| 1 |
chuckv |
3483 |
\begin{thebibliography}{100} |
| 2 |
|
|
|
| 3 |
|
|
\bibitem{DAW:1993p1640} |
| 4 |
|
|
M.~DAW, S.~FOILES and M.~BASKES, The embedded-atom method - a review of theory |
| 5 |
|
|
and applications (Jan 1993). |
| 6 |
|
|
|
| 7 |
|
|
\bibitem{kimura-quantum} |
| 8 |
|
|
Y.~Kimura and T.~Cagin, The quantum sutton-chen manybody potential for |
| 9 |
|
|
properties of fcc metals. |
| 10 |
|
|
|
| 11 |
|
|
\bibitem{Chen90} |
| 12 |
|
|
A.~P. Sutton and J.~Chen, Long-range finnis sinclair potentials. {\em Phil. |
| 13 |
|
|
Mag. Lett.\/}, 61: 139--146 (1990). |
| 14 |
|
|
|
| 15 |
|
|
\bibitem{wolde:9932} |
| 16 |
|
|
P.~R. ten Wolde, M.~J. Ruiz-Montero and D.~Frenkel, Numerical calculation of |
| 17 |
|
|
the rate of crystal nucleation in a lennard-jones system at moderate |
| 18 |
|
|
undercooling. {\em J. Chem. Phys.\/}, 104(24): 9932--9947 (1996). |
| 19 |
|
|
|
| 20 |
|
|
\bibitem{Allen87} |
| 21 |
|
|
M.~P. Allen and D.~J. Tildesley, {\em Computer Simulations of Liquids\/}. |
| 22 |
|
|
Oxford University Press, New York (1987). |
| 23 |
|
|
|
| 24 |
|
|
\bibitem{Frenkel02} |
| 25 |
|
|
D.~Frenkel and B.~Smit, {\em Understanding Molecular Simulation: |
| 26 |
|
|
\uppercase{F}rom Algorithms to Applications\/}. Academic Press, New York, |
| 27 |
|
|
second edition (2002). |
| 28 |
|
|
|
| 29 |
|
|
\bibitem{Leach01} |
| 30 |
|
|
A.~R. Leach, {\em Molecular Modeling: Principles and Applications\/}. Pearson |
| 31 |
|
|
Educated Limited, Harlow, England, second edition (2001). |
| 32 |
|
|
|
| 33 |
|
|
\bibitem{Meineke:2004uq} |
| 34 |
|
|
M.~A. Meineke, C.~F. Vardeman~II, T.~Lin, C.~J. Fennell and J.~D. Gezelter, |
| 35 |
|
|
{OOPSE:} an object-oriented parallel simulation engine for molecular |
| 36 |
|
|
dynamics. {\em J. Comp Chem\/}, 26(3): 252--271 (2005). |
| 37 |
|
|
|
| 38 |
|
|
\bibitem{Nieminen:1990hw} |
| 39 |
|
|
V.~Heine and J.~Hafnner, {\em Many-atom interactions in solids: proceedings of |
| 40 |
|
|
the international workshop, Pajulahti, Finland, June 5-9, 1989\/}, volume~48 |
| 41 |
|
|
of {\em Springer proceedings in physics\/}. Springer-Verlag, Berlin (1990). |
| 42 |
|
|
|
| 43 |
|
|
\bibitem{Ashcroft:1976zt} |
| 44 |
|
|
N.~W. Ashcroft and N.~D. Mermin, {\em Solid state physics\/}. Holt, Rinehart |
| 45 |
|
|
and Winston, New York (1976). |
| 46 |
|
|
|
| 47 |
|
|
\bibitem{Drude:1900p1479} |
| 48 |
|
|
P.~Drude, On the ionic theory of metals. {\em Phys Z\/}, 1: 161--165 (Jan |
| 49 |
|
|
1900). |
| 50 |
|
|
|
| 51 |
|
|
\bibitem{Drude:1900p1481} |
| 52 |
|
|
P.~Drude, On the electron theory of metals. {\em Ann Phys-Berlin\/}, 1(3): |
| 53 |
|
|
566--613 (Jan 1900). |
| 54 |
|
|
|
| 55 |
|
|
\bibitem{Kittel:1996fk} |
| 56 |
|
|
C.~Kittel, {\em Introduction to solid state physics\/}. Wiley, New York, 7th |
| 57 |
|
|
edition (1996). |
| 58 |
|
|
|
| 59 |
|
|
\bibitem{Egelstaff:1992yb} |
| 60 |
|
|
P.~A. Egelstaff, {\em An introduction to the liquid state\/}, volume~7. |
| 61 |
|
|
Clarendon Press, Oxford, second edition (1992). |
| 62 |
|
|
|
| 63 |
|
|
\bibitem{Nrskov:1980p1752} |
| 64 |
|
|
J.~K. N{\o}rskov and N.~D. Lang, Effective-medium theory of chemical binding: |
| 65 |
|
|
Application to chemisorption. {\em Phys Rev B\/}, 21(6): 2131--2136 (Mar |
| 66 |
|
|
1980). |
| 67 |
|
|
|
| 68 |
|
|
\bibitem{Nrskov:1982p1753} |
| 69 |
|
|
J.~K. N{\o}rskov, Covalent effects in the effective-medium theory of chemical |
| 70 |
|
|
binding: Hydrogen heats of solution in the 3 dmetals. {\em Phys Rev B\/}, |
| 71 |
|
|
26(6): 2875--2885 (Sep 1982). |
| 72 |
|
|
|
| 73 |
|
|
\bibitem{Stott:1980p1754} |
| 74 |
|
|
M.~J. Stott and E.~Zaremba, Quasiatoms: An approach to atoms in nonuniform |
| 75 |
|
|
electronic systems. {\em Phys Rev B\/}, 22(4): 1564--1583 (Aug 1980). |
| 76 |
|
|
|
| 77 |
|
|
\bibitem{Puska:1981p1755} |
| 78 |
|
|
M.~J. Puska and M.~Manninen, Atoms embedded in an electron gas: Immersion |
| 79 |
|
|
energies. {\em Phys Rev B\/}, 24(6): 3037--3047 (Sep 1981). |
| 80 |
|
|
|
| 81 |
|
|
\bibitem{Daw84} |
| 82 |
|
|
M.~S. Daw and M.~I. Baskes, Embedded-atom method: Derivation and application to |
| 83 |
|
|
impurities, surfaces, and other defects in metals. 29(12): 6443--6453 (1984). |
| 84 |
|
|
|
| 85 |
|
|
\bibitem{DAW:1983ht} |
| 86 |
|
|
M.~DAW and M.~BASKES, Semiempirical, quantum-mechanical calculation of hydrogen |
| 87 |
|
|
embrittlement in metals. {\em Physical Review Letters\/}, 50(17): 1285--1288 |
| 88 |
|
|
(1983). |
| 89 |
|
|
|
| 90 |
|
|
\bibitem{Hohenberg:1964bs} |
| 91 |
|
|
P.~Hohenberg and W.~Kohn, Inhomogeneous electron gas. {\em Phys. Rev.\/}, |
| 92 |
|
|
136(3B): B864--B871 (Nov 1964). |
| 93 |
|
|
|
| 94 |
|
|
\bibitem{DAW:1989p1673} |
| 95 |
|
|
M.~DAW, Model of metallic cohesion - the embedded-atom method. {\em Phys Rev |
| 96 |
|
|
B\/}, 39(11): 7441--7452 (Jan 1989). |
