena in
846 <  {P}t{P}d nanoparticles: dependence on nanocluster size. {\em Molecular
847 <  Simulation\/}, 32(3/4): 297--303 (2006).
846 >  {P}t{P}d nanoparticles: dependence on nanocluster size. {\em Mol. Sim.\/},
847 >  32(3/4): 297--303 (2006).
848  
849 + \bibitem{0953-8984-18-39-037}
850 + S.~E. Baltazar, A.~H. Romero, J.~L. Rodr\'{i}guez-L\'{o}pez and
851 +  R.~Marto\&ncaron;\'{a}k, Finite single wall capped carbon nanotubes under
852 +  hydrostatic pressure. {\em J. Phys.: Condens. Matter\/}, 18(39): 9119--9128
853 +  (2006).
854 +
855 + \bibitem{Baltazar:2006lr}
856 + S.~E. Baltazar, A.~H. Romero, J.~L. Rodriguez-Lopez, H.~Terrones and
857 +  R.~Martonak, Assessment of isobaric-isothermal (npt) simulations for finite
858 +  systems. {\em Comp. Mat. Sci.\/}, 37(4): 526--536 (2006).
859 +
860 + \bibitem{calvo:125414}
861 + F.~Calvo and J.~P.~K. Doye, Pressure effects on the structure of nanoclusters.
862 +  {\em Phys. Rev. B\/}, 69(12): 125414 (2004).
863 +
864 + \bibitem{Kohanoff:2005}
865 + J.~Kohanoff, A.~Caro and M.~Finnis, An isothermal-isobaric langevin thermostat
866 +  for simulating nanoparticles under pressure: Application to {A}u clusters.
867 +  {\em Chem. Phys. Chem.\/}, 6(9): 1848 -- 1852 (2005).
868 +
869 + \bibitem{0953-8984-14-26-101}
870 + D.~Y. Sun and X.~G. Gong, A new constant-pressure molecular dynamics method for
871 +  finite systems. {\em J. Phys.: Condens. Matter\/}, 14(26): L487--L493 (2002).
872 +
873 + \bibitem{SpohrE._j100353a043}
874 + E.~Spohr, Computer simulation of the water/platinum interface. {\em J. Phys.
875 +  Chem.\/}, 93(16): 6171--6180 (1989).
876 +
877 + \bibitem{Spohr:1995lr}
878 + E.~Spohr, Ion adsorption on metal surfaces. the role of water-metal
879 +  interactions. {\em J. Mol. Liq.\/}, 64(1-2): 91--100 (1995).
880 +
881 + \bibitem{DouY._jp003913o}
882 + Y.~Dou, L.~Zhigilei, N.~Winograd and B.~Garrison, Explosive boiling of water
883 +  films adjacent to heated surfaces: A microscopic description. {\em J. Phys.
884 +  Chem. A\/}, 105(12): 2748--2755 (2001).
885 +
886 + \bibitem{Meng:2004p151}
887 + S.~Meng, E.~Wang and S.~Gao, Water adsorption on metal surfaces: A general
888 +  picture from density functional theory studies. {\em Phys. Rev. B\/}, 69:
889 +  195404 (Jan 2004).
890 +
891 + \bibitem{Meng:2003p289}
892 + S.~Meng, E.~Wang and S.~Gao, A molecular picture of hydrophilic and hydrophobic
893 +  interactions from ab initio density functional theory calculations. {\em J.
894 +  Chem. Phys.\/}, 119: 7617--7620 (Jan 2003).
895 +
896 + \bibitem{liu96:new_model}
897 + Y.~Liu and T.~Ichiye, Soft sticky dipole potential for liquid water: a new
898 +  model. {\em J. Phys. Chem.\/}, 100: 2723--2730 (1996).
899 +
900 + \bibitem{Bratko85}
901 + D.~Bratko, L.~Blum and A.~Luzar, A simple model for the intermolecular
902 +  potential of water. {\em J. Chem. Phys.\/}, 83(12): 6367--6370 (1985).
903 +
904 + \bibitem{Bratko95}
905 + L.~Blum, F.~Vericat and D.~Bratko, Towards an analytical model of water: The
906 +  octupolar model. {\em J. Phys. Chem.\/}, 102(3): 1461--1462 (1995).
907 +
908 + \bibitem{fennell04}
909 + C.~J. Fennell and J.~D. Gezelter, On the structural and transport properties of
910 +  the soft sticky dipole(ssd) and related single point water models. {\em J.
911 +  Chem. Phys.\/}, 120(19): 9175--9184 (2004).
