ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/chrisDissertation/IndividualSystems.tex
(Generate patch)

Comparing trunk/chrisDissertation/IndividualSystems.tex (file contents):
Revision 2987 by chrisfen, Wed Aug 30 22:36:06 2006 UTC vs.
Revision 3023 by chrisfen, Tue Sep 26 03:07:59 2006 UTC

# Line 1 | Line 1
1 < \chapter{\label{app:individualSystems} Individual System Analysis Results}
1 > \chapter{\label{app:IndividualResults} INDIVIDUAL SYSTEM ANALYSIS RESULTS}
2  
3 + The combined system results in chapter \ref{chap:electrostatics}
4 + (sections \ref{sec:EnergyResults} through \ref{sec:FTDirResults}) show
5 + how the pairwise methods compare to the Ewald summation in the general
6 + sense over all of the system types.  It is also useful to consider
7 + each of the studied systems in an individual fashion, so that we can
8 + identify conditions that are particularly difficult for a selected
9 + pairwise method to address. This allows us to further establish the
10 + limitations of these pairwise techniques.  In this appendix, the
11 + energy difference, force vector, and torque vector analyses are
12 + presented on an individual system basis.
13 +
14 + \section{SPC/E Water Results}\label{sec:WaterResults}
15 +
16 + The first system considered was liquid water at 300~K using the SPC/E
17 + model of water.\cite{Berendsen87} The results for the energy gap
18 + comparisons and the force and torque vector magnitude comparisons are
19 + shown in table \ref{tab:spce}.  The force and torque vector
20 + directionality results are displayed separately in table
21 + \ref{tab:spceAng}, where the effect of group-based cutoffs and
22 + switching functions on the {\sc sp} and {\sc sf} potentials are also
23 + investigated.  In all of the individual results table, the method
24 + abbreviations are as follows:
25 +
26 + \begin{itemize}[itemsep=0pt]
27 + \item PC = Pure Cutoff,
28 + \item SP = Shifted Potential,
29 + \item SF = Shifted Force,
30 + \item GSC = Group Switched Cutoff,
31 + \item RF = Reaction Field (where $\varepsilon \approx\infty$),
32 + \item GSSP = Group Switched Shifted Potential, and
33 + \item GSSF = Group Switched Shifted Force.
34 + \end{itemize}
35 +
36 + \begin{table}[htbp]
37 + \centering
38 + \caption{REGRESSION RESULTS OF THE LIQUID WATER SYSTEM FOR THE
39 + $\Delta E$ VALUES ({\it upper}), FORCE VECTOR MAGNITUDES ({\it middle})
40 + AND TORQUE VECTOR MAGNITUDES ({\it lower})}
41 +
42 + \footnotesize
43 + \begin{tabular}{@{} ccrrrrrr @{}}
44 + \toprule
45 + \toprule
46 + & & \multicolumn{2}{c}{9~\AA} & \multicolumn{2}{c}{12~\AA} & \multicolumn{2}{c}{15~\AA}\\
47 + \cmidrule(lr){3-4}
48 + \cmidrule(lr){5-6}
49 + \cmidrule(l){7-8}
50 + Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
51 + \midrule
52 + PC  &     & 3.046 & 0.002 & -3.018 & 0.002 & 4.719 & 0.005 \\
53 + SP  & 0.0 & 1.035 & 0.218 & 0.908 & 0.313 & 1.037 & 0.470 \\
54 +    & 0.1 & 1.021 & 0.387 & 0.965 & 0.752 & 1.006 & 0.947 \\
55 +    & 0.2 & 0.997 & 0.962 & 1.001 & 0.994 & 0.994 & 0.996 \\
56 +    & 0.3 & 0.984 & 0.980 & 0.997 & 0.985 & 0.982 & 0.987 \\
57 + SF  & 0.0 & 0.977 & 0.974 & 0.996 & 0.992 & 0.991 & 0.997 \\
58 +    & 0.1 & 0.983 & 0.974 & 1.001 & 0.994 & 0.996 & 0.998 \\
59 +    & 0.2 & 0.992 & 0.989 & 1.001 & 0.995 & 0.994 & 0.996 \\
60 +    & 0.3 & 0.984 & 0.980 & 0.996 & 0.985 & 0.982 & 0.987 \\
61 + GSC &     & 0.918 & 0.862 & 0.852 & 0.756 & 0.801 & 0.700 \\
62 + RF  &     & 0.971 & 0.958 & 0.975 & 0.987 & 0.959 & 0.983 \\                
63 + \midrule
64 + PC  &     & -1.647 & 0.000 & -0.127 & 0.000 & -0.979 & 0.000 \\
65 + SP  & 0.0 & 0.735 & 0.368 & 0.813 & 0.537 & 0.865 & 0.659 \\
66 +    & 0.1 & 0.850 & 0.612 & 0.956 & 0.887 & 0.992 & 0.979 \\
67 +    & 0.2 & 0.996 & 0.989 & 1.000 & 1.000 & 1.000 & 1.000 \\
68 +    & 0.3 & 0.996 & 0.998 & 0.997 & 0.998 & 0.996 & 0.998 \\
69 + SF  & 0.0 & 0.998 & 0.995 & 1.000 & 0.999 & 1.000 & 0.999 \\
70 +    & 0.1 & 0.998 & 0.995 & 1.000 & 0.999 & 1.000 & 1.000 \\
71 +    & 0.2 & 0.999 & 0.998 & 1.000 & 1.000 & 1.000 & 1.000 \\
72 +    & 0.3 & 0.996 & 0.998 & 0.997 & 0.998 & 0.996 & 0.998 \\
73 + GSC &     & 0.998 & 0.995 & 1.000 & 0.999 & 1.000 & 1.000 \\
74 + RF  &     & 0.999 & 0.995 & 1.000 & 0.999 & 1.000 & 1.000 \\          
75 + \midrule
76 + PC  &     & 2.387 & 0.000 & 0.183 & 0.000 & 1.282 & 0.000 \\
77 + SP  & 0.0 & 0.847 & 0.543 & 0.904 & 0.694 & 0.935 & 0.786 \\
78 +    & 0.1 & 0.922 & 0.749 & 0.980 & 0.934 & 0.996 & 0.988 \\
79 +    & 0.2 & 0.987 & 0.985 & 0.989 & 0.992 & 0.990 & 0.993 \\
80 +    & 0.3 & 0.965 & 0.973 & 0.967 & 0.975 & 0.967 & 0.976 \\
81 + SF  & 0.0 & 0.978 & 0.990 & 0.988 & 0.997 & 0.993 & 0.999 \\
82 +    & 0.1 & 0.983 & 0.991 & 0.993 & 0.997 & 0.997 & 0.999 \\
83 +    & 0.2 & 0.986 & 0.989 & 0.989 & 0.992 & 0.990 & 0.993 \\
84 +    & 0.3 & 0.965 & 0.973 & 0.967 & 0.975 & 0.967 & 0.976 \\
85 + GSC &     & 0.995 & 0.981 & 0.999 & 0.991 & 1.001 & 0.994 \\
86 + RF  &     & 0.993 & 0.989 & 0.998 & 0.996 & 1.000 & 0.999 \\
87 + \bottomrule
88 + \end{tabular}
89 + \label{tab:spce}
90 + \end{table}
91 +
92 + \begin{table}[htbp]
93 + \centering
94 + \caption{VARIANCE RESULTS FROM GAUSSIAN FITS TO ANGULAR
95 + DISTRIBUTIONS OF THE FORCE AND TORQUE VECTORS IN THE LIQUID WATER
96 + SYSTEM}
97 +
98 + \footnotesize
99 + \begin{tabular}{@{} ccrrrrrr @{}}
100 + \toprule