| 97 |
|
|
|
| 98 |
|
|
\bibitem{PhysRevB.33.7983} |
| 99 |
|
|
S.~M. Foiles, M.~I. Baskes and M.~S. Daw, Embedded-atom-method functions for |
| 100 |
|
|
the fcc metals {C}u, {A}g, {A}u, {N}i, {P}d, {P}t, and their alloys. {\em |
| 101 |
|
|
Phys. Rev. B\/}, 33(12): 7983--7991 (Jun 1986). |
| 102 |
|
|
|
| 103 |
|
|
\bibitem{Voter:95} |
| 104 |
|
|
A.~F. Voter, {\em Intermetallic Compounds: Principles and Practice\/}, |
| 105 |
|
|
volume~1, chapter~4, page~77. John Wiley and Sons Ltd (1995). |
| 106 |
|
|
|
| 107 |
|
|
\bibitem{Rose:1984rw} |
| 108 |
|
|
J.~H. Rose, J.~R. Smith, F.~Guinea and J.~Ferrante, Universal features of the |
| 109 |
|
|
equation of state of metals. {\em Phys. Rev. B\/}, 29(6): 2963--2969 (Mar |
| 110 |
|
|
1984). |
| 111 |
|
|
|
| 112 |
|
|
\bibitem{BASKES:1987p1743} |
| 113 |
|
|
M.~BASKES, Application of the embedded-atom method to covalent materials - a |
| 114 |
|
|
semiempirical potential for silicon. {\em Phys Rev Lett\/}, 59(23): |
| 115 |
|
|
2666--2669 (Jan 1987). |
| 116 |
|
|
|
| 117 |
|
|
\bibitem{BASKES:1989p1746} |
| 118 |
|
|
M.~BASKES, J.~NELSON and A.~WRIGHT, Semiempirical modified embedded-atom |
| 119 |
|
|
potentials for silicon and germanium. {\em Phys Rev B\/}, 40(9): 6085--6100 |
| 120 |
|
|
(Jan 1989). |
| 121 |
|
|
|
| 122 |
|
|
\bibitem{BASKES:1992p1735} |
| 123 |
|
|
M.~BASKES, Modified embedded-atom potentials for cubic materials and |
| 124 |
|
|
impurities. {\em Phys Rev B\/}, 46(5): 2727--2742 (Jan 1992). |
| 125 |
|
|
|
| 126 |
|
|
\bibitem{Finnis84} |
| 127 |
|
|
M.~W. Finnis and J.~E. Sinclair, A simple empirical n-body potential for |
| 128 |
|
|
transition-metals. {\em Phil. Mag. A\/}, 50: 45--55 (1984). |
| 129 |
|
|
|
| 130 |
|
|
\bibitem{Ercolessi88} |
| 131 |
|
|
F.~Ercolessi, M.~Parrinello and E.~Tosatti, Simulation of gold in the glue |
| 132 |
|
|
model. {\em Phil. Mag. A\/}, 58: 213--226 (1988). |
| 133 |
|
|
|
| 134 |
|
|
\bibitem{Qi99} |
| 135 |
|
|
Y.~Qi, T.~\c{C}a\v{g}in, Y.~Kimura and W.~A. {Goddard III}, Molecular-dynamics |
| 136 |
|
|
simulations of glass formation and crystallization in binary liquid metals: |
| 137 |
|
|
Cu-ag and cu-ni. 59(5): 3527--3533 (1999). |
| 138 |
|
|
|
| 139 |
|
|
\bibitem{Ercolessi02} |
| 140 |
|
|
U.~Tartaglino, E.~Tosatti, D.~Passerone and F.~Ercolessi, Bending strain-driven |
| 141 |
|
|
modification of surface resconstructions: Au(111). 65: 241406 (2002). |
| 142 |
|
|
|
| 143 |
|
|
\bibitem{Tolman:1938kl} |
| 144 |
|
|
R.~C. Tolman, {\em The Principles of Statistical Mechanics\/}. Oxford |
| 145 |
|
|
University Press, Inc., New York (1938). |
| 146 |
|
|
|
| 147 |
|
|
\bibitem{Goldstein:2001uf} |
| 148 |
|
|
H.~Goldstein, C.~Poole and J.~Safko, {\em Classical Mechanics\/}. Addison |
| 149 |
|
|
Wesley, San Francisco, third edition (2001). |
| 150 |
|
|
|
| 151 |
|
|
\bibitem{Pense92} |
| 152 |
|
|
A.~W. Pense, The decline and fall of the roman denarius. {\em Mat. Char.\/}, |
| 153 |
|
|
29: 213 (1992). |
| 154 |
|
|
|
| 155 |
|
|
\bibitem{duwez:1136} |
| 156 |
|
|
P.~Duwez, R.~H. Willens, W.~Klement and Jr, Continuous series of metastable |
| 157 |
|
|
solid solutions in silver-copper alloys. {\em Journal of Applied Physics\/}, |
| 158 |
|
|
31(6): 1136--1137 (1960). |
| 159 |
|
|
|
| 160 |
|
|
\bibitem{Peker93} |
| 161 |
|
|
A.~Peker and W.~L. Johnson, A highly processable metallic-glass - |
| 162 |
|
|
$\mbox{Zr}_{41.2}\mbox{Ti}_{13.8}\mbox{Cu}_{12.5}\mbox{Ni}_{10.0}\mbox{Be}_{% |
| 163 |
|
|
22.5}$. {\em Appl. Phys. Lett.\/}, 63: 2342--2344 (1993). |
| 164 |
|
|
|
| 165 |
|
|
\bibitem{Kob95a} |
| 166 |
|
|
W.~Kob and H.~C. Andersen, Testing mode-coupling theory for a supercooled |
| 167 |
|
|
binary lennard-jones mixtures: The van hove corraltion function. 51: |
| 168 |
|
|
4626--4641 (1995). |
| 169 |
|
|
|
| 170 |
|
|
\bibitem{Kob95b} |
| 171 |
|
|
W.~Kob and H.~C. Andersen, Testing mode-coupling theory for a supercooled |
| 172 |
|
|
binary lennard-jones mixtures. ii. intermediate scattering function and |
| 173 |
|
|
dynamic susceptibility. 52: 4134--4153 (1995). |
| 174 |
|
|
|
| 175 |
|
|
\bibitem{Stillinger98} |
| 176 |
|
|
S.~Sastry, P.~G. Debenedetti and F.~H. Stillinger, Signatures of distinct |
| 177 |
|
|
dynamical regimes in the energy landscape of a glass-forming liquid. {\em |
| 178 |
|
|
Nature\/}, 393: 554--557 (1998). |
| 179 |
|
|
|
| 180 |
|
|
\bibitem{Hansen86} |
| 181 |
|
|
J.~P. Hansen and I.~R. McDonald, {\em Theory of Simple Liquids\/}. Academic |
| 182 |
|
|
Press, London (1986). |
| 183 |
|
|
|
| 184 |
|
|
\bibitem{Gaukel98} |
| 185 |
|
|
C.~Gaukel and H.~R. Schober, Diffusion mechanisms in under-cooled binary metal |
| 186 |
|
|
liquids of $\mbox{Zr}_{67}\mbox{Cu}_{33}$. {\em Solid State Comm.\/}, 107: |
| 187 |
|
|
1--5 (1998). |
| 188 |
|
|
|
| 189 |
|
|
\bibitem{Rabani97} |
| 190 |
|
|
E.~Rabani, J.~D. Gezelter and B.~J. Berne, Calculating the hopping rate for |
| 191 |
|
|
self-diffusion on rough potential energy surfaces: Cage correlations. {\em J. |
| 192 |
|
|
Chem. Phys.\/}, 107: 6867--6876 (1997). |
| 193 |
|
|
|
| 194 |
|
|
\bibitem{Gezelter99} |
| 195 |
|
|
J.~D. Gezelter, E.~Rabani and B.~J. Berne, Methods for calculating the hopping |
| 196 |
|
|
rate for orientational and spatial diffusion in a molecular liquid: |
| 197 |
|
|
$\mbox{CS}_{2}$. 110: 3444 (1999). |
| 198 |
|
|
|
| 199 |
|
|
\bibitem{Rabani99} |
| 200 |
|
|
E.~Rabani, J.~D. Gezelter and B.~J. Berne, Direct observation of |
| 201 |
|
|
stretched-exponential relaxation in low-temperature lennard-jones systems |
| 202 |
|
|
using the cage correlation function. 82: 3649 (1999). |
| 203 |
|
|
|
| 204 |
|
|
\bibitem{Rabani2000} |
| 205 |
|
|
E.~Rabani, J.~D. Gezelter and B.~J. Berne, Reply to `comment on ``direct |
| 206 |
|
|
observation of stretched-exponential relaxation in low-temperature |
| 207 |
|
|
lennard-jones systems using th ecage correlation function'' '. 85: 467 |
| 208 |
|
|
(2000). |
| 209 |
|
|
|
| 210 |
|
|
\bibitem{Zwanzig83} |
| 211 |
|
|
R.~Zwanzig, On the relation between self-diffusion and viscosity of liquids. |
| 212 |
|
|
79: 4507--4508 (1983). |
| 213 |
|
|
|
| 214 |
|
|
\bibitem{Blumen83} |
| 215 |
|
|
A.~Blumen, J.~Klafter and G.~Zumofen, Recombination in amorphous materials as a |
| 216 |
|
|
continuous-time random-walk problem. {\em Phys. Rev. B\/}, 27: 3429--3435 |
| 217 |
|
|
(1983). |
| 218 |
|
|
|
| 219 |
|
|
\bibitem{Klafter94} |
| 220 |
|
|
J.~Klafter and G.~Zumofen, Probability distributions for continuous-time random |
| 221 |
|
|
walks with long tails. 98: 7366--7370 (1994). |
| 222 |
|
|
|
| 223 |
|
|
\bibitem{Klafter96} |
| 224 |
|
|
J.~Klafter, M.~Shlesinger and G.~Zumofen, Beyond brownian motion. {\em Physics |
| 225 |
|
|
Today\/}, 49: 33--39 (1996). |
| 226 |
|
|
|
| 227 |
|
|
\bibitem{Shlesinger99} |
| 228 |
|
|
M.~F. Shlesinger, J.~Klafter and G.~Zumofen, Above, below, and beyond brownian |
| 229 |
|
|
motion. {\em Am. J. Phys.\/}, 67: 1253--1259 (1999). |
| 230 |
|
|
|
| 231 |
|
|
\bibitem{Stillinger82} |
| 232 |
|
|
F.~H. Stillinger and T.~A. Weber, Hidden structure in liquids. 25(2): 978--989 |
| 233 |
|
|
(1982). |
| 234 |
|
|
|
| 235 |
|
|
\bibitem{Stillinger83} |
| 236 |
|
|
F.~H. Stillinger and T.~A. Weber, Dynamics of structural transitions in |
| 237 |
|
|
liquids. 28(4): 2408--2416 (1983). |
| 238 |
|
|
|
| 239 |
|
|
\bibitem{Weber84} |
| 240 |
|
|
T.~A. Weber and F.~H. Stillinger, The effect of density on the inherent |
| 241 |
|
|
structure in liquids. 80(6): 2742--2746 (1984). |
| 242 |
|
|
|
| 243 |
|
|
\bibitem{Stillinger85} |
| 244 |
|
|
F.~H. Stillinger and T.~A. Weber, Inherent structure theory of liquids in the |
| 245 |
|
|
hard-sphere limit. 83(9): 4767--4775 (1985). |
| 246 |
|
|
|
| 247 |
|
|
\bibitem{Berne90} |
| 248 |
|
|
B.~J. Berne and R.~Pecora, {\em Dynamic Light Scattering\/}. Robert E. Krieger |
| 249 |
|
|
Publishing Company, Inc., Malabar, Florida (1990). |
| 250 |
|
|
|
| 251 |
|
|
\bibitem{Parkhurst75a} |
| 252 |
|
|
H.~J. {Parkhurst, Jr.} and J.~Jonas, Dense liquids. i. the effect of density |
| 253 |
|
|
and temperature on viscosity of tetramethylsilane and benzene-$\mbox{D}_6$. |
| 254 |
|
|
63(6): 2698--2704 (1975). |
| 255 |
|
|
|
| 256 |
|
|
\bibitem{Parkhurst75b} |
| 257 |
|
|
H.~J. {Parkhurst, Jr.} and J.~Jonas, Dense liquids. ii. the effect of density |
| 258 |
|
|
and temperature on viscosity of tetramethylsilane and benzene. 63(6): |
| 259 |
|
|
2705--2709 (1975). |
| 260 |
|
|
|
| 261 |
|
|
\bibitem{Ngai81} |
| 262 |
|
|
K.~L. Ngai and F.-S. Liu, Dispersive diffusion transport and noise, |
| 263 |
|
|
time-dependent diffusion coefficient, generalized einstein-nernst relation, |
| 264 |
|
|
and dispersive diffusion-controlled unimolecular and bimolecular reactions. |
| 265 |
|
|
24: 1049--1065 (1981). |
| 266 |
|
|
|
| 267 |
|
|
\bibitem{Gezelter97} |
| 268 |
|
|
J.~D. Gezelter, E.~Rabani and B.~J. Berne, Can imaginary instantaneous normal |
| 269 |
|
|
mode frequencies predict barriers to self-diffusion? 107: 4618 (1997). |
| 270 |
|
|
|
| 271 |
|
|
\bibitem{Gezelter98a} |
| 272 |
|
|
J.~D. Gezelter, E.~Rabani and B.~J. Berne, Response to 'comment on a critique |
| 273 |
|
|
of the instantaneous normal mode (inm) approach to diffusion'. 109: 4695 |
| 274 |
|
|
(1998). |
| 275 |
|
|
|
| 276 |
|
|
\bibitem{Lu97} |
| 277 |
|
|
J.~Lu and J.~A. Szpunar, Applications of the embedded-atom method to glass |
| 278 |
|
|
formation and crystallization of liquid and glass transition-metal nickel. |
| 279 |
|
|
{\em Phil. Mag. A\/}, 75: 1057--1066 (1997). |
| 280 |
|
|
|
| 281 |
|
|
\bibitem{Alemany98} |
| 282 |
|
|
M.~M.~G. Alemany, C.~Rey and L.~J. Gallego, Transport coefficients of liquid |
| 283 |
|
|
transition metals: A computer simulation study using the embedded atom model. |
| 284 |
|
|
109: 5175--5176 (1998). |
| 285 |
|
|
|
| 286 |
|
|
\bibitem{Belonoshko00} |
| 287 |
|
|
A.~B. Belonoshko, R.~Ahuja, O.~Eriksson and B.~Johansson, Quasi ab initio |
| 288 |
|
|
molecular dynamic study of cu melting. 61: 3838--3844 (2000). |
| 289 |
|
|
|
| 290 |
|
|
\bibitem{Banhart:1992sv} |
| 291 |
|
|
J.~Banhart, H.~Ebert, R.~Kuentzler and J.~Voitl\"{a}nder, Electronic properties |
| 292 |
|
|
of single-phased metastable ag-cu alloys. 46(16): 9968--9975 (1992). |
| 293 |
|
|
|
| 294 |
|
|
\bibitem{Nagel96} |
| 295 |
|
|
M.~Ediger, C.~Angell and S.~R. Nagel, Supercooled liquids and glasses. 100: |
| 296 |
|
|
13200 (1996). |
| 297 |
|
|
|
| 298 |
|
|
\bibitem{Wendt78} |
| 299 |
|
|
H.~Wendt and F.~F. Abraham. 41: 1244 (1978). |
| 300 |
|
|
|
| 301 |
|
|
\bibitem{Lewis91} |
| 302 |
|
|
L.~J. Lewis, Atomic dynamics through the glass transition. 44: 4245--4254 |
| 303 |
|
|
(1991). |
| 304 |
|
|
|
| 305 |
|
|
\bibitem{Liu92} |
| 306 |
|
|
R.~S. Liu, D.~W. Qi and S.~Wang, Subpeaks of structure factors for rapidly |
| 307 |
|
|
quenched metals. 45: 451--453 (1992). |
| 308 |
|
|
|
| 309 |
|
|
\bibitem{Truhlar00} |
| 310 |
|
|
D.~G. Truhlar and A.~Kohen. private correspondence. |
| 311 |
|
|
|
| 312 |
|
|
\bibitem{Tolman20} |
| 313 |
|
|
R.~C. Tolman, Statistical mechanics applied to chemical kinetics. 42: 2506 |
| 314 |
|
|
(1920). |
| 315 |
|
|
|
| 316 |
|
|
\bibitem{Tolman27} |
| 317 |
|
|
R.~C. Tolman, {\em Statistical Mechanics with Applications to Physics and |
| 318 |
|
|
Chemistry\/}. Chemical Catalog Co., New York (1927). |
| 319 |
|
|
|
| 320 |
|
|
\bibitem{Buffat:1976yq} |
| 321 |
|
|
P.~Buffat and J.-P. Borel, Size effect on the melting temperature of gold |
| 322 |
|
|
particles. {\em Phys. Rev. A\/}, 13: 2287--2298 (1976). |
| 323 |
|
|
|
| 324 |
|
|
\bibitem{el-sayed00} |
| 325 |
|
|
S.~Link, Z.~L. Wang and M.~A. El-Sayed, How does a gold nanorod melt? 104: |
| 326 |
|
|
7867--7870 (2000). |
| 327 |
|
|
|
| 328 |
|
|
\bibitem{el-sayed01} |
| 329 |
|
|
S.~Link and M.~A. El-Sayed, Spectroscopic determination of the melting energy |
| 330 |
|
|
of a gold nanorod. 114: 2362--2368 (2001). |
| 331 |
|
|
|
| 332 |
|
|
\bibitem{ShibataT._ja026764r} |
| 333 |
|
|
T.~Shibata, B.~Bunker, Z.~Zhang, D.~Meisel, C.~Vardeman and J.~Gezelter, |
| 334 |
|
|
Size-dependent spontaneous alloying of {A}u-{A}g nanoparticles. {\em JACS\/}, |
| 335 |
|
|
124(40): 11989--11996 (2002). |
| 336 |
|
|
|
| 337 |
|
|
\bibitem{delfatti99} |
| 338 |
|
|
N.~{Del Fatti}, C.~Voisin, F.~Chevy, F.~Vallee and C.~Flytzanis, Coherent |
| 339 |
|
|
acoustic mode oscillation and damping in silver nanoparticles. 110: |
| 340 |
|
|
11484--11487 (1999). |
| 341 |
|
|
|
| 342 |
|
|
\bibitem{henglein99} |
| 343 |
|
|
J.~H. Hodak, A.~Henglein and G.~V. Hartland, Size dependent properties of au |
| 344 |
|
|
particles: Coherent excitation and dephasing of acoustic vibrational modes. |
| 345 |
|
|
111: 8613--8621 (1999). |
| 346 |
|
|
|
| 347 |
|
|
\bibitem{hartland02a} |
| 348 |
|
|
G.~V. Hartland, Coherent vibrational motion in metal particles: Determination |
| 349 |
|
|
of the vibrational amplitude and excitation mechanism. 116: 8048--8055 |
| 350 |
|
|
(2002). |
| 351 |
|
|
|
| 352 |
|
|
\bibitem{hartland02c} |
| 353 |
|
|
J.~E. Sader, G.~V. Hartland and P.~Mulvaney, Theory of acoustic breathing modes |
| 354 |
|
|
of core-shell nanoparticles. 106: 1399--1402 (2002). |
| 355 |
|
|
|
| 356 |
|
|
\bibitem{HuM._jp020581+} |
| 357 |
|
|
M.~Hu and G.~Hartland, Heat dissipation for {A}u particles in aqueous solution: |
| 358 |
|
|
Relaxation time versus size. {\em Journal of Physical Chemistry B\/}, |
| 359 |
|
|
106(28): 7029--7033 (2002). |
| 360 |
|
|
|
| 361 |
|
|
\bibitem{hartland02d} |
| 362 |
|
|
M.~Hu and G.~V. Hartland, Photophysics of metal nanoparticles: Heat dissipation |
| 363 |
|
|
and coherent excitation of phonon modes. {\em Proceeding of SPIE\/}, 4803 |
| 364 |
|
|
(July 2002). |
| 365 |
|
|
|
| 366 |
|
|
\bibitem{Simon2001} |
| 367 |
|
|
D.~T. Simon and M.~R. Geller, Electron-phonon dynamics in an ensemble of nearly |
| 368 |
|
|
isolated nanoparticles. 64: 115412 (2001). |
| 369 |
|
|
|
| 370 |
|
|
\bibitem{HartlandG.V._jp0276092} |
| 371 |
|
|
G.~Hartland, M.~Hu and J.~Sader, Softening of the symmetric breathing mode in |
| 372 |
|
|
gold particles by laser-induced heating. {\em Journal of Physical Chemistry |
| 373 |
|
|
B\/}, 107(30): 7472--7478 (2003). |
| 374 |
|
|
|
| 375 |
|
|
\bibitem{Hartland00} |
| 376 |
|
|
J.~H. Hodak, A.~Henglein and G.~V. Hartland, Coherent excitation of acoustic |
| 377 |
|
|
breathing modes in bimetallic core-shell nanoparticles. 104: 5053--5055 |
| 378 |
|
|
(2000). |
| 379 |
|
|
|
| 380 |
|
|
\bibitem{Voter:87} |
| 381 |
|
|
A.~Voter and S.~Chen, Accurate interatomic potentials for ni, al, and ni3al. |
| 382 |
|
|
{\em Mat. Res. Soc. Symp. Proc.\/}, 82: 175 (1987). |
| 383 |
|
|
|
| 384 |
|
|
\bibitem{plimpton93} |
| 385 |
|
|
S.~J. Plimpton and B.~A. Hendrickson, Parallel molecular dynamics with the |
| 386 |
|
|
embedded atom method. {\em MRS Proceedings\/}, 291: 37 (1993). |
| 387 |
|
|
|
| 388 |
|
|
\bibitem{hoover85} |
| 389 |
|
|
W.~G. Hoover, Canonical dynamics: Equilibrium phase-space distributions. 31: |
| 390 |
|
|
1695 (1985). |
| 391 |
|
|
|
| 392 |
|
|
\bibitem{barber96quickhull} |
| 393 |
|
|
C.~B. Barber, D.~P. Dobkin and H.~Huhdanpaa, The quickhull algorithm for convex |
| 394 |
|
|
hulls. {\em ACM Transactions on Mathematical Software\/}, 22(4): 469--483 |
| 395 |
|
|
(1996). |
| 396 |
|
|
|
| 397 |
|
|
\bibitem{qhull} |
| 398 |
|
|
Qhull (1993), software library is available from the National Science and |
| 399 |
|
|
Technology Research Center for Computation and Visualization of Geometric |
| 400 |
|
|
Structures (The Geometry Center), University of Minnesota. {\tt |
| 401 |
|
|
http://www.geom.umn.edu/software/qhull/}. |
| 402 |
|
|
|
| 403 |
|
|
\bibitem{BernePecora} |
| 404 |
|
|
B.~J. Berne and R.~Pecora, {\em Dynamic Light Scattering\/}. Dover |
| 405 |
|
|
Publications, Inc., Mineola, New York (2000). |
| 406 |
|
|
|
| 407 |
|
|
\bibitem{melchionna93} |
| 408 |
|
|
S.~Melchionna, G.~Ciccotti and B.~L. Holian, Hoover {\sc npt} dynamics for |
| 409 |
|
|
systems varying in shape and size. {\em Mol. Phys.\/}, 78: 533--544 (1993). |
| 410 |
|
|
|
| 411 |
|
|
\bibitem{Lamb1882} |
| 412 |
|
|
H.~Lamb, On the vibrations of an elastic sphere. {\em Proc. London Math. |
| 413 |
|
|
Soc.\/}, 13: 189--212 (1882). |
| 414 |
|
|
|
| 415 |
|
|
\bibitem{Cerullo1999} |
| 416 |
|
|
G.~Cerullo, S.~D. Silvestri and U.~Banin, Size-dependent dynamics of coherent |
| 417 |
|
|
acoustic phonons in nanocrystal quantum dots. 60: 1928--1932 (1999). |
| 418 |
|
|
|
| 419 |
|
|
\bibitem{Iida1988} |
| 420 |
|
|
T.~Iida and R.~I.~L. Guthrie, {\em The Physical Properties of Liquid Metals\/}. |
| 421 |
|
|
Clarendon Press, Oxford (1988). |
| 422 |
|
|
|
| 423 |
|
|
\bibitem{West:2003fk} |
| 424 |
|
|
J.~West and N.~Halas, Engineered nanomaterials for biophotonics applications: |
| 425 |
|
|
Improving sensing, imaging, and therapeutics (2003), Annu. Rev. Biomed. Eng. |
| 426 |
|
|
|
| 427 |
|
|
\bibitem{Hu:2006lr} |
| 428 |
|
|
M.~Hu, J.~Chen, Z.-Y. Li, L.~Au, G.~V. Hartland, X.~Li, M.~Marquez and Y.~Xia, |
| 429 |
|
|
Gold nanostructures: engineering their plasmonic properties for biomedical |
| 430 |
|
|
applications (2006), Chem. Soc. Rev. |
| 431 |
|
|
|
| 432 |
|
|
\bibitem{Dick:2002qy} |
| 433 |
|
|
K.~Dick, T.~Dhanasekaran, Z.~Zhang and D.~Meisel, Size-dependent melting of |
| 434 |
|
|
silica-encapsulated gold nanoparticles. {\em J. Amer. Chem. Soc.\/}, 124: |
| 435 |
|
|
2312--2317 (2002). |
| 436 |
|
|
|
| 437 |
|
|
\bibitem{Mafune01} |
| 438 |
|
|
F.~Mafune, J.~Kohno, Y.~Takeda and T.~Kondow, Dissociation and aggregation of |
| 439 |
|
|
gold nanoparticles under laser irradiation. {\em J. Phys. Chem. B\/}, |
| 440 |
|
|
105(38): 9050--9056 (Sep 2001). |
| 441 |
|
|
|
| 442 |
|
|
\bibitem{Link:2000lr} |
| 443 |
|
|
S.~Link and M.~A. El-Sayed, Shape and size dependence of radiative, |
| 444 |
|
|
non-radiative and photothermal properties of gold nanocrystals. {\em |
| 445 |
|
|
International Reviews in Physical Chemistry\/}, 19(3): 409--453 (2000). |
| 446 |
|
|
|
| 447 |
|
|
\bibitem{Plech:2003yq} |
| 448 |
|
|
A.~Plech, S.~Kurbitz, K.~Berg, H.~Graener, G.~Berg, S.~Gresillon, M.~Kaempfe, |
| 449 |
|
|
J.~Feldmann, M.~Wulff and G.~von Plessen, Time-resolved x-ray diffraction on |
| 450 |
|
|
laser-excited metal nanoparticles. {\em Europhys. Lett.\/}, 61: 762--768 |
| 451 |
|
|
(2003). |
| 452 |
|
|
|
| 453 |
|
|
\bibitem{plech:195423} |
| 454 |
|
|
A.~Plech, V.~Kotaidis, S.~Gresillon, C.~Dahmen and G.~von Plessen, |
| 455 |
|
|
Laser-induced heating and melting of gold nanoparticles studied by |
| 456 |
|
|
time-resolved x-ray scattering. {\em Phys. Rev. B\/}, 70(19): 195423 (2004). |
| 457 |
|
|
|
| 458 |
|
|
\bibitem{Plech:2007rt} |
| 459 |
|
|
A.~Plech, R.~Cerna, V.~Kotaidis, F.~Hudert, A.~Bartels and T.~Dekorsy, A |
| 460 |
|
|
surface phase transition of supported gold nanoparticles. {\em Nano Lett.\/}, |
| 461 |
|
|
7: 1026--1031 (2007). |
| 462 |
|
|
|
| 463 |
|
|
\bibitem{Hodak:2000rb} |
| 464 |
|
|
J.~H. Hodak, A.~Henglein, M.~Giersig and G.~V. Hartland, Laser-induced |
| 465 |
|
|
inter-diffusion in {A}u{A}g core-shell nanoparticles. {\em J. Phys. Chem. |
| 466 |
|
|
B\/}, 104: 11708 -- 11718 (2000). |
| 467 |
|
|
|
| 468 |
|
|
\bibitem{Hartland:2003lr} |
| 469 |
|
|
G.~Hartland, S.~Guillaudeu and J.~Hodak, Laser-induced alloying in metal |
| 470 |
|
|
nanoparticles: Controlling spectral properties with light (2003), Molecules |
| 471 |
|
|
As Components of Electronic Devices. |
| 472 |
|
|
|
| 473 |
|
|
\bibitem{Petrova:2007qy} |
| 474 |
|
|
H.~Petrova, M.~Hu and G.~V. Hartland, Photothermal properties of gold |
| 475 |
|
|
nanoparticles. {\em Zeitschrift Fur Physikalische Chemie-International |
| 476 |
|
|
Journal of Research In Physical Chemistry \& Chemical Physics\/}, 221: |
| 477 |
|
|
361--376 (2007). |
| 478 |
|
|
|
| 479 |
|
|
\bibitem{Hu:2004lr} |
| 480 |
|
|
M.~Hu, H.~Petrova and G.~V. Hartland, Investigation of the properties of gold |
| 481 |
|
|
nanoparticles in aqueous solution at extremely high lattice temperatures. |
| 482 |
|
|
{\em Chem. Phys. Let.\/}, 391(4-6): 220--225 (Jun 2004). |
| 483 |
|
|
|
| 484 |
|
|
\bibitem{Wilson:2002uq} |
| 485 |
|
|
O.~Wilson, X.~Hu, D.~Cahill and P.~Braun, Colloidal metal particles as probes |
| 486 |
|
|
of nanoscale thermal transport in fluids. {\em Phys. Rev. B\/}, 66 (2002). |
| 487 |
|
|
|
| 488 |
|
|
\bibitem{VardemanC.F._jp051575r} |
| 489 |
|
|
C.~Vardeman, P.~Conforti, M.~Sprague and J.~Gezelter, Breathing mode dynamics |
| 490 |
|
|
and elastic properties of gold nanoparticles. {\em Journal of Physical |
| 491 |
|
|
Chemistry B\/}, 109(35): 16695--16699 (2005). |
| 492 |
|
|
|
| 493 |
|
|
\bibitem{Greer:1995qy} |
| 494 |
|
|
A.~L. Greer, Metallic glasses. {\em Science\/}, 267(5206): 1947--1953 (mar |
| 495 |
|
|
1995). |
| 496 |
|
|
|
| 497 |
|
|
\bibitem{Vardeman-II:2001jn} |
| 498 |
|
|
C.~F. {Vardeman II} and J.~D. Gezelter, Comparing models for diffusion in |
| 499 |
|
|
supercooled liquids: The eutectic composition of the {A}g-{C}u alloy. {\em J. |
| 500 |
|
|
Phys. Chem. A\/}, 105(12): 2568 (2001). |
| 501 |
|
|
|
| 502 |
|
|
\bibitem{Massalski:1986rt} |
| 503 |
|
|
T.~B. Massalski, J.~L. Murray, L.~H. Bennett and H.~Baker, {\em Binary alloy |
| 504 |
|
|
phase diagrams\/}. American Society for Metals, Metals Park, Ohio (1986). |
| 505 |
|
|
|
| 506 |
|
|
\bibitem{Ma:2005fk} |
| 507 |
|
|
E.~Ma, Alloys created between immiscible elements. {\em Progress in Materials |
| 508 |
|
|
Science\/}, 50(4): 413--509 (2005). |
| 509 |
|
|
|
| 510 |
|
|
\bibitem{najafabadi:3144} |
| 511 |
|
|
R.~Najafabadi, D.~J. Srolovitz, E.~Ma and M.~Atzmon, Thermodynamic properties |
| 512 |
|
|
of metastable ag-cu alloys. {\em Journal of Applied Physics\/}, 74(5): |
| 513 |
|
|
3144--3149 (1993). |
| 514 |
|
|
|
| 515 |
|
|
\bibitem{sheng:184203} |
| 516 |
|
|
H.~W. Sheng, J.~H. He and E.~Ma, Molecular dynamics simulation studies of |
| 517 |
|
|
atomic-level structures in rapidly quenched ag-cu nonequilibrium alloys. {\em |
| 518 |
|
|
Phys. Rev. B\/}, 65(18): 184203 (2002). |
| 519 |
|
|
|
| 520 |
|
|
\bibitem{Malyavantham:2004cu} |
| 521 |
|
|
G.~Malyavantham, D.~T. O'Brien, M.~F. Becker, J.~W. Keto and D.~Kovar, Au-cu |
| 522 |
|
|
nanoparticles produced by laser ablation of mixtures of au and cu |
| 523 |
|
|
microparticles. {\em Journal of Nanoparticle Research\/}, 6(6): 661 --664 |
| 524 |
|
|
(2004). |
| 525 |
|
|
|
| 526 |
|
|
\bibitem{Kim:2003lv} |
| 527 |
|
|
M.~Kim, H.~Na, K.~C. Lee, E.~A. Yoo and M.~Lee, Preperation and |
| 528 |
|
|
characterization of au-ag and au-cu alloy nanoparticles in chloroform. {\em |
| 529 |
|
|
J. Mat. Chem\/}, 13(7): 1789--1792 (2003). |
| 530 |
|
|
|
| 531 |
|
|
\bibitem{De:1996ta} |
| 532 |
|
|
G.~De, M.~Gusso, L.~Tapfer, M.~Catalano, F.~Gonella, G.~Mattei, P.~Mazzoldi and |
| 533 |
|
|
G.~Battaglin, Annealing behavior of silver, copper, and silver--copper |
| 534 |
|
|
nanoclusters in a silica matrix synthesized by the sol-gel technique. {\em |
| 535 |
|
|
Journal of Applied Physics\/}, 80(12): 6734--6739 (1996). |
| 536 |
|
|
|
| 537 |
|
|
\bibitem{Magruder:1994rg} |
| 538 |
|
|
R.~H. Magruder, III, D.~H. Osborne, Jr. and R.~A. Zuhr, Non-linear optical |
| 539 |
|
|
properties of nanometer dimension ag---cu particles in silica formed by |
| 540 |
|
|
sequential ion implantation (1994). |
| 541 |
|
|
|
| 542 |
|
|
\bibitem{gonzalo:5163} |
| 543 |
|
|
J.~Gonzalo, D.~Babonneau, C.~N. Afonso and J.-P. Barnes, Optical response of |
| 544 |
|
|
mixed ag-cu nanocrystals produced by pulsed laser deposition. {\em Journal of |
| 545 |
|
|
Applied Physics\/}, 96(9): 5163--5168 (2004). |
| 546 |
|
|
|
| 547 |
|
|
\bibitem{HengleinA._jp992950g} |
| 548 |
|
|
A.~Henglein, Formation and absorption spectrum of copper nanoparticles from the |
| 549 |
|
|
radiolytic reduction of cu(cn)2-. {\em Journal of Physical Chemistry B\/}, |
| 550 |
|
|
104(6): 1206--1211 (2000). |
| 551 |
|
|
|
| 552 |
|
|
\bibitem{Kob:1999fk} |
| 553 |
|
|
W.~Kob, Computer simulations of supercooled liquids and glasses. {\em Journal |
| 554 |
|
|
of Physics: Condensed Matter\/}, 11(10): R85--R115 (1999). |
| 555 |
|
|
|
| 556 |
|
|
\bibitem{Steinhardt:1983mo} |
| 557 |
|
|
P.~J. Steinhardt, D.~R. Nelson and M.~Ronchetti, Bond-orientational order in |
| 558 |
|
|
liquids and glasses. {\em Phys. Rev. B\/}, 28(2): 784--804 (1983). |
| 559 |
|
|
|
| 560 |
|
|
\bibitem{Chen:2004ec} |
| 561 |
|
|
Y.~Chen, X.~Bian, J.~Zhang, Y.~Zhang and L.~Wang, Structure and dynamics of |
| 562 |
|
|
gold nanocluster under cooling conditions. {\em Modelling and Simulation in |
| 563 |
|
|
Materials Science and Engineering\/}, 12(3): 373--379 (2004). |
| 564 |
|
|
|
| 565 |
|
|
\bibitem{Cleveland:1997jb} |
| 566 |
|
|
C.~L. Cleveland, U.~Landman, T.~G. Schaaff, M.~N. Shafigullin, P.~W. Stephens |
| 567 |
|
|
and R.~L. Whetten, Structural evolution of smaller gold nanocrystals: The |
| 568 |
|
|
truncated decahedral motif. {\em Phys. Rev. Lett.\/}, 79: 1873--1876 (1997). |
| 569 |
|
|
|
| 570 |
|
|
\bibitem{Cleveland:1997gu} |
| 571 |
|
|
C.~L. Cleveland, U.~Landman, M.~N. Shafigullin, P.~W. Stephens and R.~L. |
| 572 |
|
|
Whetten, Structural evolution of larger gold clusters. {\em Z. Phys. D\/}, |
| 573 |
|
|
40: 503--508 (1997). |
| 574 |
|
|
|
| 575 |
|
|
\bibitem{Gafner:2004bg} |
| 576 |
|
|
Y.~Y. Gafner, S.~L. Gafner and P.~Entel, Formation of an icosahedral structure |
| 577 |
|
|
during crystallization of nickel nanoclusters. {\em Phys. Sol. State\/}, |
| 578 |
|
|
46(7): 1327--1330 (2004). |
| 579 |
|
|
|
| 580 |
|
|
\bibitem{Qi:2001nn} |
| 581 |
|
|
Y.~Qi, T.~Cagin, W.~L. Johnson and W.~A.~G. III, Melting and crystallization in |
| 582 |
|
|
ni nanoclusters: The mesoscale regime. {\em The Journal of Chemical |
| 583 |
|
|
Physics\/}, 115(1): 385--394 (2001). |
| 584 |
|
|
|
| 585 |
|
|
\bibitem{Strandburg:1992qy} |
| 586 |
|
|
K.~J. Strandburg, {\em Bond-orientational order in condensed matter systems\/}. |
| 587 |
|
|
Springer-Verlag, New York (1992). |
| 588 |
|
|
|
| 589 |
|
|
\bibitem{Breaux:rz} |
| 590 |
|
|
G.~A. Breaux, B.~Cao and M.~F. Jarrold, Second-order phase transitions in |
| 591 |
|
|
amorphous gallium clusters. {\em J. Phys. Chem. B\/}, 10.1021/jp052887x |
| 592 |
|
|
(2005). |
| 593 |
|
|
|
| 594 |
|
|
\bibitem{Wang:2003fk} |
| 595 |
|
|
W.~Wang, P.~Wen, D.~Zhao, M.~Pan and R.~Wang, Relationship between glass |
| 596 |
|
|
transition temperature and debye temperature in bulk metallic glasses. {\em |
| 597 |
|
|
J. Mater. Res.\/}, 18: 2747--2751 (2003). |
| 598 |
|
|
|
| 599 |
|
|
\bibitem{Alcoutlabi:2005kx} |
| 600 |
|
|
M.~Alcoutlabi and G.~McKenna, Effects of confinement on material behaviour at |
| 601 |
|
|
the nanometre size scale. {\em J. Phys.: Condens. Matter\/}, 17: R461--R524 |
| 602 |
|
|
(2005). |
| 603 |
|
|
|
| 604 |
|
|
\bibitem{Jiang:2005lr} |
| 605 |
|
|
H.~Jiang, K.~sik Moon and C.~P. Wong, Synthesis of ag-cu alloy nanoparticles |
| 606 |
|
|
for lead-free interconnect materials. {\em Advanced Packaging Materials: |
| 607 |
|
|
Processes, Properties and Interfaces, 2005. Proceedings. International |
| 608 |
|
|
Symposium on\/}, pages 173--177 (2005). |
| 609 |
|
|
|
| 610 |
|
|
\bibitem{BROOKS:1985kx} |
| 611 |
|
|
C.~BROOKS, A.~BRUNGER and M.~KARPLUS, Active-site dynamics in protein molecules |
| 612 |
|
|
- a stochastic boundary molecular-dynamics approach. {\em Biopolymers\/}, 24: |
| 613 |
|
|
843--865 (1985). |
| 614 |
|
|
|
| 615 |
|
|
\bibitem{BROOKS:1983uq} |
| 616 |
|
|
C.~BROOKS and M.~KARPLUS, Deformable stochastic boundaries in |
| 617 |
|
|
molecular-dynamics. {\em Journal of Chemical Physics\/}, 79: 6312--6325 |
| 618 |
|
|
(1983). |
| 619 |
|
|
|
| 620 |
|
|
\bibitem{BRUNGER:1984fj} |
| 621 |
|
|
A.~BRUNGER, C.~BROOKS and M.~KARPLUS, Stochastic boundary-conditions for |
| 622 |
|
|
molecular-dynamics simulations of st2 water. {\em Chemical Physics |
| 623 |
|
|
Letters\/}, 105: 495--500 (1984). |
| 624 |
|
|
|
| 625 |
|
|
\bibitem{kotaidis:184702} |
| 626 |
|
|
V.~Kotaidis, C.~Dahmen, G.~von Plessen, F.~Springer and A.~Plech, Excitation of |
| 627 |
|
|
nanoscale vapor bubbles at the surface of gold nanoparticles in water. {\em |
| 628 |
|
|
The Journal of Chemical Physics\/}, 124(18): 184702 (2006). |
| 629 |
|
|
|
| 630 |
|
|
\bibitem{Sankaranarayanan:2005lr} |
| 631 |
|
|
S.~Sankaranarayanan, V.~Bhethanabotla and B.~Joseph, Molecular dynamics |
| 632 |
|
|
simulation study of the melting of pd-pt nanoclusters. {\em Phys. Rev. B\/}, |
| 633 |
|
|
71 (2005). |
| 634 |
|
|
|
| 635 |
|
|
\bibitem{Chui:2003fk} |
| 636 |
|
|
Y.~Chui and K.~Chan, Analyses of surface and core atoms in a platinum |
| 637 |
|
|
nanoparticle. {\em Phys. Chem. Chem. Phys.\/}, 5: 2869--2874 (2003). |
| 638 |
|
|
|
| 639 |
|
|
\bibitem{Wang:2005qy} |
| 640 |
|
|
G.~Wang, M.~Van~Hove, P.~Ross and M.~Baskes, Surface structures of |
| 641 |
|
|
cubo-octahedral pt-mo catalyst nanoparticles from monte carlo simulations. |
| 642 |