912 +
913 + \bibitem{Slater}
914 + J.~C. Slater, {\em Quantum Theory of Molecules and Solids Vol. 4: The
915 +  Self-Consistent Field for Molecules and Solids\/}. McGraw-Hill, New York
916 +  (1974).
917 +
918 + \bibitem{Perdew1991}
919 + J.~P. Perdew, {\em Unified Theory of Exchange and Correlation Beyond the Local
920 +  Density Approximation\/}, page~11. Electronic Structure of Solids, Akademie
921 +  Verlag, Berlin (1991).
922 +
923 + \bibitem{PERDEW:1992xi}
924 + J.~Perdew, J.~Chevary, S.~Vosko, K.~Jackson, P.~MR, D.~Singh and C.~Fiolhais,
925 +  Atoms, molecules, solids, and surfaces - applications of the generalized
926 +  gradient approximation for exchange and correlation (1992), Physical Review
927 +  B.
928 +
929 + \bibitem{HAY:1985xt}
930 + P.~Hay and W.~Wadt, Abinitio effective core potentials for molecular
931 +  calculations - potentials for k to au including the outermost core orbitals.
932 +  {\em J. Chem. Phys.\/}, 82: 299--310 (1985).
933 +
934 + \bibitem{LACV3P}
935 + The lacv3p basis set is a triple-zeta contraction of the lacvp basis set
936 +  developed and tested at schr{\"o}dinger, inc.
937 +
938 + \bibitem{MCLEAN:1980xi}
939 + A.~Mclean and G.~Chandler, Contracted gaussian-basis sets for molecular
940 +  calculations .1. 2nd row atoms, z=11-18. {\em J. Chem. Phys.\/}, 72:
941 +  5639--5648 (1980).
942 +
943 + \bibitem{KRISHNAN:1980aw}
944 + R.~Krishnan, B.~JS, R.~Seeger and J.~Pople, Self-consistent molecular-orbital
945 +  methods .20. basis set for correlated wave-functions. {\em J. Chem. Phys.\/},
946 +  72: 650--654 (1980).
947 +
948 + \bibitem{CLARK:1983sb}
949 + T.~Clark, J.~Chandrasekhar, G.~Spitznagel and P.~Schleyer, Efficient diffuse
950 +  function-augmented basis-sets for anion calculations .3. the 3-21+g basis set
951 +  for 1st-row elements, li-f. {\em J. Comp. Chem.\/}, 4: 294--301 (1983).
952 +
953 + \bibitem{FRISCH:1984dp}
954 + M.~Frisch, J.~Pople and J.~Binkley, Self-consistent molecular-orbital methods
955 +  .25. supplementary functions for gaussian-basis sets. {\em J. Chem. Phys.\/},
956 +  80: 3265--3269 (1984).
957 +
958 + \bibitem{Kresse:1996zm}
959 + G.~Kresse and J.~Furthm{\"u}ller, Efficiency of ab-initio total energy
960 +  calculations for metals and semiconductors using a plane-wave basis set. {\em
961 +  Computational Materials Science\/}, 6(1): 15--50 (1996).
962 +
963 + \bibitem{PhysRevB.50.17953}
964 + P.~E. Bl\"ochl, Projector augmented-wave method. {\em Phys. Rev. B\/}, 50(24):
965 +  17953--17979 (Dec 1994).
966 +
967 + \bibitem{PhysRevB.59.1758}
968 + G.~Kresse and D.~Joubert, From ultrasoft pseudopotentials to the projector
969 +  augmented-wave method. {\em Phys. Rev. B\/}, 59(3): 1758--1775 (Jan 1999).
970 +
971 + \bibitem{PhysRevB.45.13244}
972 + J.~P. Perdew and Y.~Wang, Accurate and simple analytic representation of the
973 +  electron-gas correlation energy. {\em Phys. Rev. B\/}, 45(23): 13244--13249
974 +  (Jun 1992).
975 +
976 + \bibitem{PhysRevB.46.6671}
977 + J.~P. Perdew, J.~A. Chevary, S.~H. Vosko, K.~A. Jackson, M.~R. Pederson, D.~J.
978 +  Singh and C.~Fiolhais, Atoms, molecules, solids, and surfaces: Applications
979 +  of the generalized gradient approximation for exchange and correlation. {\em
980 +  Phys. Rev. B\/}, 46(11): 6671--6687 (Sep 1992).
981 +
982 + \bibitem{PhysRevB.13.5188}
983 + H.~J. Monkhorst and J.~D. Pack, Special points for brillouin-zone integrations.
984 +  {\em Phys. Rev. B\/}, 13(12): 5188--5192 (Jun 1976).
985 +
986   \end{thebibliography}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines