1 |
\chapter{\label{app:IndividualResults} INDIVIDUAL SYSTEM ANALYSIS RESULTS} |
2 |
|
3 |
The combined system results in chapter \ref{chap:electrostatics} |
4 |
(sections \ref{sec:EnergyResults} through \ref{sec:FTDirResults}) show |
5 |
how the pairwise methods compare to the Ewald summation in the general |
6 |
sense over all of the system types investigated. It is also useful to |
7 |
consider each of the studied systems in an individual fashion, so that |
8 |
we can identify conditions that are particularly difficult for a |
9 |
selected pairwise method to address. This allows us to further |
10 |
establish the limitations of these pairwise techniques. In this |
11 |
appendix, the energy difference, force vector, and torque vector |
12 |
analyses are presented on an individual system basis. |
13 |
|
14 |
\section{SPC/E Water Results}\label{sec:WaterResults} |
15 |
|
16 |
The first system considered was liquid water at 300~K using the SPC/E |
17 |
model of water.\cite{Berendsen87} The results for the energy gap |
18 |
comparisons and the force and torque vector magnitude comparisons are |
19 |
shown in table \ref{tab:spce}. The force and torque vector |
20 |
directionality results are displayed separately in table |
21 |
\ref{tab:spceAng}, where the effect of group-based cutoffs and |
22 |
switching functions on the {\sc sp} and {\sc sf} potentials are also |
23 |
investigated. In all of the individual results table, the method |
24 |
abbreviations are as follows: |
25 |
|
26 |
\begin{itemize}[itemsep=0pt] |
27 |
\item PC = Pure Cutoff, |
28 |
\item SP = Shifted Potential, |
29 |
\item SF = Shifted Force, |
30 |
\item GSC = Group Switched Cutoff, |
31 |
\item RF = Reaction Field (where $\varepsilon \approx\infty$), |
32 |
\item GSSP = Group Switched Shifted Potential, and |
33 |
\item GSSF = Group Switched Shifted Force. |
34 |
\end{itemize} |
35 |
|
36 |
\begin{table}[htbp] |
37 |
\centering |
38 |
\caption{REGRESSION RESULTS OF THE LIQUID WATER SYSTEM FOR THE |
39 |
$\Delta E$ VALUES ({\it upper}), FORCE VECTOR MAGNITUDES ({\it middle}) |
40 |
AND TORQUE VECTOR MAGNITUDES ({\it lower})} |
41 |
|
42 |
\footnotesize |
43 |
\begin{tabular}{@{} ccrrrrrr @{}} |
44 |
\toprule |
45 |
\toprule |
46 |
& & \multicolumn{2}{c}{9~\AA} & \multicolumn{2}{c}{12~\AA} & \multicolumn{2}{c}{15~\AA}\\ |
47 |
\cmidrule(lr){3-4} |
48 |
\cmidrule(lr){5-6} |
49 |
\cmidrule(l){7-8} |
50 |
Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\ |
51 |
\midrule |
52 |
PC & & 3.046 & 0.002 & -3.018 & 0.002 & 4.719 & 0.005 \\ |
53 |
SP & 0.0 & 1.035 & 0.218 & 0.908 & 0.313 & 1.037 & 0.470 \\ |
54 |
& 0.1 & 1.021 & 0.387 & 0.965 & 0.752 & 1.006 & 0.947 \\ |
55 |
& 0.2 & 0.997 & 0.962 & 1.001 & 0.994 & 0.994 & 0.996 \\ |
56 |
& 0.3 & 0.984 & 0.980 & 0.997 & 0.985 & 0.982 & 0.987 \\ |
57 |
SF & 0.0 & 0.977 & 0.974 & 0.996 & 0.992 & 0.991 & 0.997 \\ |
58 |
& 0.1 & 0.983 & 0.974 & 1.001 & 0.994 & 0.996 & 0.998 \\ |
59 |
& 0.2 & 0.992 & 0.989 & 1.001 & 0.995 & 0.994 & 0.996 \\ |
60 |
& 0.3 & 0.984 & 0.980 & 0.996 & 0.985 & 0.982 & 0.987 \\ |
61 |
GSC & & 0.918 & 0.862 & 0.852 & 0.756 & 0.801 & 0.700 \\ |
62 |
RF & & 0.971 & 0.958 & 0.975 & 0.987 & 0.959 & 0.983 \\ |
63 |
\midrule |
64 |
PC & & -1.647 & 0.000 & -0.127 & 0.000 & -0.979 & 0.000 \\ |
65 |
SP & 0.0 & 0.735 & 0.368 & 0.813 & 0.537 & 0.865 & 0.659 \\ |
66 |
& 0.1 & 0.850 & 0.612 & 0.956 & 0.887 & 0.992 & 0.979 \\ |
67 |
& 0.2 & 0.996 & 0.989 & 1.000 & 1.000 & 1.000 & 1.000 \\ |
68 |
& 0.3 & 0.996 & 0.998 & 0.997 & 0.998 & 0.996 & 0.998 \\ |
69 |
SF & 0.0 & 0.998 & 0.995 & 1.000 & 0.999 & 1.000 & 0.999 \\ |
70 |
& 0.1 & 0.998 & 0.995 & 1.000 & 0.999 & 1.000 & 1.000 \\ |
71 |
& 0.2 & 0.999 & 0.998 & 1.000 & 1.000 & 1.000 & 1.000 \\ |
72 |
& 0.3 & 0.996 & 0.998 & 0.997 & 0.998 & 0.996 & 0.998 \\ |
73 |
GSC & & 0.998 & 0.995 & 1.000 & 0.999 & 1.000 & 1.000 \\ |
74 |
RF & & 0.999 & 0.995 & 1.000 & 0.999 & 1.000 & 1.000 \\ |
75 |
\midrule |
76 |
PC & & 2.387 & 0.000 & 0.183 & 0.000 & 1.282 & 0.000 \\ |
77 |
SP & 0.0 & 0.847 & 0.543 & 0.904 & 0.694 & 0.935 & 0.786 \\ |
78 |
& 0.1 & 0.922 & 0.749 & 0.980 & 0.934 & 0.996 & 0.988 \\ |
79 |
& 0.2 & 0.987 & 0.985 & 0.989 & 0.992 & 0.990 & 0.993 \\ |
80 |
& 0.3 & 0.965 & 0.973 & 0.967 & 0.975 & 0.967 & 0.976 \\ |
81 |
SF & 0.0 & 0.978 & 0.990 & 0.988 & 0.997 & 0.993 & 0.999 \\ |
82 |
& 0.1 & 0.983 & 0.991 & 0.993 & 0.997 & 0.997 & 0.999 \\ |
83 |
& 0.2 & 0.986 & 0.989 & 0.989 & 0.992 & 0.990 & 0.993 \\ |
84 |
& 0.3 & 0.965 & 0.973 & 0.967 & 0.975 & 0.967 & 0.976 \\ |
85 |
GSC & & 0.995 & 0.981 & 0.999 & 0.991 & 1.001 & 0.994 \\ |
86 |
RF & & 0.993 & 0.989 & 0.998 & 0.996 & 1.000 & 0.999 \\ |
87 |
\bottomrule |
88 |
\end{tabular} |
89 |
\label{tab:spce} |
90 |
\end{table} |
91 |
|
92 |
\begin{table}[htbp] |
93 |
\centering |
94 |
\caption{VARIANCE RESULTS FROM GAUSSIAN FITS TO ANGULAR |
95 |
DISTRIBUTIONS OF THE FORCE AND TORQUE VECTORS IN THE LIQUID WATER |
96 |
SYSTEM} |
97 |
|
98 |
\footnotesize |
99 |
\begin{tabular}{@{} ccrrrrrr @{}} |
100 |
\toprule |
101 |
\toprule |
102 |
& & \multicolumn{3}{c}{Force $\sigma^2$} & \multicolumn{3}{c}{Torque $\sigma^2$} \\ |
103 |
\cmidrule(lr){3-5} |
104 |
\cmidrule(l){6-8} |
105 |
Method & $\alpha$ & 9~\AA & 12~\AA & 15~\AA & 9~\AA & 12~\AA & 15~\AA \\ |
106 |
\midrule |
107 |
PC & & 783.759 & 481.353 & 332.677 & 248.674 & 144.382 & 98.535 \\ |
108 |
SP & 0.0 & 659.440 & 380.699 & 250.002 & 235.151 & 134.661 & 88.135 \\ |
109 |
& 0.1 & 293.849 & 67.772 & 11.609 & 105.090 & 23.813 & 4.369 \\ |
110 |
& 0.2 & 5.975 & 0.136 & 0.094 & 5.553 & 1.784 & 1.536 \\ |
111 |
& 0.3 & 0.725 & 0.707 & 0.693 & 7.293 & 6.933 & 6.748 \\ |
112 |
SF & 0.0 & 2.238 & 0.713 & 0.292 & 3.290 & 1.090 & 0.416 \\ |
113 |
& 0.1 & 2.238 & 0.524 & 0.115 & 3.184 & 0.945 & 0.326 \\ |
114 |
& 0.2 & 0.374 & 0.102 & 0.094 & 2.598 & 1.755 & 1.537 \\ |
115 |
& 0.3 & 0.721 & 0.707 & 0.693 & 7.322 & 6.933 & 6.748 \\ |
116 |
GSC & & 2.431 & 0.614 & 0.274 & 5.135 & 2.133 & 1.339 \\ |
117 |
RF & & 2.091 & 0.403 & 0.113 & 3.583 & 1.071 & 0.399 \\ |
118 |
\midrule |
119 |
GSSP & 0.0 & 2.431 & 0.614 & 0.274 & 5.135 & 2.133 & 1.339 \\ |
120 |
& 0.1 & 1.879 & 0.291 & 0.057 & 3.983 & 1.117 & 0.370 \\ |
121 |
& 0.2 & 0.443 & 0.103 & 0.093 & 2.821 & 1.794 & 1.532 \\ |
122 |
& 0.3 & 0.728 & 0.694 & 0.692 & 7.387 & 6.942 & 6.748 \\ |
123 |
GSSF & 0.0 & 1.298 & 0.270 & 0.083 & 3.098 & 0.992 & 0.375 \\ |
124 |
& 0.1 & 1.296 & 0.210 & 0.044 & 3.055 & 0.922 & 0.330 \\ |
125 |
& 0.2 & 0.433 & 0.104 & 0.093 & 2.895 & 1.797 & 1.532 \\ |
126 |
& 0.3 & 0.728 & 0.694 & 0.692 & 7.410 & 6.942 & 6.748 \\ |
127 |
\bottomrule |
128 |
\end{tabular} |
129 |
\label{tab:spceAng} |
130 |
\end{table} |
131 |
|
132 |
The water results parallel the combined results seen in sections |
133 |
\ref{sec:EnergyResults} through \ref{sec:FTDirResults}. There is good |
134 |
agreement with {\sc spme} in both energetic and dynamic behavior when |
135 |
using the {\sc sf} method with and without damping. The {\sc sp} |
136 |
method does well with an $\alpha$ around 0.2~\AA$^{-1}$, particularly |
137 |
with cutoff radii greater than 12~\AA. Over-damping the electrostatics |
138 |
reduces the agreement between both these methods and {\sc spme}. |
139 |
|
140 |
The pure cutoff ({\sc pc}) method performs poorly, again mirroring the |
141 |
observations from the combined results. In contrast to these results, however, the use of a switching function and group |
142 |
based cutoffs greatly improves the results for these neutral water |
143 |
molecules. The group switched cutoff ({\sc gsc}) does not mimic the |
144 |
energetics of {\sc spme} as well as the {\sc sp} (with moderate |
145 |
damping) and {\sc sf} methods, but the dynamics are quite good. The |
146 |
switching functions correct discontinuities in the potential and |
147 |
forces, leading to these improved results. Such improvements with the |
148 |
use of a switching function have been recognized in previous |
149 |
studies,\cite{Andrea83,Steinbach94} and this proves to be a useful |
150 |
tactic for stably incorporating local area electrostatic effects. |
151 |
|
152 |
The reaction field ({\sc rf}) method simply extends upon the results |
153 |
observed in the {\sc gsc} case. Both methods are similar in form |
154 |
(i.e. neutral groups, switching function), but {\sc rf} incorporates |
155 |
an added effect from the external dielectric. This similarity |
156 |
translates into the same good dynamic results and improved energetic |
157 |
agreement with {\sc spme}. Though this agreement is not to the level |
158 |
of the moderately damped {\sc sp} and {\sc sf} methods, these results |
159 |
show how incorporating some implicit properties of the surroundings |
160 |
(i.e. $\epsilon_\textrm{S}$) can improve the solvent depiction. |
161 |
|
162 |
As a final note for the liquid water system, use of group cutoffs and a |
163 |
switching function leads to noticeable improvements in the {\sc sp} |
164 |
and {\sc sf} methods, primarily in directionality of the force and |
165 |
torque vectors (table \ref{tab:spceAng}). The {\sc sp} method shows |
166 |
significant narrowing of the angle distribution when using little to |
167 |
no damping and only modest improvement for the recommended conditions |
168 |
($\alpha = 0.2$~\AA$^{-1}$ and $R_\textrm{c}~\geqslant~12$~\AA). The |
169 |
{\sc sf} method shows modest narrowing across all damping and cutoff |
170 |
ranges of interest. When over-damping these methods, group cutoffs and |
171 |
the switching function do not improve the force and torque |
172 |
directionalities. |
173 |
|
174 |
\section{SPC/E Ice I$_\textrm{c}$ Results}\label{sec:IceResults} |
175 |
|
176 |
In addition to the disordered molecular system above, the ordered |
177 |
molecular system of ice I$_\textrm{c}$ was also considered. Any ice |
178 |
polymorph could have been used to fit this role; however, ice |
179 |
I$_\textrm{c}$ was chosen because it can form an ideal periodic |
180 |
lattice with the same number of water molecules used in the disordered |
181 |
liquid state system. The results for the energy gap comparisons and |
182 |
the force and torque vector magnitude comparisons are shown in table |
183 |
\ref{tab:ice}. The force and torque vector directionality results are |
184 |
displayed separately in table \ref{tab:iceAng}, where the effect of |
185 |
group-based cutoffs and switching functions on the {\sc sp} and {\sc |
186 |
sf} potentials are also displayed. |
187 |
|
188 |
\begin{table}[htbp] |
189 |
\centering |
190 |
\caption{REGRESSION RESULTS OF THE ICE I$_\textrm{c}$ SYSTEM FOR |
191 |
$\Delta E$ VALUES ({\it upper}), FORCE VECTOR MAGNITUDES ({\it |
192 |
middle}) AND TORQUE VECTOR MAGNITUDES ({\it lower})} |
193 |
|
194 |
\footnotesize |
195 |
\begin{tabular}{@{} ccrrrrrr @{}} |
196 |
\toprule |
197 |
\toprule |
198 |
& & \multicolumn{2}{c}{9~\AA} & \multicolumn{2}{c}{12~\AA} & \multicolumn{2}{c}{15~\AA}\\ |
199 |
\cmidrule(lr){3-4} |
200 |
\cmidrule(lr){5-6} |
201 |
\cmidrule(l){7-8} |
202 |
Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\ |
203 |
\midrule |
204 |
PC & & 19.897 & 0.047 & -29.214 & 0.048 & -3.771 & 0.001 \\ |
205 |
SP & 0.0 & -0.014 & 0.000 & 2.135 & 0.347 & 0.457 & 0.045 \\ |
206 |
& 0.1 & 0.321 & 0.017 & 1.490 & 0.584 & 0.886 & 0.796 \\ |
207 |
& 0.2 & 0.896 & 0.872 & 1.011 & 0.998 & 0.997 & 0.999 \\ |
208 |
& 0.3 & 0.983 & 0.997 & 0.992 & 0.997 & 0.991 & 0.997 \\ |
209 |
SF & 0.0 & 0.943 & 0.979 & 1.048 & 0.978 & 0.995 & 0.999 \\ |
210 |
& 0.1 & 0.948 & 0.979 & 1.044 & 0.983 & 1.000 & 0.999 \\ |
211 |
& 0.2 & 0.982 & 0.997 & 0.969 & 0.960 & 0.997 & 0.999 \\ |
212 |
& 0.3 & 0.985 & 0.997 & 0.961 & 0.961 & 0.991 & 0.997 \\ |
213 |
GSC & & 0.983 & 0.985 & 0.966 & 0.994 & 1.003 & 0.999 \\ |
214 |
RF & & 0.924 & 0.944 & 0.990 & 0.996 & 0.991 & 0.998 \\ |
215 |
\midrule |
216 |
PC & & -4.375 & 0.000 & 6.781 & 0.000 & -3.369 & 0.000 \\ |
217 |
SP & 0.0 & 0.515 & 0.164 & 0.856 & 0.426 & 0.743 & 0.478 \\ |
218 |
& 0.1 & 0.696 & 0.405 & 0.977 & 0.817 & 0.974 & 0.964 \\ |
219 |
& 0.2 & 0.981 & 0.980 & 1.001 & 1.000 & 1.000 & 1.000 \\ |
220 |
& 0.3 & 0.996 & 0.998 & 0.997 & 0.999 & 0.997 & 0.999 \\ |
221 |
SF & 0.0 & 0.991 & 0.995 & 1.003 & 0.998 & 0.999 & 1.000 \\ |
222 |
& 0.1 & 0.992 & 0.995 & 1.003 & 0.998 & 1.000 & 1.000 \\ |
223 |
& 0.2 & 0.998 & 0.998 & 0.981 & 0.962 & 1.000 & 1.000 \\ |
224 |
& 0.3 & 0.996 & 0.998 & 0.976 & 0.957 & 0.997 & 0.999 \\ |
225 |
GSC & & 0.997 & 0.996 & 0.998 & 0.999 & 1.000 & 1.000 \\ |
226 |
RF & & 0.988 & 0.989 & 1.000 & 0.999 & 1.000 & 1.000 \\ |
227 |
\midrule |
228 |
PC & & -6.367 & 0.000 & -3.552 & 0.000 & -3.447 & 0.000 \\ |
229 |
SP & 0.0 & 0.643 & 0.409 & 0.833 & 0.607 & 0.961 & 0.805 \\ |
230 |
& 0.1 & 0.791 & 0.683 & 0.957 & 0.914 & 1.000 & 0.989 \\ |
231 |
& 0.2 & 0.974 & 0.991 & 0.993 & 0.998 & 0.993 & 0.998 \\ |
232 |
& 0.3 & 0.976 & 0.992 & 0.977 & 0.992 & 0.977 & 0.992 \\ |
233 |
SF & 0.0 & 0.979 & 0.997 & 0.992 & 0.999 & 0.994 & 1.000 \\ |
234 |
& 0.1 & 0.984 & 0.997 & 0.996 & 0.999 & 0.998 & 1.000 \\ |
235 |
& 0.2 & 0.991 & 0.997 & 0.974 & 0.958 & 0.993 & 0.998 \\ |
236 |
& 0.3 & 0.977 & 0.992 & 0.956 & 0.948 & 0.977 & 0.992 \\ |
237 |
GSC & & 0.999 & 0.997 & 0.996 & 0.999 & 1.002 & 1.000 \\ |
238 |
RF & & 0.994 & 0.997 & 0.997 & 0.999 & 1.000 & 1.000 \\ |
239 |
\bottomrule |
240 |
\end{tabular} |
241 |
\label{tab:ice} |
242 |
\end{table} |
243 |
|
244 |
\begin{table}[htbp] |
245 |
\centering |
246 |
\caption{VARIANCE RESULTS FROM GAUSSIAN FITS TO ANGULAR DISTRIBUTIONS |
247 |
OF THE FORCE AND TORQUE VECTORS IN THE ICE I$_\textrm{c}$ SYSTEM} |
248 |
|
249 |
\footnotesize |
250 |
\begin{tabular}{@{} ccrrrrrr @{}} |
251 |
\toprule |
252 |
\toprule |
253 |
& & \multicolumn{3}{c}{Force $\sigma^2$} & \multicolumn{3}{c}{Torque |
254 |
$\sigma^2$} \\ |
255 |
\cmidrule(lr){3-5} |
256 |
\cmidrule(l){6-8} |
257 |
Method & $\alpha$ & 9~\AA & 12~\AA & 15~\AA & 9~\AA & 12~\AA & 15~\AA \\ |
258 |
\midrule |
259 |
PC & & 2128.921 & 603.197 & 715.579 & 329.056 & 221.397 & 81.042 \\ |
260 |
SP & 0.0 & 1429.341 & 470.320 & 447.557 & 301.678 & 197.437 & 73.840 \\ |
261 |
& 0.1 & 590.008 & 107.510 & 18.883 & 118.201 & 32.472 & 3.599 \\ |
262 |
& 0.2 & 10.057 & 0.105 & 0.038 & 2.875 & 0.572 & 0.518 \\ |
263 |
& 0.3 & 0.245 & 0.260 & 0.262 & 2.365 & 2.396 & 2.327 \\ |
264 |
SF & 0.0 & 1.745 & 1.161 & 0.212 & 1.135 & 0.426 & 0.155 \\ |
265 |
& 0.1 & 1.721 & 0.868 & 0.082 & 1.118 & 0.358 & 0.118 \\ |
266 |
& 0.2 & 0.201 & 0.040 & 0.038 & 0.786 & 0.555 & 0.518 \\ |
267 |
& 0.3 & 0.241 & 0.260 & 0.262 & 2.368 & 2.400 & 2.327 \\ |
268 |
GSC & & 1.483 & 0.261 & 0.099 & 0.926 & 0.295 & 0.095 \\ |
269 |
RF & & 2.887 & 0.217 & 0.107 & 1.006 & 0.281 & 0.085 \\ |
270 |
\midrule |
271 |
GSSP & 0.0 & 1.483 & 0.261 & 0.099 & 0.926 & 0.295 & 0.095 \\ |
272 |
& 0.1 & 1.341 & 0.123 & 0.037 & 0.835 & 0.234 & 0.085 \\ |
273 |
& 0.2 & 0.558 & 0.040 & 0.037 & 0.823 & 0.557 & 0.519 \\ |
274 |
& 0.3 & 0.250 & 0.251 & 0.259 & 2.387 & 2.395 & 2.328 \\ |
275 |
GSSF & 0.0 & 2.124 & 0.132 & 0.069 & 0.919 & 0.263 & 0.099 \\ |
276 |
& 0.1 & 2.165 & 0.101 & 0.035 & 0.895 & 0.244 & 0.096 \\ |
277 |
& 0.2 & 0.706 & 0.040 & 0.037 & 0.870 & 0.559 & 0.519 \\ |
278 |
& 0.3 & 0.251 & 0.251 & 0.259 & 2.387 & 2.395 & 2.328 \\ |
279 |
\bottomrule |
280 |
\end{tabular} |
281 |
\label{tab:iceAng} |
282 |
\end{table} |
283 |
|
284 |
Highly ordered systems are a difficult test for the pairwise methods |
285 |
in that they lack the implicit periodicity of the Ewald summation. As |
286 |
expected, the energy gap agreement with {\sc spme} is reduced for the |
287 |
{\sc sp} and {\sc sf} methods with parameters that were ideal for the |
288 |
disordered liquid system. Moving to higher $R_\textrm{c}$ helps |
289 |
improve the agreement, though at an increase in computational cost. |
290 |
The dynamics of this crystalline system (both in magnitude and |
291 |
direction) are little affected. Both methods still reproduce the Ewald |
292 |
behavior with the same parameter recommendations from the previous |
293 |
section. |
294 |
|
295 |
It is also worth noting that {\sc rf} exhibits improved energy gap |
296 |
results over the liquid water system. One possible explanation is |
297 |
that the ice I$_\textrm{c}$ crystal is ordered such that the net |
298 |
dipole moment of the crystal is zero. With $\epsilon_\textrm{S} = |
299 |
\infty$, the reaction field incorporates this structural organization |
300 |
by actively enforcing a zeroed dipole moment within each cutoff |
301 |
sphere. |
302 |
|
303 |
\section{NaCl Melt Results}\label{sec:SaltMeltResults} |
304 |
|
305 |
A high temperature NaCl melt was tested to gauge the accuracy of the |
306 |
pairwise summation methods in a disordered system of charges. The |
307 |
results for the energy gap comparisons and the force vector magnitude |
308 |
comparisons are shown in table \ref{tab:melt}. The force vector |
309 |
directionality results are displayed separately in table |
310 |
\ref{tab:meltAng}. |
311 |
|
312 |
\begin{table}[htbp] |
313 |
\centering |
314 |
\caption{REGRESSION RESULTS OF THE MOLTEN SODIUM CHLORIDE SYSTEM FOR |
315 |
$\Delta E$ VALUES ({\it upper}) AND FORCE VECTOR MAGNITUDES ({\it |
316 |
lower})} |
317 |
|
318 |
\footnotesize |
319 |
\begin{tabular}{@{} ccrrrrrr @{}} |
320 |
\toprule |
321 |
\toprule |
322 |
& & \multicolumn{2}{c}{9~\AA} & \multicolumn{2}{c}{12~\AA} & \multicolumn{2}{c}{15~\AA}\\ |
323 |
\cmidrule(lr){3-4} |
324 |
\cmidrule(lr){5-6} |
325 |
\cmidrule(l){7-8} |
326 |
Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\ |
327 |
\midrule |
328 |
PC & & -0.008 & 0.000 & -0.049 & 0.005 & -0.136 & 0.020 \\ |
329 |
SP & 0.0 & 0.928 & 0.996 & 0.931 & 0.998 & 0.950 & 0.999 \\ |
330 |
& 0.1 & 0.977 & 0.998 & 0.998 & 1.000 & 0.997 & 1.000 \\ |
331 |
& 0.2 & 0.960 & 1.000 & 0.813 & 0.996 & 0.811 & 0.954 \\ |
332 |
& 0.3 & 0.671 & 0.994 & 0.439 & 0.929 & 0.535 & 0.831 \\ |
333 |
SF & 0.0 & 0.996 & 1.000 & 0.995 & 1.000 & 0.997 & 1.000 \\ |
334 |
& 0.1 & 1.021 & 1.000 & 1.024 & 1.000 & 1.007 & 1.000 \\ |
335 |
& 0.2 & 0.966 & 1.000 & 0.813 & 0.996 & 0.811 & 0.954 \\ |
336 |
& 0.3 & 0.671 & 0.994 & 0.439 & 0.929 & 0.535 & 0.831 \\ |
337 |
\midrule |
338 |
PC & & 1.103 & 0.000 & 0.989 & 0.000 & 0.802 & 0.000 \\ |
339 |
SP & 0.0 & 0.973 & 0.981 & 0.975 & 0.988 & 0.979 & 0.992 \\ |
340 |
& 0.1 & 0.987 & 0.992 & 0.993 & 0.998 & 0.997 & 0.999 \\ |
341 |
& 0.2 & 0.993 & 0.996 & 0.985 & 0.988 & 0.986 & 0.981 \\ |
342 |
& 0.3 & 0.956 & 0.956 & 0.940 & 0.912 & 0.948 & 0.929 \\ |
343 |
SF & 0.0 & 0.996 & 0.997 & 0.997 & 0.999 & 0.998 & 1.000 \\ |
344 |
& 0.1 & 1.000 & 0.997 & 1.001 & 0.999 & 1.000 & 1.000 \\ |
345 |
& 0.2 & 0.994 & 0.996 & 0.985 & 0.988 & 0.986 & 0.981 \\ |
346 |
& 0.3 & 0.956 & 0.956 & 0.940 & 0.912 & 0.948 & 0.929 \\ |
347 |
\bottomrule |
348 |
\end{tabular} |
349 |
\label{tab:melt} |
350 |
\end{table} |
351 |
|
352 |
\begin{table}[htbp] |
353 |
\centering |
354 |
\caption{VARIANCE RESULTS FROM GAUSSIAN FITS TO ANGULAR DISTRIBUTIONS |
355 |
OF THE FORCE VECTORS IN THE MOLTEN SODIUM CHLORIDE SYSTEM} |
356 |
|
357 |
\footnotesize |
358 |
\begin{tabular}{@{} ccrrrrrr @{}} |
359 |
\toprule |
360 |
\toprule |
361 |
& & \multicolumn{3}{c}{Force $\sigma^2$} \\ |
362 |
\cmidrule(lr){3-5} |
363 |
\cmidrule(l){6-8} |
364 |
Method & $\alpha$ & 9~\AA & 12~\AA & 15~\AA \\ |
365 |
\midrule |
366 |
PC & & 13.294 & 8.035 & 5.366 \\ |
367 |
SP & 0.0 & 13.316 & 8.037 & 5.385 \\ |
368 |
& 0.1 & 5.705 & 1.391 & 0.360 \\ |
369 |
& 0.2 & 2.415 & 7.534 & 13.927 \\ |
370 |
& 0.3 & 23.769 & 67.306 & 57.252 \\ |
371 |
SF & 0.0 & 1.693 & 0.603 & 0.256 \\ |
372 |
& 0.1 & 1.687 & 0.653 & 0.272 \\ |
373 |
& 0.2 & 2.598 & 7.523 & 13.930 \\ |
374 |
& 0.3 & 23.734 & 67.305 & 57.252 \\ |
375 |
\bottomrule |
376 |
\end{tabular} |
377 |
\label{tab:meltAng} |
378 |
\end{table} |
379 |
|
380 |
The molten NaCl system shows more sensitivity to the electrostatic |
381 |
damping than the water systems. The most noticeable point is that the |
382 |
undamped {\sc sf} method does very well at replicating the {\sc spme} |
383 |
configurational energy differences and forces. Light damping appears |
384 |
to minimally improve the dynamics, but this comes with a deterioration |
385 |
of the energy gap results. In contrast, this light damping improves |
386 |
the {\sc sp} energy gaps and forces. Moderate and heavy electrostatic |
387 |
damping reduce the agreement with {\sc spme} for both methods. From |
388 |
these observations, the undamped {\sc sf} method is the best choice |
389 |
for disordered systems of charges. |
390 |
|
391 |
\section{NaCl Crystal Results}\label{sec:SaltCrystalResults} |
392 |
|
393 |
Similar to the use of ice I$_\textrm{c}$ to investigate the role of |
394 |
order in molecular systems on the effectiveness of the pairwise |
395 |
methods, the 1000~K NaCl crystal system was sampled to investigate the |
396 |
accuracy of the pairwise summation methods in an ordered system of |
397 |
charged particles. The results for the energy gap comparisons and the |
398 |
force vector magnitude comparisons are shown in table \ref{tab:salt}. |
399 |
The force vector directionality results are displayed separately in |
400 |
table \ref{tab:saltAng}. |
401 |
|
402 |
\begin{table}[htbp] |
403 |
\centering |
404 |
\caption{REGRESSION RESULTS OF THE CRYSTALLINE SODIUM CHLORIDE |
405 |
SYSTEM FOR $\Delta E$ VALUES ({\it upper}) AND FORCE VECTOR MAGNITUDES |
406 |
({\it lower})} |
407 |
|
408 |
\footnotesize |
409 |
\begin{tabular}{@{} ccrrrrrr @{}} |
410 |
\toprule |
411 |
\toprule |
412 |
& & \multicolumn{2}{c}{9~\AA} & \multicolumn{2}{c}{12~\AA} & \multicolumn{2}{c}{15~\AA}\\ |
413 |
\cmidrule(lr){3-4} |
414 |
\cmidrule(lr){5-6} |
415 |
\cmidrule(l){7-8} |
416 |
Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\ |
417 |
\midrule |
418 |
PC & & -20.241 & 0.228 & -20.248 & 0.229 & -20.239 & 0.228 \\ |
419 |
SP & 0.0 & 1.039 & 0.733 & 2.037 & 0.565 & 1.225 & 0.743 \\ |
420 |
& 0.1 & 1.049 & 0.865 & 1.424 & 0.784 & 1.029 & 0.980 \\ |
421 |
& 0.2 & 0.982 & 0.976 & 0.969 & 0.980 & 0.960 & 0.980 \\ |
422 |
& 0.3 & 0.873 & 0.944 & 0.872 & 0.945 & 0.872 & 0.945 \\ |
423 |
SF & 0.0 & 1.041 & 0.967 & 0.994 & 0.989 & 0.957 & 0.993 \\ |
424 |
& 0.1 & 1.050 & 0.968 & 0.996 & 0.991 & 0.972 & 0.995 \\ |
425 |
& 0.2 & 0.982 & 0.975 & 0.959 & 0.980 & 0.960 & 0.980 \\ |
426 |
& 0.3 & 0.873 & 0.944 & 0.872 & 0.945 & 0.872 & 0.944 \\ |
427 |
\midrule |
428 |
PC & & 0.795 & 0.000 & 0.792 & 0.000 & 0.793 & 0.000 \\ |
429 |
SP & 0.0 & 0.916 & 0.829 & 1.086 & 0.791 & 1.010 & 0.936 \\ |
430 |
& 0.1 & 0.958 & 0.917 & 1.049 & 0.943 & 1.001 & 0.995 \\ |
431 |
& 0.2 & 0.981 & 0.981 & 0.982 & 0.984 & 0.981 & 0.984 \\ |
432 |
& 0.3 & 0.950 & 0.952 & 0.950 & 0.953 & 0.950 & 0.953 \\ |
433 |
SF & 0.0 & 1.002 & 0.983 & 0.997 & 0.994 & 0.991 & 0.997 \\ |
434 |
& 0.1 & 1.003 & 0.984 & 0.996 & 0.995 & 0.993 & 0.997 \\ |
435 |
& 0.2 & 0.983 & 0.980 & 0.981 & 0.984 & 0.981 & 0.984 \\ |
436 |
& 0.3 & 0.950 & 0.952 & 0.950 & 0.953 & 0.950 & 0.953 \\ |
437 |
\bottomrule |
438 |
\end{tabular} |
439 |
\label{tab:salt} |
440 |
\end{table} |
441 |
|
442 |
\begin{table}[htbp] |
443 |
\centering |
444 |
\caption{VARIANCE RESULTS FROM GAUSSIAN FITS TO ANGULAR |
445 |
DISTRIBUTIONS OF THE FORCE VECTORS IN THE CRYSTALLINE SODIUM CHLORIDE |
446 |
SYSTEM} |
447 |
|
448 |
\footnotesize |
449 |
\begin{tabular}{@{} ccrrrrrr @{}} |
450 |
\toprule |
451 |
\toprule |
452 |
& & \multicolumn{3}{c}{Force $\sigma^2$} \\ |
453 |
\cmidrule(lr){3-5} |
454 |
\cmidrule(l){6-8} |
455 |
Method & $\alpha$ & 9~\AA & 12~\AA & 15~\AA \\ |
456 |
\midrule |
457 |
PC & & 111.945 & 111.824 & 111.866 \\ |
458 |
SP & 0.0 & 112.414 & 152.215 & 38.087 \\ |
459 |
& 0.1 & 52.361 & 42.574 & 2.819 \\ |
460 |
& 0.2 & 10.847 & 9.709 & 9.686 \\ |
461 |
& 0.3 & 31.128 & 31.104 & 31.029 \\ |
462 |
SF & 0.0 & 10.025 & 3.555 & 1.648 \\ |
463 |
& 0.1 & 9.462 & 3.303 & 1.721 \\ |
464 |
& 0.2 & 11.454 & 9.813 & 9.701 \\ |
465 |
& 0.3 & 31.120 & 31.105 & 31.029 \\ |
466 |
\bottomrule |
467 |
\end{tabular} |
468 |
\label{tab:saltAng} |
469 |
\end{table} |
470 |
|
471 |
The crystalline NaCl system is the most challenging test case for the |
472 |
pairwise summation methods, as evidenced by the results in tables |
473 |
\ref{tab:salt} and \ref{tab:saltAng}. The undamped and weakly damped |
474 |
{\sc sf} methods seem to be the best choices. These methods match well |
475 |
with {\sc spme} across the energy gap, force magnitude, and force |
476 |
directionality tests. The {\sc sp} method struggles in all cases, |
477 |
with the exception of good dynamics reproduction when using weak |
478 |
electrostatic damping with a large cutoff radius. |
479 |
|
480 |
The moderate electrostatic damping case is not as good as we would |
481 |
expect given the long-time dynamics results observed for this system |
482 |
(see section \ref{sec:LongTimeDynamics}). Since the data in tables |
483 |
\ref{tab:salt} and \ref{tab:saltAng} are a test of instantaneous |
484 |
dynamics, this indicates that good long-time dynamics comes in part at |
485 |
the expense of short-time dynamics. |
486 |
|
487 |
\section{0.11 M NaCl Solution Results} |
488 |
|
489 |
In an effort to bridge the charged atomic and neutral molecular |
490 |
systems, Na$^+$ and Cl$^-$ ions were incorporated into the liquid |
491 |
water system. This low ionic strength system consists of 4 ions in the |
492 |
1000 SPC/E water solvent ($\approx$0.11 M). The results for the energy |
493 |
gap comparisons and the force and torque vector magnitude comparisons |
494 |
are shown in table \ref{tab:solnWeak}. The force and torque vector |
495 |
directionality results are displayed separately in table |
496 |
\ref{tab:solnWeakAng}, where the effect of group-based cutoffs and |
497 |
switching functions on the {\sc sp} and {\sc sf} potentials are |
498 |
investigated. |
499 |
|
500 |
\begin{table}[htbp] |
501 |
\centering |
502 |
\caption{REGRESSION RESULTS OF THE WEAK SODIUM CHLORIDE SOLUTION |
503 |
SYSTEM FOR $\Delta E$ VALUES ({\it upper}), FORCE VECTOR MAGNITUDES |
504 |
({\it middle}) AND TORQUE VECTOR MAGNITUDES ({\it lower})} |
505 |
|
506 |
\footnotesize |
507 |
\begin{tabular}{@{} ccrrrrrr @{}} |
508 |
\toprule |
509 |
\toprule |
510 |
& & \multicolumn{2}{c}{9~\AA} & \multicolumn{2}{c}{12~\AA} & \multicolumn{2}{c}{15~\AA}\\ |
511 |
\cmidrule(lr){3-4} |
512 |
\cmidrule(lr){5-6} |
513 |
\cmidrule(l){7-8} |
514 |
Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\ |
515 |
\midrule |
516 |
PC & & 0.247 & 0.000 & -1.103 & 0.001 & 5.480 & 0.015 \\ |
517 |
SP & 0.0 & 0.935 & 0.388 & 0.984 & 0.541 & 1.010 & 0.685 \\ |
518 |
& 0.1 & 0.951 & 0.603 & 0.993 & 0.875 & 1.001 & 0.979 \\ |
519 |
& 0.2 & 0.969 & 0.968 & 0.996 & 0.997 & 0.994 & 0.997 \\ |
520 |
& 0.3 & 0.955 & 0.966 & 0.984 & 0.992 & 0.978 & 0.991 \\ |
521 |
SF & 0.0 & 0.963 & 0.971 & 0.989 & 0.996 & 0.991 & 0.998 \\ |
522 |
& 0.1 & 0.970 & 0.971 & 0.995 & 0.997 & 0.997 & 0.999 \\ |
523 |
& 0.2 & 0.972 & 0.975 & 0.996 & 0.997 & 0.994 & 0.997 \\ |
524 |
& 0.3 & 0.955 & 0.966 & 0.984 & 0.992 & 0.978 & 0.991 \\ |
525 |
GSC & & 0.964 & 0.731 & 0.984 & 0.704 & 1.005 & 0.770 \\ |
526 |
RF & & 0.968 & 0.605 & 0.974 & 0.541 & 1.014 & 0.614 \\ |
527 |
\midrule |
528 |
PC & & 1.354 & 0.000 & -1.190 & 0.000 & -0.314 & 0.000 \\ |
529 |
SP & 0.0 & 0.720 & 0.338 & 0.808 & 0.523 & 0.860 & 0.643 \\ |
530 |
& 0.1 & 0.839 & 0.583 & 0.955 & 0.882 & 0.992 & 0.978 \\ |
531 |
& 0.2 & 0.995 & 0.987 & 0.999 & 1.000 & 0.999 & 1.000 \\ |
532 |
& 0.3 & 0.995 & 0.996 & 0.996 & 0.998 & 0.996 & 0.998 \\ |
533 |
SF & 0.0 & 0.998 & 0.994 & 1.000 & 0.998 & 1.000 & 0.999 \\ |
534 |
& 0.1 & 0.997 & 0.994 & 1.000 & 0.999 & 1.000 & 1.000 \\ |
535 |
& 0.2 & 0.999 & 0.998 & 0.999 & 1.000 & 0.999 & 1.000 \\ |
536 |
& 0.3 & 0.995 & 0.996 & 0.996 & 0.998 & 0.996 & 0.998 \\ |
537 |
GSC & & 0.995 & 0.990 & 0.998 & 0.997 & 0.998 & 0.996 \\ |
538 |
RF & & 0.998 & 0.993 & 0.999 & 0.998 & 0.999 & 0.996 \\ |
539 |
\midrule |
540 |
PC & & 2.437 & 0.000 & -1.872 & 0.000 & 2.138 & 0.000 \\ |
541 |
SP & 0.0 & 0.838 & 0.525 & 0.901 & 0.686 & 0.932 & 0.779 \\ |
542 |
& 0.1 & 0.914 & 0.733 & 0.979 & 0.932 & 0.995 & 0.987 \\ |
543 |
& 0.2 & 0.977 & 0.969 & 0.988 & 0.990 & 0.989 & 0.990 \\ |
544 |
& 0.3 & 0.952 & 0.950 & 0.964 & 0.971 & 0.965 & 0.970 \\ |
545 |
SF & 0.0 & 0.969 & 0.977 & 0.987 & 0.996 & 0.993 & 0.998 \\ |
546 |
& 0.1 & 0.975 & 0.978 & 0.993 & 0.996 & 0.997 & 0.998 \\ |
547 |
& 0.2 & 0.976 & 0.973 & 0.988 & 0.990 & 0.989 & 0.990 \\ |
548 |
& 0.3 & 0.952 & 0.950 & 0.964 & 0.971 & 0.965 & 0.970 \\ |
549 |
GSC & & 0.980 & 0.959 & 0.990 & 0.983 & 0.992 & 0.989 \\ |
550 |
RF & & 0.984 & 0.975 & 0.996 & 0.995 & 0.998 & 0.998 \\ |
551 |
\bottomrule |
552 |
\end{tabular} |
553 |
\label{tab:solnWeak} |
554 |
\end{table} |
555 |
|
556 |
\begin{table}[htbp] |
557 |
\centering |
558 |
\caption{VARIANCE RESULTS FROM GAUSSIAN FITS TO ANGULAR |
559 |
DISTRIBUTIONS OF THE FORCE AND TORQUE VECTORS IN THE WEAK SODIUM |
560 |
CHLORIDE SOLUTION SYSTEM} |
561 |
|
562 |
\footnotesize |
563 |
\begin{tabular}{@{} ccrrrrrr @{}} |
564 |
\toprule |
565 |
\toprule |
566 |
& & \multicolumn{3}{c}{Force $\sigma^2$} & \multicolumn{3}{c}{Torque $\sigma^2$} \\ |
567 |
\cmidrule(lr){3-5} |
568 |
\cmidrule(l){6-8} |
569 |
Method & $\alpha$ & 9~\AA & 12~\AA & 15~\AA & 9~\AA & 12~\AA & 15~\AA \\ |
570 |
\midrule |
571 |
PC & & 882.863 & 510.435 & 344.201 & 277.691 & 154.231 & 100.131 \\ |
572 |
SP & 0.0 & 732.569 & 405.704 & 257.756 & 261.445 & 142.245 & 91.497 \\ |
573 |
& 0.1 & 329.031 & 70.746 & 12.014 & 118.496 & 25.218 & 4.711 \\ |
574 |
& 0.2 & 6.772 & 0.153 & 0.118 & 9.780 & 2.101 & 2.102 \\ |
575 |
& 0.3 & 0.951 & 0.774 & 0.784 & 12.108 & 7.673 & 7.851 \\ |
576 |
SF & 0.0 & 2.555 & 0.762 & 0.313 & 6.590 & 1.328 & 0.558 \\ |
577 |
& 0.1 & 2.561 & 0.560 & 0.123 & 6.464 & 1.162 & 0.457 \\ |
578 |
& 0.2 & 0.501 & 0.118 & 0.118 & 5.698 & 2.074 & 2.099 \\ |
579 |
& 0.3 & 0.943 & 0.774 & 0.784 & 12.118 & 7.674 & 7.851 \\ |
580 |
GSC & & 2.915 & 0.643 & 0.261 & 9.576 & 3.133 & 1.812 \\ |
581 |
RF & & 2.415 & 0.452 & 0.130 & 6.915 & 1.423 & 0.507 \\ |
582 |
\midrule |
583 |
GSSP & 0.0 & 2.915 & 0.643 & 0.261 & 9.576 & 3.133 & 1.812 \\ |
584 |
& 0.1 & 2.251 & 0.324 & 0.064 & 7.628 & 1.639 & 0.497 \\ |
585 |
& 0.2 & 0.590 & 0.118 & 0.116 & 6.080 & 2.096 & 2.103 \\ |
586 |
& 0.3 & 0.953 & 0.759 & 0.780 & 12.347 & 7.683 & 7.849 \\ |
587 |
GSSF & 0.0 & 1.541 & 0.301 & 0.096 & 6.407 & 1.316 & 0.496 \\ |
588 |
& 0.1 & 1.541 & 0.237 & 0.050 & 6.356 & 1.202 & 0.457 \\ |
589 |
& 0.2 & 0.568 & 0.118 & 0.116 & 6.166 & 2.105 & 2.105 \\ |
590 |
& 0.3 & 0.954 & 0.759 & 0.780 & 12.337 & 7.684 & 7.849 \\ |
591 |
\bottomrule |
592 |
\end{tabular} |
593 |
\label{tab:solnWeakAng} |
594 |
\end{table} |
595 |
|
596 |
Because this system is a perturbation of the pure liquid water system, |
597 |
comparisons are best drawn between these two sets. The {\sc sp} and |
598 |
{\sc sf} methods are not significantly affected by the inclusion of a |
599 |
few ions. The aspect of cutoff sphere neutralization aids in the |
600 |
smooth incorporation of these ions; thus, all of the observations |
601 |
regarding these methods carry over from section |
602 |
\ref{sec:WaterResults}. The differences between these systems are more |
603 |
visible for the {\sc rf} method. Good force agreement is still |
604 |
maintained; however, the energy gaps show a significant increase in |
605 |
the scatter of the data. |
606 |
|
607 |
\section{1.1 M NaCl Solution Results} |
608 |
|
609 |
The bridging of the charged atomic and neutral molecular systems was |
610 |
further developed by considering a high ionic strength system |
611 |
consisting of 40 ions in the 1000 SPC/E water solvent ($\approx$1.1 |
612 |
M). The results for the energy gap comparisons and the force and |
613 |
torque vector magnitude comparisons are shown in table |
614 |
\ref{tab:solnStr}. The force and torque vector directionality |
615 |
results are displayed separately in table \ref{tab:solnStrAng}, where |
616 |
the effect of group-based cutoffs and switching functions on the {\sc |
617 |
sp} and {\sc sf} potentials are investigated. |
618 |
|
619 |
\begin{table}[htbp] |
620 |
\centering |
621 |
\caption{REGRESSION RESULTS OF THE STRONG SODIUM CHLORIDE SOLUTION |
622 |
SYSTEM FOR $\Delta E$ VALUES ({\it upper}), FORCE VECTOR MAGNITUDES |
623 |
({\it middle}) AND TORQUE VECTOR MAGNITUDES ({\it lower})} |
624 |
|
625 |
\footnotesize |
626 |
\begin{tabular}{@{} ccrrrrrr @{}} |
627 |
\toprule |
628 |
\toprule |
629 |
& & \multicolumn{2}{c}{9~\AA} & \multicolumn{2}{c}{12~\AA} & \multicolumn{2}{c}{15~\AA}\\ |
630 |
\cmidrule(lr){3-4} |
631 |
\cmidrule(lr){5-6} |
632 |
\cmidrule(l){7-8} |
633 |
Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\ |
634 |
\midrule |
635 |
PC & & -0.081 & 0.000 & 0.945 & 0.001 & 0.073 & 0.000 \\ |
636 |
SP & 0.0 & 0.978 & 0.469 & 0.996 & 0.672 & 0.975 & 0.668 \\ |
637 |
& 0.1 & 0.944 & 0.645 & 0.997 & 0.886 & 0.991 & 0.978 \\ |
638 |
& 0.2 & 0.873 & 0.896 & 0.985 & 0.993 & 0.980 & 0.993 \\ |
639 |
& 0.3 & 0.831 & 0.860 & 0.960 & 0.979 & 0.955 & 0.977 \\ |
640 |
SF & 0.0 & 0.858 & 0.905 & 0.985 & 0.970 & 0.990 & 0.998 \\ |
641 |
& 0.1 & 0.865 & 0.907 & 0.992 & 0.974 & 0.994 & 0.999 \\ |
642 |
& 0.2 & 0.862 & 0.894 & 0.985 & 0.993 & 0.980 & 0.993 \\ |
643 |
& 0.3 & 0.831 & 0.859 & 0.960 & 0.979 & 0.955 & 0.977 \\ |
644 |
GSC & & 1.985 & 0.152 & 0.760 & 0.031 & 1.106 & 0.062 \\ |
645 |
RF & & 2.414 & 0.116 & 0.813 & 0.017 & 1.434 & 0.047 \\ |
646 |
\midrule |
647 |
PC & & -7.028 & 0.000 & -9.364 & 0.000 & 0.925 & 0.865 \\ |
648 |
SP & 0.0 & 0.701 & 0.319 & 0.909 & 0.773 & 0.861 & 0.665 \\ |
649 |
& 0.1 & 0.824 & 0.565 & 0.970 & 0.930 & 0.990 & 0.979 \\ |
650 |
& 0.2 & 0.988 & 0.981 & 0.995 & 0.998 & 0.991 & 0.998 \\ |
651 |
& 0.3 & 0.983 & 0.985 & 0.985 & 0.991 & 0.978 & 0.990 \\ |
652 |
SF & 0.0 & 0.993 & 0.988 & 0.992 & 0.984 & 0.998 & 0.999 \\ |
653 |
& 0.1 & 0.993 & 0.989 & 0.993 & 0.986 & 0.998 & 1.000 \\ |
654 |
& 0.2 & 0.993 & 0.992 & 0.995 & 0.998 & 0.991 & 0.998 \\ |
655 |
& 0.3 & 0.983 & 0.985 & 0.985 & 0.991 & 0.978 & 0.990 \\ |
656 |
GSC & & 0.964 & 0.897 & 0.970 & 0.917 & 0.925 & 0.865 \\ |
657 |
RF & & 0.994 & 0.864 & 0.988 & 0.865 & 0.980 & 0.784 \\ |
658 |
\midrule |
659 |
PC & & -2.212 & 0.000 & -0.588 & 0.000 & 0.953 & 0.925 \\ |
660 |
SP & 0.0 & 0.800 & 0.479 & 0.930 & 0.804 & 0.924 & 0.759 \\ |
661 |
& 0.1 & 0.883 & 0.694 & 0.976 & 0.942 & 0.993 & 0.986 \\ |
662 |
& 0.2 & 0.952 & 0.943 & 0.980 & 0.984 & 0.980 & 0.983 \\ |
663 |
& 0.3 & 0.914 & 0.909 & 0.943 & 0.948 & 0.944 & 0.946 \\ |
664 |
SF & 0.0 & 0.945 & 0.953 & 0.980 & 0.984 & 0.991 & 0.998 \\ |
665 |
& 0.1 & 0.951 & 0.954 & 0.987 & 0.986 & 0.995 & 0.998 \\ |
666 |
& 0.2 & 0.951 & 0.946 & 0.980 & 0.984 & 0.980 & 0.983 \\ |
667 |
& 0.3 & 0.914 & 0.908 & 0.943 & 0.948 & 0.944 & 0.946 \\ |
668 |
GSC & & 0.882 & 0.818 & 0.939 & 0.902 & 0.953 & 0.925 \\ |
669 |
RF & & 0.949 & 0.939 & 0.988 & 0.988 & 0.992 & 0.993 \\ |
670 |
\bottomrule |
671 |
\end{tabular} |
672 |
\label{tab:solnStr} |
673 |
\end{table} |
674 |
|
675 |
\begin{table}[htbp] |
676 |
\centering |
677 |
\caption{VARIANCE RESULTS FROM GAUSSIAN FITS TO ANGULAR DISTRIBUTIONS |
678 |
OF THE FORCE AND TORQUE VECTORS IN THE STRONG SODIUM CHLORIDE SOLUTION |
679 |
SYSTEM} |
680 |
|
681 |
\footnotesize |
682 |
\begin{tabular}{@{} ccrrrrrr @{}} |
683 |
\toprule |
684 |
\toprule |
685 |
& & \multicolumn{3}{c}{Force $\sigma^2$} & \multicolumn{3}{c}{Torque $\sigma^2$} \\ |
686 |
\cmidrule(lr){3-5} |
687 |
\cmidrule(l){6-8} |
688 |
Method & $\alpha$ & 9~\AA & 12~\AA & 15~\AA & 9~\AA & 12~\AA & 15~\AA \\ |
689 |
\midrule |
690 |
PC & & 957.784 & 513.373 & 2.260 & 340.043 & 179.443 & 13.079 \\ |
691 |
SP & 0.0 & 786.244 & 139.985 & 259.289 & 311.519 & 90.280 & 105.187 \\ |
692 |
& 0.1 & 354.697 & 38.614 & 12.274 & 144.531 & 23.787 & 5.401 \\ |
693 |
& 0.2 & 7.674 & 0.363 & 0.215 & 16.655 & 3.601 & 3.634 \\ |
694 |
& 0.3 & 1.745 & 1.456 & 1.449 & 23.669 & 14.376 & 14.240 \\ |
695 |
SF & 0.0 & 3.282 & 8.567 & 0.369 & 11.904 & 6.589 & 0.717 \\ |
696 |
& 0.1 & 3.263 & 7.479 & 0.142 & 11.634 & 5.750 & 0.591 \\ |
697 |
& 0.2 & 0.686 & 0.324 & 0.215 & 10.809 & 3.580 & 3.635 \\ |
698 |
& 0.3 & 1.749 & 1.456 & 1.449 & 23.635 & 14.375 & 14.240 \\ |
699 |
GSC & & 6.181 & 2.904 & 2.263 & 44.349 & 19.442 & 12.873 \\ |
700 |
RF & & 3.891 & 0.847 & 0.323 & 18.628 & 3.995 & 2.072 \\ |
701 |
\midrule |
702 |
GSSP & 0.0 & 6.197 & 2.929 & 2.290 & 44.441 & 19.442 & 12.873 \\ |
703 |
& 0.1 & 4.688 & 1.064 & 0.260 & 31.208 & 6.967 & 2.303 \\ |
704 |
& 0.2 & 1.021 & 0.218 & 0.213 & 14.425 & 3.629 & 3.649 \\ |
705 |
& 0.3 & 1.752 & 1.454 & 1.451 & 23.540 & 14.390 & 14.245 \\ |
706 |
GSSF & 0.0 & 2.494 & 0.546 & 0.217 & 16.391 & 3.230 & 1.613 \\ |
707 |
& 0.1 & 2.448 & 0.429 & 0.106 & 16.390 & 2.827 & 1.159 \\ |
708 |
& 0.2 & 0.899 & 0.214 & 0.213 & 13.542 & 3.583 & 3.645 \\ |
709 |
& 0.3 & 1.752 & 1.454 & 1.451 & 23.587 & 14.390 & 14.245 \\ |
710 |
\bottomrule |
711 |
\end{tabular} |
712 |
\label{tab:solnStrAng} |
713 |
\end{table} |
714 |
|
715 |
The {\sc rf} method struggles with the jump in ionic strength. The |
716 |
configuration energy differences degrade to unusable levels while the |
717 |
forces and torques show a more modest reduction in the agreement with |
718 |
{\sc spme}. The {\sc rf} method was designed for homogeneous systems, |
719 |
and this attribute is apparent in these results. |
720 |
|
721 |
The {\sc sp} and {\sc sf} methods require larger cutoffs to maintain |
722 |
their agreement with {\sc spme}. With these results, we still |
723 |
recommend undamped to moderate damping for the {\sc sf} method and |
724 |
moderate damping for the {\sc sp} method, both with cutoffs greater |
725 |
than 12~\AA. |
726 |
|
727 |
\section{6~\AA\ Argon Sphere in SPC/E Water Results} |
728 |
|
729 |
The final model system studied was a 6~\AA\ sphere of argon solvated |
730 |
by SPC/E water. This serves as a test case of a specifically sized |
731 |
electrostatic defect in a disordered molecular system. The results for |
732 |
the energy gap comparisons and the force and torque vector magnitude |
733 |
comparisons are shown in table \ref{tab:argon}. The force and torque |
734 |
vector directionality results are displayed separately in table |
735 |
\ref{tab:argonAng}, where the effect of group-based cutoffs and |
736 |
switching functions on the {\sc sp} and {\sc sf} potentials are |
737 |
investigated. |
738 |
|
739 |
\begin{table}[htbp] |
740 |
\centering |
741 |
\caption{REGRESSION RESULTS OF THE 6~\AA\ ARGON SPHERE IN LIQUID |
742 |
WATER SYSTEM FOR $\Delta E$ VALUES ({\it upper}), FORCE VECTOR |
743 |
MAGNITUDES ({\it middle}) AND TORQUE VECTOR MAGNITUDES ({\it lower})} |
744 |
|
745 |
\footnotesize |
746 |
\begin{tabular}{@{} ccrrrrrr @{}} |
747 |
\toprule |
748 |
\toprule |
749 |
& & \multicolumn{2}{c}{9~\AA} & \multicolumn{2}{c}{12~\AA} & \multicolumn{2}{c}{15~\AA}\\ |
750 |
\cmidrule(lr){3-4} |
751 |
\cmidrule(lr){5-6} |
752 |
\cmidrule(l){7-8} |
753 |
Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\ |
754 |
\midrule |
755 |
PC & & 2.320 & 0.008 & -0.650 & 0.001 & 3.848 & 0.029 \\ |
756 |
SP & 0.0 & 1.053 & 0.711 & 0.977 & 0.820 & 0.974 & 0.882 \\ |
757 |
& 0.1 & 1.032 & 0.846 & 0.989 & 0.965 & 0.992 & 0.994 \\ |
758 |
& 0.2 & 0.993 & 0.995 & 0.982 & 0.998 & 0.986 & 0.998 \\ |
759 |
& 0.3 & 0.968 & 0.995 & 0.954 & 0.992 & 0.961 & 0.994 \\ |
760 |
SF & 0.0 & 0.982 & 0.996 & 0.992 & 0.999 & 0.993 & 1.000 \\ |
761 |
& 0.1 & 0.987 & 0.996 & 0.996 & 0.999 & 0.997 & 1.000 \\ |
762 |
& 0.2 & 0.989 & 0.998 & 0.984 & 0.998 & 0.989 & 0.998 \\ |
763 |
& 0.3 & 0.971 & 0.995 & 0.957 & 0.992 & 0.965 & 0.994 \\ |
764 |
GSC & & 1.002 & 0.983 & 0.992 & 0.973 & 0.996 & 0.971 \\ |
765 |
RF & & 0.998 & 0.995 & 0.999 & 0.998 & 0.998 & 0.998 \\ |
766 |
\midrule |
767 |
PC & & -36.559 & 0.002 & -44.917 & 0.004 & -52.945 & 0.006 \\ |
768 |
SP & 0.0 & 0.890 & 0.786 & 0.927 & 0.867 & 0.949 & 0.909 \\ |
769 |
& 0.1 & 0.942 & 0.895 & 0.984 & 0.974 & 0.997 & 0.995 \\ |
770 |
& 0.2 & 0.999 & 0.997 & 1.000 & 1.000 & 1.000 & 1.000 \\ |
771 |
& 0.3 & 1.001 & 0.999 & 1.001 & 1.000 & 1.001 & 1.000 \\ |
772 |
SF & 0.0 & 1.000 & 0.999 & 1.000 & 1.000 & 1.000 & 1.000 \\ |
773 |
& 0.1 & 1.000 & 0.999 & 1.000 & 1.000 & 1.000 & 1.000 \\ |
774 |
& 0.2 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 \\ |
775 |
& 0.3 & 1.001 & 0.999 & 1.001 & 1.000 & 1.001 & 1.000 \\ |
776 |
GSC & & 0.999 & 0.999 & 1.000 & 1.000 & 1.000 & 1.000 \\ |
777 |
RF & & 0.999 & 0.999 & 1.000 & 1.000 & 1.000 & 1.000 \\ |
778 |
\midrule |
779 |
PC & & 1.984 & 0.000 & 0.012 & 0.000 & 1.357 & 0.000 \\ |
780 |
SP & 0.0 & 0.850 & 0.552 & 0.907 & 0.703 & 0.938 & 0.793 \\ |
781 |
& 0.1 & 0.924 & 0.755 & 0.980 & 0.936 & 0.995 & 0.988 \\ |
782 |
& 0.2 & 0.985 & 0.983 & 0.986 & 0.988 & 0.987 & 0.988 \\ |
783 |
& 0.3 & 0.961 & 0.966 & 0.959 & 0.964 & 0.960 & 0.966 \\ |
784 |
SF & 0.0 & 0.977 & 0.989 & 0.987 & 0.995 & 0.992 & 0.998 \\ |
785 |
& 0.1 & 0.982 & 0.989 & 0.992 & 0.996 & 0.997 & 0.998 \\ |
786 |
& 0.2 & 0.984 & 0.987 & 0.986 & 0.987 & 0.987 & 0.988 \\ |
787 |
& 0.3 & 0.961 & 0.966 & 0.959 & 0.964 & 0.960 & 0.966 \\ |
788 |
GSC & & 0.995 & 0.981 & 0.999 & 0.990 & 1.000 & 0.993 \\ |
789 |
RF & & 0.993 & 0.988 & 0.997 & 0.995 & 0.999 & 0.998 \\ |
790 |
\bottomrule |
791 |
\end{tabular} |
792 |
\label{tab:argon} |
793 |
\end{table} |
794 |
|
795 |
\begin{table}[htbp] |
796 |
\centering |
797 |
\caption{VARIANCE RESULTS FROM GAUSSIAN FITS TO ANGULAR |
798 |
DISTRIBUTIONS OF THE FORCE AND TORQUE VECTORS IN THE 6~\AA\ SPHERE OF |
799 |
ARGON IN LIQUID WATER SYSTEM} |
800 |
|
801 |
\footnotesize |
802 |
\begin{tabular}{@{} ccrrrrrr @{}} |
803 |
\toprule |
804 |
\toprule |
805 |
& & \multicolumn{3}{c}{Force $\sigma^2$} & \multicolumn{3}{c}{Torque $\sigma^2$} \\ |
806 |
\cmidrule(lr){3-5} |
807 |
\cmidrule(l){6-8} |
808 |
Method & $\alpha$ & 9~\AA & 12~\AA & 15~\AA & 9~\AA & 12~\AA & 15~\AA \\ |
809 |
\midrule |
810 |
PC & & 568.025 & 265.993 & 195.099 & 246.626 & 138.600 & 91.654 \\ |
811 |
SP & 0.0 & 504.578 & 251.694 & 179.932 & 231.568 & 131.444 & 85.119 \\ |
812 |
& 0.1 & 224.886 & 49.746 & 9.346 & 104.482 & 23.683 & 4.480 \\ |
813 |
& 0.2 & 4.889 & 0.197 & 0.155 & 6.029 & 2.507 & 2.269 \\ |
814 |
& 0.3 & 0.817 & 0.833 & 0.812 & 8.286 & 8.436 & 8.135 \\ |
815 |
SF & 0.0 & 1.924 & 0.675 & 0.304 & 3.658 & 1.448 & 0.600 \\ |
816 |
& 0.1 & 1.937 & 0.515 & 0.143 & 3.565 & 1.308 & 0.546 \\ |
817 |
& 0.2 & 0.407 & 0.166 & 0.156 & 3.086 & 2.501 & 2.274 \\ |
818 |
& 0.3 & 0.815 & 0.833 & 0.812 & 8.330 & 8.437 & 8.135 \\ |
819 |
GSC & & 2.098 & 0.584 & 0.284 & 5.391 & 2.414 & 1.501 \\ |
820 |
RF & & 1.822 & 0.408 & 0.142 & 3.799 & 1.362 & 0.550 \\ |
821 |
\midrule |
822 |
GSSP & 0.0 & 2.098 & 0.584 & 0.284 & 5.391 & 2.414 & 1.501 \\ |
823 |
& 0.1 & 1.652 & 0.309 & 0.087 & 4.197 & 1.401 & 0.590 \\ |
824 |
& 0.2 & 0.465 & 0.165 & 0.153 & 3.323 & 2.529 & 2.273 \\ |
825 |
& 0.3 & 0.813 & 0.825 & 0.816 & 8.316 & 8.447 & 8.132 \\ |
826 |
GSSF & 0.0 & 1.173 & 0.292 & 0.113 & 3.452 & 1.347 & 0.583 \\ |
827 |
& 0.1 & 1.166 & 0.240 & 0.076 & 3.381 & 1.281 & 0.575 \\ |
828 |
& 0.2 & 0.459 & 0.165 & 0.153 & 3.430 & 2.542 & 2.273 \\ |
829 |
& 0.3 & 0.814 & 0.825 & 0.816 & 8.325 & 8.447 & 8.132 \\ |
830 |
\bottomrule |
831 |
\end{tabular} |
832 |
\label{tab:argonAng} |
833 |
\end{table} |
834 |
|
835 |
This system does not appear to show any significant deviations from |
836 |
the previously observed results. The {\sc sp} and {\sc sf} methods |
837 |
have agreements similar to those observed in section |
838 |
\ref{sec:WaterResults}. The only significant difference is the |
839 |
improvement in the configuration energy differences for the {\sc rf} |
840 |
method. This is surprising in that we are introducing an inhomogeneity |
841 |
to the system; however, this inhomogeneity is charge-neutral and does |
842 |
not result in charged cutoff spheres. The charge-neutrality of the |
843 |
cutoff spheres, which the {\sc sp} and {\sc sf} methods explicitly |
844 |
enforce, seems to play a greater role in the stability of the {\sc rf} |
845 |
method than the required homogeneity of the environment. |