|
|
{\em J. Phys. Chem. B\/}, 109: 11683--11692 (2005). |
| 643 |
|
|
|
| 644 |
|
|
\bibitem{Medasani:2007uq} |
| 645 |
|
|
B.~Medasani, Y.~H. Park and I.~Vasiliev, Theoretical study of the surface |
| 646 |
|
|
energy, stress, and lattice contraction of silver nanoparticles. {\em Phys. |
| 647 |
|
|
Rev. B\/}, 75 (2007). |
| 648 |
|
|
|
| 649 |
|
|
\bibitem{PhysRevB.59.3527} |
| 650 |
|
|
Y.~Qi, T.~\c{C}a\v{g}in, Y.~Kimura and W.~A. {Goddard III}, Molecular-dynamics |
| 651 |
|
|
simulations of glass formation and crystallization in binary liquid |
| 652 |
|
|
metals:\quad{}{C}u-{A}g and {C}u-{N}i. {\em Phys. Rev. B\/}, 59(5): |
| 653 |
|
|
3527--3533 (Feb 1999). |
| 654 |
|
|
|
| 655 |
|
|
\bibitem{MURRAY:1984lr} |
| 656 |
|
|
J.~L. Murray, Calculations of stable and metastable equilibrium diagrams of the |
| 657 |
|
|
ag-cu and cd-zn systems. {\em Metall Trans\/}, 15(2): 261--268 (1984). |
| 658 |
|
|
|
| 659 |
|
|
\bibitem{19521106} |
| 660 |
|
|
F.~C. Frank, Supercooling of liquids. {\em Proceedings of the Royal Society of |
| 661 |
|
|
London. Series A, Mathematical and Physical Sciences\/}, 215(1120): 43--46 |
| 662 |
|
|
(nov 1952). |
| 663 |
|
|
|
| 664 |
|
|
\bibitem{19871127} |
| 665 |
|
|
P.~J. Steinhardt, Icosahedral solids: A new phase of matter? {\em Science\/}, |
| 666 |
|
|
238(4831): 1242--1247 (nov 1987). |
| 667 |
|
|
|
| 668 |
|
|
\bibitem{HOARE:1976fk} |
| 669 |
|
|
M.~HOARE, Stability and local order in simple amorphous packings. {\em Annals |
| 670 |
|
|
of the New York Academy of Sciences\/}, 279: 186--207 (1976). |
| 671 |
|
|
|
| 672 |
|
|
\bibitem{PhysRevLett.60.2295} |
| 673 |
|
|
H.~J\'onsson and H.~C. Andersen, Icosahedral ordering in the lennard-jones |
| 674 |
|
|
liquid and glass. {\em Phys. Rev. Lett.\/}, 60(22): 2295--2298 (May 1988). |
| 675 |
|
|
|
| 676 |
|
|
\bibitem{PhysRevLett.89.275502} |
| 677 |
|
|
H.-S. Nam, N.~M. Hwang, B.~D. Yu and J.-K. Yoon, Formation of an icosahedral |
| 678 |
|
|
structure during the freezing of gold nanoclusters: Surface-induced |
| 679 |
|
|
mechanism. {\em Phys. Rev. Lett.\/}, 89(27): 275502 (Dec 2002). |
| 680 |
|
|
|
| 681 |
|
|
\bibitem{Waal:1995lr} |
| 682 |
|
|
B.~W. van~de Waal, On the origin of second-peak splitting in the static |
| 683 |
|
|
structure factor of metallic glasses. {\em Journal of Non-Crystalline |
| 684 |
|
|
Solids\/}, 189(1-2): 118--128 (1995). |
| 685 |
|
|
|
| 686 |
|
|
\bibitem{HoneycuttJ.Dana_j100303a014} |
| 687 |
|
|
J.~D. Honeycutt and H.~C. Andersen, Molecular dynamics study of melting and |
| 688 |
|
|
freezing of small lennard-jones clusters. {\em Journal of Physical |
| 689 |
|
|
Chemistry\/}, 91(19): 4950--4963 (1987). |
| 690 |
|
|
|
| 691 |
|
|
\bibitem{Iwamatsu:2007lr} |
| 692 |
|
|
M.~Iwamatsu, Icosahedral binary clusters of glass-forming lennard-jones binary |
| 693 |
|
|
alloy. {\em Materials Science and Engineering: A\/}, 449-451: 975--978 |
| 694 |
|
|
(2007). |
| 695 |
|
|
|
| 696 |
|
|
\bibitem{hsu:4974} |
| 697 |
|
|
C.~S. Hsu and A.~Rahman, Interaction potentials and their effect on crystal |
| 698 |
|
|
nucleation and symmetry. {\em The Journal of Chemical Physics\/}, 71(12): |
| 699 |
|
|
4974--4986 (1979). |
| 700 |
|
|
|
| 701 |
|
|
\bibitem{nose:1803} |
| 702 |
|
|
S.~Nose and F.~Yonezawa, Isothermal--isobaric computer simulations of melting |
| 703 |
|
|
and crystallization of a lennard-jones system. {\em The Journal of Chemical |
| 704 |
|
|
Physics\/}, 84(3): 1803--1814 (1986). |
| 705 |
|
|
|
| 706 |
|
|
\bibitem{duijneveldt:4655} |
| 707 |
|
|
J.~S. van Duijneveldt and D.~Frenkel, Computer simulation study of free energy |
| 708 |
|
|
barriers in crystal nucleation. {\em The Journal of Chemical Physics\/}, |
| 709 |
|
|
96(6): 4655--4668 (1992). |
| 710 |
|
|
|
| 711 |
|
|
\bibitem{Zhu:1997lr} |
| 712 |
|
|
L.~Zhu and A.~E. DePristo, Microstructures of bimetallic clusters: Bond order |
| 713 |
|
|
metal simulator for disordered alloys. {\em Journal of Catalysis\/}, 167(2): |
| 714 |
|
|
400--407 (1997). |
| 715 |
|
|
|
| 716 |
|
|
\bibitem{MainardiD.S._la0014306} |
| 717 |
|
|
D.~Mainardi and P.~Balbuena, Monte carlo simulation of {C}u-{N}i nanoclusters: |
| 718 |
|
|
Surface segregation studies. {\em Langmuir\/}, 17(6): 2047--2050 (2001). |
| 719 |
|
|
|
| 720 |
|
|
\bibitem{HuangS.-P._jp0204206} |
| 721 |
|
|
S.-P. Huang and P.~Balbuena, Melting of bimetallic {C}u-{N}i nanoclusters. {\em |
| 722 |
|
|
Journal of Physical Chemistry B\/}, 106(29): 7225--7236 (2002). |
| 723 |
|
|
|
| 724 |
|
|
\bibitem{Ramirez-Caballero:2006lr} |
| 725 |
|
|
G.~E. Ramirez~Caballero and P.~B. Balbuena, Surface segregation phenomena in |
| 726 |
|
|
{P}t{P}d nanoparticles: dependence on nanocluster size. {\em Molecular |
| 727 |
|
|
Simulation\/}, 32(3/4): 297--303 (2006). |
| 728 |
|
|
|
| 729 |
|
|
\end{thebibliography} |