101 + \toprule
102 + & & \multicolumn{3}{c}{Force $\sigma^2$} & \multicolumn{3}{c}{Torque $\sigma^2$} \\
103 + \cmidrule(lr){3-5}
104 + \cmidrule(l){6-8}
105 + Method & $\alpha$ & 9~\AA & 12~\AA & 15~\AA & 9~\AA & 12~\AA & 15~\AA \\
106 + \midrule
107 + PC  &     & 783.759 & 481.353 & 332.677 & 248.674 & 144.382 & 98.535 \\
108 + SP  & 0.0 & 659.440 & 380.699 & 250.002 & 235.151 & 134.661 & 88.135 \\
109 +    & 0.1 & 293.849 & 67.772 & 11.609 & 105.090 & 23.813 & 4.369 \\
110 +    & 0.2 & 5.975 & 0.136 & 0.094 & 5.553 & 1.784 & 1.536 \\
111 +    & 0.3 & 0.725 & 0.707 & 0.693 & 7.293 & 6.933 & 6.748 \\
112 + SF  & 0.0 & 2.238 & 0.713 & 0.292 & 3.290 & 1.090 & 0.416 \\
113 +    & 0.1 & 2.238 & 0.524 & 0.115 & 3.184 & 0.945 & 0.326 \\
114 +    & 0.2 & 0.374 & 0.102 & 0.094 & 2.598 & 1.755 & 1.537 \\
115 +    & 0.3 & 0.721 & 0.707 & 0.693 & 7.322 & 6.933 & 6.748 \\
116 + GSC &     & 2.431 & 0.614 & 0.274 & 5.135 & 2.133 & 1.339 \\
117 + RF  &     & 2.091 & 0.403 & 0.113 & 3.583 & 1.071 & 0.399 \\      
118 + \midrule
119 + GSSP  & 0.0 & 2.431 & 0.614 & 0.274 & 5.135 & 2.133 & 1.339 \\
120 +      & 0.1 & 1.879 & 0.291 & 0.057 & 3.983 & 1.117 & 0.370 \\
121 +      & 0.2 & 0.443 & 0.103 & 0.093 & 2.821 & 1.794 & 1.532 \\
122 +      & 0.3 & 0.728 & 0.694 & 0.692 & 7.387 & 6.942 & 6.748 \\
123 + GSSF  & 0.0 & 1.298 & 0.270 & 0.083 & 3.098 & 0.992 & 0.375 \\
124 +      & 0.1 & 1.296 & 0.210 & 0.044 & 3.055 & 0.922 & 0.330 \\
125 +      & 0.2 & 0.433 & 0.104 & 0.093 & 2.895 & 1.797 & 1.532 \\
126 +      & 0.3 & 0.728 & 0.694 & 0.692 & 7.410 & 6.942 & 6.748 \\
127 + \bottomrule
128 + \end{tabular}
129 + \label{tab:spceAng}
130 + \end{table}
131 +
132 + The water results parallel the combined results seen in sections
133 + \ref{sec:EnergyResults} through \ref{sec:FTDirResults}.  There is good
134 + agreement with {\sc spme} in both energetic and dynamic behavior when
135 + using the {\sc sf} method with and without damping. The {\sc sp}
136 + method does well with an $\alpha$ around 0.2~\AA$^{-1}$, particularly
137 + with cutoff radii greater than 12~\AA. Over-damping the electrostatics
138 + reduces the agreement between both these methods and {\sc spme}.
139 +
140 + The pure cutoff ({\sc pc}) method performs poorly, again mirroring the
141 + observations from the combined results.  In contrast to these results, however, the use of a switching function and group
142 + based cutoffs greatly improves the results for these neutral water
143 + molecules.  The group switched cutoff ({\sc gsc}) does not mimic the
144 + energetics of {\sc spme} as well as the {\sc sp} (with moderate
145 + damping) and {\sc sf} methods, but the dynamics are quite good.  The
146 + switching functions correct discontinuities in the potential and
147 + forces, leading to these improved results.  Such improvements with the
148 + use of a switching function have been recognized in previous
149 + studies,\cite{Andrea83,Steinbach94} and this proves to be a useful
150 + tactic for stably incorporating local area electrostatic effects.
151 +
152 + The reaction field ({\sc rf}) method simply extends upon the results
153 + observed in the {\sc gsc} case.  Both methods are similar in form
154 + (i.e. neutral groups, switching function), but {\sc rf} incorporates
155 + an added effect from the external dielectric. This similarity
156 + translates into the same good dynamic results and improved energetic
157 + agreement with {\sc spme}.  Though this agreement is not to the level
158 + of the moderately damped {\sc sp} and {\sc sf} methods, these results
159 + show how incorporating some implicit properties of the surroundings
160 + (i.e. $\epsilon_\textrm{S}$) can improve the solvent depiction.
161 +
162 + As a final note for the liquid water system, use of group cutoffs and a
163 + switching function leads to noticeable improvements in the {\sc sp}
164 + and {\sc sf} methods, primarily in directionality of the force and
165 + torque vectors (table \ref{tab:spceAng}). The {\sc sp} method shows
166 + significant narrowing of the angle distribution when using little to
167 + no damping and only modest improvement for the recommended conditions
168 + ($\alpha = 0.2$~\AA$^{-1}$ and $R_\textrm{c}~\geqslant~12$~\AA).  The
169 + {\sc sf} method shows modest narrowing across all damping and cutoff
170 + ranges of interest.  When over-damping these methods, group cutoffs and
171 + the switching function do not improve the force and torque
172 + directionalities.
173 +
174 + \section{SPC/E Ice I$_\textrm{c}$ Results}\label{sec:IceResults}
175 +
176 + In addition to the disordered molecular system above, the ordered
177 + molecular system of ice I$_\textrm{c}$ was also considered.  Ice
178 + polymorph could have been used to fit this role; however, ice
179 + I$_\textrm{c}$ was chosen because it can form an ideal periodic
180 + lattice with the same number of water molecules used in the disordered
181 + liquid state case.  The results for the energy gap comparisons and the
182 + force and torque vector magnitude comparisons are shown in table
183 + \ref{tab:ice}.  The force and torque vector directionality results are
184 + displayed separately in table \ref{tab:iceAng}, where the effect of
185 + group-based cutoffs and switching functions on the {\sc sp} and {\sc
186 + sf} potentials are also displayed.
187 +
188 + \begin{table}[htbp]
189 + \centering
190 + \caption{REGRESSION RESULTS OF THE ICE I$_\textrm{c}$ SYSTEM FOR
191 + $\Delta E$ VALUES ({\it upper}), FORCE VECTOR MAGNITUDES ({\it
192 + middle}) AND TORQUE VECTOR MAGNITUDES ({\it lower})}
193 +
194 + \footnotesize
195 + \begin{tabular}{@{} ccrrrrrr @{}}
196 + \toprule
197 + \toprule
198 + & & \multicolumn{2}{c}{9~\AA} & \multicolumn{2}{c}{12~\AA} & \multicolumn{2}{c}{15~\AA}\\
199 + \cmidrule(lr){3-4}
200 + \cmidrule(lr){5-6}
201 + \cmidrule(l){7-8}
202 + Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
203 + \midrule
204 + PC  &     & 19.897 & 0.047 & -29.214 & 0.048 & -3.771 & 0.001 \\
205 + SP  & 0.0 & -0.014 & 0.000 & 2.135 & 0.347 & 0.457 & 0.045 \\
206 +    & 0.1 & 0.321 & 0.017 & 1.490 & 0.584 & 0.886 & 0.796 \\
207 +    & 0.2 & 0.896 & 0.872 & 1.011 & 0.998 & 0.997 & 0.999 \\
208 +    & 0.3 & 0.983 & 0.997 & 0.992 & 0.997 & 0.991 & 0.997 \\
209 + SF  & 0.0 & 0.943 & 0.979 & 1.048 & 0.978 & 0.995 & 0.999 \\
210 +    & 0.1 & 0.948 & 0.979 & 1.044 & 0.983 & 1.000 & 0.999 \\
211 +    & 0.2 & 0.982 & 0.997 & 0.969 & 0.960 & 0.997 & 0.999 \\
212 +    & 0.3 & 0.985 & 0.997 & 0.961 & 0.961 & 0.991 & 0.997 \\
213 + GSC &     & 0.983 & 0.985 & 0.966 & 0.994 & 1.003 & 0.999 \\
214 + RF  &     & 0.924 & 0.944 & 0.990 & 0.996 & 0.991 & 0.998 \\
215 + \midrule
216 + PC  &     & -4.375 & 0.000 & 6.781 & 0.000 & -3.369 & 0.000 \\
217 + SP  & 0.0 & 0.515 & 0.164 & 0.856 & 0.426 & 0.743 & 0.478 \\
218 +    & 0.1 & 0.696 & 0.405 & 0.977 & 0.817 & 0.974 & 0.964 \\
219 +    & 0.2 & 0.981 & 0.980 & 1.001 & 1.000 & 1.000 & 1.000 \\
220 +    & 0.3 & 0.996 & 0.998 & 0.997 & 0.999 & 0.997 & 0.999 \\
221 + SF  & 0.0 & 0.991 & 0.995 & 1.003 & 0.998 & 0.999 & 1.000 \\
222 +    & 0.1 & 0.992 & 0.995 & 1.003 & 0.998 & 1.000 & 1.000 \\
223 +    & 0.2 & 0.998 & 0.998 & 0.981 & 0.962 & 1.000 & 1.000 \\
224 +    & 0.3 & 0.996 & 0.998 & 0.976 & 0.957 & 0.997 & 0.999 \\
225 + GSC &     & 0.997 & 0.996 & 0.998 & 0.999 & 1.000 & 1.000 \\
226 + RF  &     & 0.988 & 0.989 & 1.000 & 0.999 & 1.000 & 1.000 \\
227 + \midrule
228 + PC  &     & -6.367 & 0.000 & -3.552 & 0.000 & -3.447 & 0.000 \\
229 + SP  & 0.0 & 0.643 & 0.409 & 0.833 & 0.607 & 0.961 & 0.805 \\
230 +    & 0.1 & 0.791 & 0.683 & 0.957 & 0.914 & 1.000 & 0.989 \\
231 +    & 0.2 & 0.974 & 0.991 & 0.993 & 0.998 & 0.993 & 0.998 \\
232 +    & 0.3 & 0.976 & 0.992 & 0.977 & 0.992 & 0.977 & 0.992 \\
233 + SF  & 0.0 & 0.979 & 0.997 & 0.992 & 0.999 & 0.994 & 1.000 \\
234 +    & 0.1 & 0.984 & 0.997 & 0.996 & 0.999 & 0.998 & 1.000 \\
235 +    & 0.2 & 0.991 & 0.997 & 0.974 & 0.958 & 0.993 & 0.998 \\
236 +    & 0.3 & 0.977 & 0.992 & 0.956 & 0.948 & 0.977 & 0.992 \\
237 + GSC &     & 0.999 & 0.997 & 0.996 & 0.999 & 1.002 & 1.000 \\
238 + RF  &     & 0.994 & 0.997 & 0.997 & 0.999 & 1.000 & 1.000 \\
239 + \bottomrule
240 + \end{tabular}
241 + \label{tab:ice}
242 + \end{table}
243 +
244 + \begin{table}[htbp]
245 + \centering
246 + \caption{VARIANCE RESULTS FROM GAUSSIAN FITS TO ANGULAR DISTRIBUTIONS
247 + OF THE FORCE AND TORQUE VECTORS IN THE ICE I$_\textrm{c}$ SYSTEM}      
248 +
249 + \footnotesize
250 + \begin{tabular}{@{} ccrrrrrr @{}}
251 + \toprule
252 + \toprule
253 + & & \multicolumn{3}{c}{Force $\sigma^2$} & \multicolumn{3}{c}{Torque
254 + $\sigma^2$} \\
255 + \cmidrule(lr){3-5}
256 + \cmidrule(l){6-8}
257 + Method & $\alpha$ & 9~\AA & 12~\AA & 15~\AA & 9~\AA & 12~\AA & 15~\AA \\
258 + \midrule
259 + PC  &     & 2128.921 & 603.197 & 715.579 & 329.056 & 221.397 & 81.042 \\
260 + SP  & 0.0 & 1429.341 & 470.320 & 447.557 & 301.678 & 197.437 & 73.840 \\
261 +    & 0.1 & 590.008 & 107.510 & 18.883 & 118.201 & 32.472 & 3.599 \\
262 +    & 0.2 & 10.057 & 0.105 & 0.038 & 2.875 & 0.572 & 0.518 \\
263 +    & 0.3 & 0.245 & 0.260 & 0.262 & 2.365 & 2.396 & 2.327 \\
264 + SF  & 0.0 & 1.745 & 1.161 & 0.212 & 1.135 & 0.426 & 0.155 \\
265 +    & 0.1 & 1.721 & 0.868 & 0.082 & 1.118 & 0.358 & 0.118 \\
266 +    & 0.2 & 0.201 & 0.040 & 0.038 & 0.786 & 0.555 & 0.518 \\
267 +    & 0.3 & 0.241 & 0.260 & 0.262 & 2.368 & 2.400 & 2.327 \\
268 + GSC &     & 1.483 & 0.261 & 0.099 & 0.926 & 0.295 & 0.095 \\
269 + RF  &     & 2.887 & 0.217 & 0.107 & 1.006 & 0.281 & 0.085 \\
270 + \midrule
271 + GSSP  & 0.0 & 1.483 & 0.261 & 0.099 & 0.926 & 0.295 & 0.095 \\
272 +      & 0.1 & 1.341 & 0.123 & 0.037 & 0.835 & 0.234 & 0.085 \\
273 +      & 0.2 & 0.558 & 0.040 & 0.037 & 0.823 & 0.557 & 0.519 \\
274 +      & 0.3 & 0.250 & 0.251 & 0.259 & 2.387 & 2.395 & 2.328 \\
275 + GSSF  & 0.0 & 2.124 & 0.132 & 0.069 & 0.919 & 0.263 & 0.099 \\
276 +      & 0.1 & 2.165 & 0.101 & 0.035 & 0.895 & 0.244 & 0.096 \\
277 +      & 0.2 & 0.706 & 0.040 & 0.037 & 0.870 & 0.559 & 0.519 \\
278 +      & 0.3 & 0.251 & 0.251 & 0.259 & 2.387 & 2.395 & 2.328 \\
279 + \bottomrule
280 + \end{tabular}
281 + \label{tab:iceAng}
282 + \end{table}
283 +
284 + Highly ordered systems are a difficult test for the pairwise methods
285 + in that they lack the implicit periodicity of the Ewald summation.  As
286 + expected, the energy gap agreement with {\sc spme} is reduced for the
287 + {\sc sp} and {\sc sf} methods with parameters that were ideal for the
288 + disordered liquid system.  Moving to higher $R_\textrm{c}$ helps
289 + improve the agreement, though at an increase in computational cost.
290 + The dynamics of this crystalline system (both in magnitude and
291 + direction) are little affected. Both methods still reproduce the Ewald
292 + behavior with the same parameter recommendations from the previous
293 + section.
294 +
295 + It is also worth noting that {\sc rf} exhibits improved energy gap
296 + results over the liquid water system.  One possible explanation is
297 + that the ice I$_\textrm{c}$ crystal is ordered such that the net
298 + dipole moment of the crystal is zero.  With $\epsilon_\textrm{S} =
299 + \infty$, the reaction field incorporates this structural organization
300 + by actively enforcing a zeroed dipole moment within each cutoff
301 + sphere.
302 +
303 + \section{NaCl Melt Results}\label{sec:SaltMeltResults}
304 +
305 + A high temperature NaCl melt was tested to gauge the accuracy of the
306 + pairwise summation methods in a disordered system of charges. The
307 + results for the energy gap comparisons and the force vector magnitude
308 + comparisons are shown in table \ref{tab:melt}.  The force vector
309 + directionality results are displayed separately in table
310 + \ref{tab:meltAng}.
311 +
312 + \begin{table}[htbp]
313 + \centering
314 + \caption{REGRESSION RESULTS OF THE MOLTEN SODIUM CHLORIDE SYSTEM FOR
315 + $\Delta E$ VALUES ({\it upper}) AND FORCE VECTOR MAGNITUDES ({\it
316 + lower})}
317 +
318 + \footnotesize
319 + \begin{tabular}{@{} ccrrrrrr @{}}
320 + \toprule
321 + \toprule
322 + & & \multicolumn{2}{c}{9~\AA} & \multicolumn{2}{c}{12~\AA} & \multicolumn{2}{c}{15~\AA}\\
323 + \cmidrule(lr){3-4}
324 + \cmidrule(lr){5-6}
325 + \cmidrule(l){7-8}
326 + Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
327 + \midrule
328 + PC  &     & -0.008 & 0.000 & -0.049 & 0.005 & -0.136 & 0.020 \\
329 + SP  & 0.0 & 0.928 & 0.996 & 0.931 & 0.998 & 0.950 & 0.999 \\
330 +    & 0.1 & 0.977 & 0.998 & 0.998 & 1.000 & 0.997 & 1.000 \\
331 +    & 0.2 & 0.960 & 1.000 & 0.813 & 0.996 & 0.811 & 0.954 \\
332 +    & 0.3 & 0.671 & 0.994 & 0.439 & 0.929 & 0.535 & 0.831 \\
333 + SF  & 0.0 & 0.996 & 1.000 & 0.995 & 1.000 & 0.997 & 1.000 \\
334 +    & 0.1 & 1.021 & 1.000 & 1.024 & 1.000 & 1.007 & 1.000 \\
335 +    & 0.2 & 0.966 & 1.000 & 0.813 & 0.996 & 0.811 & 0.954 \\
336 +    & 0.3 & 0.671 & 0.994 & 0.439 & 0.929 & 0.535 & 0.831 \\
337 +            \midrule
338 + PC  &     & 1.103 & 0.000 & 0.989 & 0.000 & 0.802 & 0.000 \\
339 + SP  & 0.0 & 0.973 & 0.981 & 0.975 & 0.988 & 0.979 & 0.992 \\
340 +    & 0.1 & 0.987 & 0.992 & 0.993 & 0.998 & 0.997 & 0.999 \\
341 +    & 0.2 & 0.993 & 0.996 & 0.985 & 0.988 & 0.986 & 0.981 \\
342 +    & 0.3 & 0.956 & 0.956 & 0.940 & 0.912 & 0.948 & 0.929 \\
343 + SF  & 0.0 & 0.996 & 0.997 & 0.997 & 0.999 & 0.998 & 1.000 \\
344 +    & 0.1 & 1.000 & 0.997 & 1.001 & 0.999 & 1.000 & 1.000 \\
345 +    & 0.2 & 0.994 & 0.996 & 0.985 & 0.988 & 0.986 & 0.981 \\
346 +    & 0.3 & 0.956 & 0.956 & 0.940 & 0.912 & 0.948 & 0.929 \\
347 + \bottomrule
348 + \end{tabular}
349 + \label{tab:melt}
350 + \end{table}
351 +
352 + \begin{table}[htbp]
353 + \centering
354 + \caption{VARIANCE RESULTS FROM GAUSSIAN FITS TO ANGULAR DISTRIBUTIONS
355 + OF THE FORCE VECTORS IN THE MOLTEN SODIUM CHLORIDE SYSTEM}      
356 +
357 + \footnotesize
358 + \begin{tabular}{@{} ccrrrrrr @{}}
359 + \toprule
360 + \toprule
361 + & & \multicolumn{3}{c}{Force $\sigma^2$} \\
362 + \cmidrule(lr){3-5}
363 + \cmidrule(l){6-8}
364 + Method & $\alpha$ & 9~\AA & 12~\AA & 15~\AA \\
365 + \midrule
366 + PC  &     & 13.294 & 8.035 & 5.366 \\
367 + SP  & 0.0 & 13.316 & 8.037 & 5.385 \\
368 +    & 0.1 & 5.705 & 1.391 & 0.360 \\
369 +    & 0.2 & 2.415 & 7.534 & 13.927 \\
370 +    & 0.3 & 23.769 & 67.306 & 57.252 \\
371 + SF  & 0.0 & 1.693 & 0.603 & 0.256 \\
372 +    & 0.1 & 1.687 & 0.653 & 0.272 \\
373 +    & 0.2 & 2.598 & 7.523 & 13.930 \\
374 +    & 0.3 & 23.734 & 67.305 & 57.252 \\
375 + \bottomrule
376 + \end{tabular}
377 + \label{tab:meltAng}
378 + \end{table}
379 +
380 + The molten NaCl system shows more sensitivity to the electrostatic
381 + damping than the water systems. The most noticeable point is that the
382 + undamped {\sc sf} method does very well at replicating the {\sc spme}
383 + configurational energy differences and forces. Light damping appears
384 + to minimally improve the dynamics, but this comes with a deterioration
385 + of the energy gap results. In contrast, this light damping improves
386 + the {\sc sp} energy gaps and forces. Moderate and heavy electrostatic
387 + damping reduce the agreement with {\sc spme} for both methods. From
388 + these observations, the undamped {\sc sf} method is the best choice
389 + for disordered systems of charges.
390 +
391 + \section{NaCl Crystal Results}\label{sec:SaltCrystalResults}
392 +
393 + Similar to the use of ice I$_\textrm{c}$ to investigate the role of
394 + order in molecular systems on the effectiveness of the pairwise
395 + methods, the 1000~K NaCl crystal system was used to investigate the
396 + accuracy of the pairwise summation methods in an ordered system of
397 + charged particles. The results for the energy gap comparisons and the
398 + force vector magnitude comparisons are shown in table \ref{tab:salt}.
399 + The force vector directionality results are displayed separately in
400 + table \ref{tab:saltAng}.
401 +
402 + \begin{table}[htbp]
403 + \centering
404 + \caption{REGRESSION RESULTS OF THE CRYSTALLINE SODIUM CHLORIDE
405 + SYSTEM FOR $\Delta E$ VALUES ({\it upper}) AND FORCE VECTOR MAGNITUDES
406 + ({\it lower})}
407 +
408 + \footnotesize
409 + \begin{tabular}{@{} ccrrrrrr @{}}
410 + \toprule
411 + \toprule
412 + & & \multicolumn{2}{c}{9~\AA} & \multicolumn{2}{c}{12~\AA} & \multicolumn{2}{c}{15~\AA}\\
413 + \cmidrule(lr){3-4}
414 + \cmidrule(lr){5-6}
415 + \cmidrule(l){7-8}
416 + Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
417 + \midrule
418 + PC  &     & -20.241 & 0.228 & -20.248 & 0.229 & -20.239 & 0.228 \\
419 + SP  & 0.0 & 1.039 & 0.733 & 2.037 & 0.565 & 1.225 & 0.743 \\
420 +    & 0.1 & 1.049 & 0.865 & 1.424 & 0.784 & 1.029 & 0.980 \\
421 +    & 0.2 & 0.982 & 0.976 & 0.969 & 0.980 & 0.960 & 0.980 \\
422 +    & 0.3 & 0.873 & 0.944 & 0.872 & 0.945 & 0.872 & 0.945 \\
423 + SF  & 0.0 & 1.041 & 0.967 & 0.994 & 0.989 & 0.957 & 0.993 \\
424 +    & 0.1 & 1.050 & 0.968 & 0.996 & 0.991 & 0.972 & 0.995 \\
425 +    & 0.2 & 0.982 & 0.975 & 0.959 & 0.980 & 0.960 & 0.980 \\
426 +    & 0.3 & 0.873 & 0.944 & 0.872 & 0.945 & 0.872 & 0.944 \\
427 + \midrule
428 + PC  &     & 0.795 & 0.000 & 0.792 & 0.000 & 0.793 & 0.000 \\
429 + SP  & 0.0 & 0.916 & 0.829 & 1.086 & 0.791 & 1.010 & 0.936 \\
430 +    & 0.1 & 0.958 & 0.917 & 1.049 & 0.943 & 1.001 & 0.995 \\
431 +    & 0.2 & 0.981 & 0.981 & 0.982 & 0.984 & 0.981 & 0.984 \\
432 +    & 0.3 & 0.950 & 0.952 & 0.950 & 0.953 & 0.950 & 0.953 \\
433 + SF  & 0.0 & 1.002 & 0.983 & 0.997 & 0.994 & 0.991 & 0.997 \\
434 +    & 0.1 & 1.003 & 0.984 & 0.996 & 0.995 & 0.993 & 0.997 \\
435 +    & 0.2 & 0.983 & 0.980 & 0.981 & 0.984 & 0.981 & 0.984 \\
436 +    & 0.3 & 0.950 & 0.952 & 0.950 & 0.953 & 0.950 & 0.953 \\
437 + \bottomrule
438 + \end{tabular}
439 + \label{tab:salt}
440 + \end{table}
441 +
442 + \begin{table}[htbp]
443 + \centering
444 + \caption{VARIANCE RESULTS FROM GAUSSIAN FITS TO ANGULAR
445 + DISTRIBUTIONS OF THE FORCE VECTORS IN THE CRYSTALLINE SODIUM CHLORIDE
446 + SYSTEM}
447 +
448 + \footnotesize
449 + \begin{tabular}{@{} ccrrrrrr @{}}
450 + \toprule
451 + \toprule
452 + & & \multicolumn{3}{c}{Force $\sigma^2$} \\
453 + \cmidrule(lr){3-5}
454 + \cmidrule(l){6-8}
455 + Method & $\alpha$ & 9~\AA & 12~\AA & 15~\AA \\
456 + \midrule
457 + PC  &     & 111.945 & 111.824 & 111.866 \\
458 + SP  & 0.0 & 112.414 & 152.215 & 38.087 \\
459 +    & 0.1 & 52.361 & 42.574 & 2.819 \\
460 +    & 0.2 & 10.847 & 9.709 & 9.686 \\
461 +    & 0.3 & 31.128 & 31.104 & 31.029 \\
462 + SF  & 0.0 & 10.025 & 3.555 & 1.648 \\
463 +    & 0.1 & 9.462 & 3.303 & 1.721 \\
464 +    & 0.2 & 11.454 & 9.813 & 9.701 \\
465 +    & 0.3 & 31.120 & 31.105 & 31.029 \\
466 + \bottomrule
467 + \end{tabular}
468 + \label{tab:saltAng}
469 + \end{table}
470 +
471 + The crystalline NaCl system is the most challenging test case for the
472 + pairwise summation methods, as evidenced by the results in tables
473 + \ref{tab:salt} and \ref{tab:saltAng}. The undamped and weakly damped
474 + {\sc sf} methods seem to be the best choices. These methods match well
475 + with {\sc spme} across the energy gap, force magnitude, and force
476 + directionality tests.  The {\sc sp} method struggles in all cases,
477 + with the exception of good dynamics reproduction when using weak
478 + electrostatic damping with a large cutoff radius.
479 +
480 + The moderate electrostatic damping case is not as good as we would
481 + expect given the long-time dynamics results observed for this system
482 + (see section \ref{sec:LongTimeDynamics}). Since the data in tables
483 + \ref{tab:salt} and \ref{tab:saltAng} are a test of instantaneous
484 + dynamics, this indicates that good long-time dynamics comes in part at
485 + the expense of short-time dynamics.
486 +
487 + \section{0.11M NaCl Solution Results}
488 +
489 + In an effort to bridge the charged atomic and neutral molecular
490 + systems, Na$^+$ and Cl$^-$ ion charge defects were incorporated into
491 + the liquid water system. This low ionic strength system consists of 4
492 + ions in the 1000 SPC/E water solvent ($\approx$0.11 M). The results
493 + for the energy gap comparisons and the force and torque vector
494 + magnitude comparisons are shown in table \ref{tab:solnWeak}.  The
495 + force and torque vector directionality results are displayed
496 + separately in table \ref{tab:solnWeakAng}, where the effect of
497 + group-based cutoffs and switching functions on the {\sc sp} and {\sc
498 + sf} potentials are investigated.
499 +
500 + \begin{table}[htbp]
501 + \centering
502 + \caption{REGRESSION RESULTS OF THE WEAK SODIUM CHLORIDE SOLUTION
503 + SYSTEM FOR $\Delta E$ VALUES ({\it upper}), FORCE VECTOR MAGNITUDES
504 + ({\it middle}) AND TORQUE VECTOR MAGNITUDES ({\it lower})}
505 +
506 + \footnotesize
507 + \begin{tabular}{@{} ccrrrrrr @{}}
508 + \toprule
509 + \toprule
510 + & & \multicolumn{2}{c}{9~\AA} & \multicolumn{2}{c}{12~\AA} & \multicolumn{2}{c}{15~\AA}\\
511 + \cmidrule(lr){3-4}
512 + \cmidrule(lr){5-6}
513 + \cmidrule(l){7-8}
514 + Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
515 + \midrule
516 + PC  &     & 0.247 & 0.000 & -1.103 & 0.001 & 5.480 & 0.015 \\
517 + SP  & 0.0 & 0.935 & 0.388 & 0.984 & 0.541 & 1.010 & 0.685 \\
518 +    & 0.1 & 0.951 & 0.603 & 0.993 & 0.875 & 1.001 & 0.979 \\
519 +    & 0.2 & 0.969 & 0.968 & 0.996 & 0.997 & 0.994 & 0.997 \\
520 +    & 0.3 & 0.955 & 0.966 & 0.984 & 0.992 & 0.978 & 0.991 \\
521 + SF  & 0.0 & 0.963 & 0.971 & 0.989 & 0.996 & 0.991 & 0.998 \\
522 +    & 0.1 & 0.970 & 0.971 & 0.995 & 0.997 & 0.997 & 0.999 \\
523 +    & 0.2 & 0.972 & 0.975 & 0.996 & 0.997 & 0.994 & 0.997 \\
524 +    & 0.3 & 0.955 & 0.966 & 0.984 & 0.992 & 0.978 & 0.991 \\
525 + GSC &     & 0.964 & 0.731 & 0.984 & 0.704 & 1.005 & 0.770 \\
526 + RF  &     & 0.968 & 0.605 & 0.974 & 0.541 & 1.014 & 0.614 \\
527 + \midrule
528 + PC  &     & 1.354 & 0.000 & -1.190 & 0.000 & -0.314 & 0.000 \\
529 + SP  & 0.0 & 0.720 & 0.338 & 0.808 & 0.523 & 0.860 & 0.643 \\
530 +    & 0.1 & 0.839 & 0.583 & 0.955 & 0.882 & 0.992 & 0.978 \\
531 +    & 0.2 & 0.995 & 0.987 & 0.999 & 1.000 & 0.999 & 1.000 \\
532 +    & 0.3 & 0.995 & 0.996 & 0.996 & 0.998 & 0.996 & 0.998 \\
533 + SF  & 0.0 & 0.998 & 0.994 & 1.000 & 0.998 & 1.000 & 0.999 \\
534 +    & 0.1 & 0.997 & 0.994 & 1.000 & 0.999 & 1.000 & 1.000 \\
535 +    & 0.2 & 0.999 & 0.998 & 0.999 & 1.000 & 0.999 & 1.000 \\
536 +    & 0.3 & 0.995 & 0.996 & 0.996 & 0.998 & 0.996 & 0.998 \\
537 + GSC &     & 0.995 & 0.990 & 0.998 & 0.997 & 0.998 & 0.996 \\
538 + RF  &     & 0.998 & 0.993 & 0.999 & 0.998 & 0.999 & 0.996 \\
539 + \midrule
540 + PC  &     & 2.437 & 0.000 & -1.872 & 0.000 & 2.138 & 0.000 \\
541 + SP  & 0.0 & 0.838 & 0.525 & 0.901 & 0.686 & 0.932 & 0.779 \\
542 +    & 0.1 & 0.914 & 0.733 & 0.979 & 0.932 & 0.995 & 0.987 \\
543 +    & 0.2 & 0.977 & 0.969 & 0.988 & 0.990 & 0.989 & 0.990 \\
544 +    & 0.3 & 0.952 & 0.950 & 0.964 & 0.971 & 0.965 & 0.970 \\
545 + SF  & 0.0 & 0.969 & 0.977 & 0.987 & 0.996 & 0.993 & 0.998 \\
546 +    & 0.1 & 0.975 & 0.978 & 0.993 & 0.996 & 0.997 & 0.998 \\
547 +    & 0.2 & 0.976 & 0.973 & 0.988 & 0.990 & 0.989 & 0.990 \\
548 +    & 0.3 & 0.952 & 0.950 & 0.964 & 0.971 & 0.965 & 0.970 \\
549 + GSC &     & 0.980 & 0.959 & 0.990 & 0.983 & 0.992 & 0.989 \\
550 + RF  &     & 0.984 & 0.975 & 0.996 & 0.995 & 0.998 & 0.998 \\
551 + \bottomrule
552 + \end{tabular}
553 + \label{tab:solnWeak}
554 + \end{table}
555 +
556 + \begin{table}[htbp]
557 + \centering
558 + \caption{VARIANCE RESULTS FROM GAUSSIAN FITS TO ANGULAR
559 + DISTRIBUTIONS OF THE FORCE AND TORQUE VECTORS IN THE WEAK SODIUM
560 + CHLORIDE SOLUTION SYSTEM}
561 +
562 + \footnotesize
563 + \begin{tabular}{@{} ccrrrrrr @{}}
564 + \toprule
565 + \toprule
566 + & & \multicolumn{3}{c}{Force $\sigma^2$} & \multicolumn{3}{c}{Torque $\sigma^2$} \\
567 + \cmidrule(lr){3-5}
568 + \cmidrule(l){6-8}
569 + Method & $\alpha$ & 9~\AA & 12~\AA & 15~\AA & 9~\AA & 12~\AA & 15~\AA \\
570 + \midrule
571 + PC  &     & 882.863 & 510.435 & 344.201 & 277.691 & 154.231 & 100.131 \\
572 + SP  & 0.0 & 732.569 & 405.704 & 257.756 & 261.445 & 142.245 & 91.497 \\
573 +    & 0.1 & 329.031 & 70.746 & 12.014 & 118.496 & 25.218 & 4.711 \\
574 +    & 0.2 & 6.772 & 0.153 & 0.118 & 9.780 & 2.101 & 2.102 \\
575 +    & 0.3 & 0.951 & 0.774 & 0.784 & 12.108 & 7.673 & 7.851 \\
576 + SF  & 0.0 & 2.555 & 0.762 & 0.313 & 6.590 & 1.328 & 0.558 \\
577 +    & 0.1 & 2.561 & 0.560 & 0.123 & 6.464 & 1.162 & 0.457 \\
578 +    & 0.2 & 0.501 & 0.118 & 0.118 & 5.698 & 2.074 & 2.099 \\
579 +    & 0.3 & 0.943 & 0.774 & 0.784 & 12.118 & 7.674 & 7.851 \\
580 + GSC &     & 2.915 & 0.643 & 0.261 & 9.576 & 3.133 & 1.812 \\
581 + RF  &     & 2.415 & 0.452 & 0.130 & 6.915 & 1.423 & 0.507 \\
582 + \midrule
583 + GSSP  & 0.0 & 2.915 & 0.643 & 0.261 & 9.576 & 3.133 & 1.812 \\
584 +      & 0.1 & 2.251 & 0.324 & 0.064 & 7.628 & 1.639 & 0.497 \\
585 +      & 0.2 & 0.590 & 0.118 & 0.116 & 6.080 & 2.096 & 2.103 \\
586 +      & 0.3 & 0.953 & 0.759 & 0.780 & 12.347 & 7.683 & 7.849 \\
587 + GSSF  & 0.0 & 1.541 & 0.301 & 0.096 & 6.407 & 1.316 & 0.496 \\
588 +      & 0.1 & 1.541 & 0.237 & 0.050 & 6.356 & 1.202 & 0.457 \\
589 +      & 0.2 & 0.568 & 0.118 & 0.116 & 6.166 & 2.105 & 2.105 \\
590 +      & 0.3 & 0.954 & 0.759 & 0.780 & 12.337 & 7.684 & 7.849 \\
591 + \bottomrule
592 + \end{tabular}
593 + \label{tab:solnWeakAng}
594 + \end{table}
595 +
596 + Because this system is a perturbation of the pure liquid water system,
597 + comparisons are best drawn between these two sets. The {\sc sp} and
598 + {\sc sf} methods are not significantly affected by the inclusion of a
599 + few ions. The aspect of cutoff sphere neutralization aids in the
600 + smooth incorporation of these ions; thus, all of the observations
601 + regarding these methods carry over from section
602 + \ref{sec:WaterResults}. The differences between these systems are more
603 + visible for the {\sc rf} method. Though good force agreement is still
604 + maintained, the energy gaps show a significant increase in the scatter
605 + of the data.
606 +
607 + \section{1.1M NaCl Solution Results}
608 +
609 + The bridging of the charged atomic and neutral molecular systems was
610 + further developed by considering a high ionic strength system
611 + consisting of 40 ions in the 1000 SPC/E water solvent ($\approx$1.1
612 + M). The results for the energy gap comparisons and the force and
613 + torque vector magnitude comparisons are shown in table
614 + \ref{tab:solnStr}.  The force and torque vector directionality
615 + results are displayed separately in table \ref{tab:solnStrAng}, where
616 + the effect of group-based cutoffs and switching functions on the {\sc
617 + sp} and {\sc sf} potentials are investigated.
618 +
619 + \begin{table}[htbp]
620 + \centering
621 + \caption{REGRESSION RESULTS OF THE STRONG SODIUM CHLORIDE SOLUTION
622 + SYSTEM FOR $\Delta E$ VALUES ({\it upper}), FORCE VECTOR MAGNITUDES
623 + ({\it middle}) AND TORQUE VECTOR MAGNITUDES ({\it lower})}
624 +
625 + \footnotesize
626 + \begin{tabular}{@{} ccrrrrrr @{}}
627 + \toprule
628 + \toprule
629 + & & \multicolumn{2}{c}{9~\AA} & \multicolumn{2}{c}{12~\AA} & \multicolumn{2}{c}{15~\AA}\\
630 + \cmidrule(lr){3-4}
631 + \cmidrule(lr){5-6}
632 + \cmidrule(l){7-8}
633 + Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
634 + \midrule
635 + PC  &     & -0.081 & 0.000 & 0.945 & 0.001 & 0.073 & 0.000 \\
636 + SP  & 0.0 & 0.978 & 0.469 & 0.996 & 0.672 & 0.975 & 0.668 \\
637 +    & 0.1 & 0.944 & 0.645 & 0.997 & 0.886 & 0.991 & 0.978 \\
638 +    & 0.2 & 0.873 & 0.896 & 0.985 & 0.993 & 0.980 & 0.993 \\
639 +    & 0.3 & 0.831 & 0.860 & 0.960 & 0.979 & 0.955 & 0.977 \\
640 + SF  & 0.0 & 0.858 & 0.905 & 0.985 & 0.970 & 0.990 & 0.998 \\
641 +    & 0.1 & 0.865 & 0.907 & 0.992 & 0.974 & 0.994 & 0.999 \\
642 +    & 0.2 & 0.862 & 0.894 & 0.985 & 0.993 & 0.980 & 0.993 \\
643 +    & 0.3 & 0.831 & 0.859 & 0.960 & 0.979 & 0.955 & 0.977 \\
644 + GSC &     & 1.985 & 0.152 & 0.760 & 0.031 & 1.106 & 0.062 \\
645 + RF  &     & 2.414 & 0.116 & 0.813 & 0.017 & 1.434 & 0.047 \\
646 + \midrule
647 + PC  &     & -7.028 & 0.000 & -9.364 & 0.000 & 0.925 & 0.865 \\
648 + SP  & 0.0 & 0.701 & 0.319 & 0.909 & 0.773 & 0.861 & 0.665 \\
649 +    & 0.1 & 0.824 & 0.565 & 0.970 & 0.930 & 0.990 & 0.979 \\
650 +    & 0.2 & 0.988 & 0.981 & 0.995 & 0.998 & 0.991 & 0.998 \\
651 +    & 0.3 & 0.983 & 0.985 & 0.985 & 0.991 & 0.978 & 0.990 \\
652 + SF  & 0.0 & 0.993 & 0.988 & 0.992 & 0.984 & 0.998 & 0.999 \\
653 +    & 0.1 & 0.993 & 0.989 & 0.993 & 0.986 & 0.998 & 1.000 \\
654 +    & 0.2 & 0.993 & 0.992 & 0.995 & 0.998 & 0.991 & 0.998 \\
655 +    & 0.3 & 0.983 & 0.985 & 0.985 & 0.991 & 0.978 & 0.990 \\
656 + GSC &     & 0.964 & 0.897 & 0.970 & 0.917 & 0.925 & 0.865 \\
657 + RF  &     & 0.994 & 0.864 & 0.988 & 0.865 & 0.980 & 0.784 \\
658 + \midrule
659 + PC  &     & -2.212 & 0.000 & -0.588 & 0.000 & 0.953 & 0.925 \\
660 + SP  & 0.0 & 0.800 & 0.479 & 0.930 & 0.804 & 0.924 & 0.759 \\
661 +    & 0.1 & 0.883 & 0.694 & 0.976 & 0.942 & 0.993 & 0.986 \\
662 +    & 0.2 & 0.952 & 0.943 & 0.980 & 0.984 & 0.980 & 0.983 \\
663 +    & 0.3 & 0.914 & 0.909 & 0.943 & 0.948 & 0.944 & 0.946 \\
664 + SF  & 0.0 & 0.945 & 0.953 & 0.980 & 0.984 & 0.991 & 0.998 \\
665 +    & 0.1 & 0.951 & 0.954 & 0.987 & 0.986 & 0.995 & 0.998 \\
666 +    & 0.2 & 0.951 & 0.946 & 0.980 & 0.984 & 0.980 & 0.983 \\
667 +    & 0.3 & 0.914 & 0.908 & 0.943 & 0.948 & 0.944 & 0.946 \\
668 + GSC &     & 0.882 & 0.818 & 0.939 & 0.902 & 0.953 & 0.925 \\
669 + RF  &     & 0.949 & 0.939 & 0.988 & 0.988 & 0.992 & 0.993 \\
670 + \bottomrule
671 + \end{tabular}
672 + \label{tab:solnStr}
673 + \end{table}
674 +
675 + \begin{table}[htbp]
676 + \centering
677 + \caption{VARIANCE RESULTS FROM GAUSSIAN FITS TO ANGULAR DISTRIBUTIONS
678 + OF THE FORCE AND TORQUE VECTORS IN THE STRONG SODIUM CHLORIDE SOLUTION
679 + SYSTEM}
680 +
681 + \footnotesize
682 + \begin{tabular}{@{} ccrrrrrr @{}}
683 + \toprule
684 + \toprule
685 + & & \multicolumn{3}{c}{Force $\sigma^2$} & \multicolumn{3}{c}{Torque $\sigma^2$} \\
686 + \cmidrule(lr){3-5}
687 + \cmidrule(l){6-8}
688 + Method & $\alpha$ & 9~\AA & 12~\AA & 15~\AA & 9~\AA & 12~\AA & 15~\AA \\
689 + \midrule
690 + PC  &     & 957.784 & 513.373 & 2.260 & 340.043 & 179.443 & 13.079 \\
691 + SP  & 0.0 & 786.244 & 139.985 & 259.289 & 311.519 & 90.280 & 105.187 \\
692 +    & 0.1 & 354.697 & 38.614 & 12.274 & 144.531 & 23.787 & 5.401 \\
693 +    & 0.2 & 7.674 & 0.363 & 0.215 & 16.655 & 3.601 & 3.634 \\
694 +    & 0.3 & 1.745 & 1.456 & 1.449 & 23.669 & 14.376 & 14.240 \\
695 + SF  & 0.0 & 3.282 & 8.567 & 0.369 & 11.904 & 6.589 & 0.717 \\
696 +    & 0.1 & 3.263 & 7.479 & 0.142 & 11.634 & 5.750 & 0.591 \\
697 +    & 0.2 & 0.686 & 0.324 & 0.215 & 10.809 & 3.580 & 3.635 \\
698 +    & 0.3 & 1.749 & 1.456 & 1.449 & 23.635 & 14.375 & 14.240 \\
699 + GSC &     & 6.181 & 2.904 & 2.263 & 44.349 & 19.442 & 12.873 \\
700 + RF  &     & 3.891 & 0.847 & 0.323 & 18.628 & 3.995 & 2.072 \\
701 + \midrule
702 + GSSP  & 0.0 & 6.197 & 2.929 & 2.290 & 44.441 & 19.442 & 12.873 \\
703 +      & 0.1 & 4.688 & 1.064 & 0.260 & 31.208 & 6.967 & 2.303 \\
704 +      & 0.2 & 1.021 & 0.218 & 0.213 & 14.425 & 3.629 & 3.649 \\
705 +      & 0.3 & 1.752 & 1.454 & 1.451 & 23.540 & 14.390 & 14.245 \\
706 + GSSF  & 0.0 & 2.494 & 0.546 & 0.217 & 16.391 & 3.230 & 1.613 \\
707 +      & 0.1 & 2.448 & 0.429 & 0.106 & 16.390 & 2.827 & 1.159 \\
708 +      & 0.2 & 0.899 & 0.214 & 0.213 & 13.542 & 3.583 & 3.645 \\
709 +      & 0.3 & 1.752 & 1.454 & 1.451 & 23.587 & 14.390 & 14.245 \\
710 + \bottomrule
711 + \end{tabular}
712 + \label{tab:solnStrAng}
713 + \end{table}
714 +
715 + The {\sc rf} method struggles with the jump in ionic strength. The
716 + configuration energy differences degrade to unusable levels while the
717 + forces and torques show a more modest reduction in the agreement with
718 + {\sc spme}. The {\sc rf} method was designed for homogeneous systems,
719 + and this attribute is apparent in these results.
720 +
721 + The {\sc sp} and {\sc sf} methods require larger cutoffs to maintain
722 + their agreement with {\sc spme}. With these results, we still
723 + recommend undamped to moderate damping for the {\sc sf} method and
724 + moderate damping for the {\sc sp} method, both with cutoffs greater
725 + than 12~\AA.
726 +
727 + \section{6~\AA\ Argon Sphere in SPC/E Water Results}
728 +
729 + The final model system studied was a 6~\AA\ sphere of Argon solvated
730 + by SPC/E water. This serves as a test case of a specifically sized
731 + electrostatic defect in a disordered molecular system. The results for
732 + the energy gap comparisons and the force and torque vector magnitude
733 + comparisons are shown in table \ref{tab:argon}.  The force and torque
734 + vector directionality results are displayed separately in table
735 + \ref{tab:argonAng}, where the effect of group-based cutoffs and
736 + switching functions on the {\sc sp} and {\sc sf} potentials are
737 + investigated.
738 +
739 + \begin{table}[htbp]
740 + \centering
741 + \caption{REGRESSION RESULTS OF THE 6~\AA\ ARGON SPHERE IN LIQUID
742 + WATER SYSTEM FOR $\Delta E$ VALUES ({\it upper}), FORCE VECTOR
743 + MAGNITUDES ({\it middle}) AND TORQUE VECTOR MAGNITUDES ({\it lower})}
744 +
745 + \footnotesize
746 + \begin{tabular}{@{} ccrrrrrr @{}}
747 + \toprule
748 + \toprule
749 + & & \multicolumn{2}{c}{9~\AA} & \multicolumn{2}{c}{12~\AA} & \multicolumn{2}{c}{15~\AA}\\
750 + \cmidrule(lr){3-4}
751 + \cmidrule(lr){5-6}
752 + \cmidrule(l){7-8}
753 + Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
754 + \midrule
755 + PC  &     & 2.320 & 0.008 & -0.650 & 0.001 & 3.848 & 0.029 \\
756 + SP  & 0.0 & 1.053 & 0.711 & 0.977 & 0.820 & 0.974 & 0.882 \\
757 +    & 0.1 & 1.032 & 0.846 & 0.989 & 0.965 & 0.992 & 0.994 \\
758 +    & 0.2 & 0.993 & 0.995 & 0.982 & 0.998 & 0.986 & 0.998 \\
759 +    & 0.3 & 0.968 & 0.995 & 0.954 & 0.992 & 0.961 & 0.994 \\
760 + SF  & 0.0 & 0.982 & 0.996 & 0.992 & 0.999 & 0.993 & 1.000 \\
761 +    & 0.1 & 0.987 & 0.996 & 0.996 & 0.999 & 0.997 & 1.000 \\
762 +    & 0.2 & 0.989 & 0.998 & 0.984 & 0.998 & 0.989 & 0.998 \\
763 +    & 0.3 & 0.971 & 0.995 & 0.957 & 0.992 & 0.965 & 0.994 \\
764 + GSC &     & 1.002 & 0.983 & 0.992 & 0.973 & 0.996 & 0.971 \\
765 + RF  &     & 0.998 & 0.995 & 0.999 & 0.998 & 0.998 & 0.998 \\
766 + \midrule
767 + PC  &     & -36.559 & 0.002 & -44.917 & 0.004 & -52.945 & 0.006 \\
768 + SP  & 0.0 & 0.890 & 0.786 & 0.927 & 0.867 & 0.949 & 0.909 \\
769 +    & 0.1 & 0.942 & 0.895 & 0.984 & 0.974 & 0.997 & 0.995 \\
770 +    & 0.2 & 0.999 & 0.997 & 1.000 & 1.000 & 1.000 & 1.000 \\
771 +    & 0.3 & 1.001 & 0.999 & 1.001 & 1.000 & 1.001 & 1.000 \\
772 + SF  & 0.0 & 1.000 & 0.999 & 1.000 & 1.000 & 1.000 & 1.000 \\
773 +    & 0.1 & 1.000 & 0.999 & 1.000 & 1.000 & 1.000 & 1.000 \\
774 +    & 0.2 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 \\
775 +    & 0.3 & 1.001 & 0.999 & 1.001 & 1.000 & 1.001 & 1.000 \\
776 + GSC &     & 0.999 & 0.999 & 1.000 & 1.000 & 1.000 & 1.000 \\
777 + RF  &     & 0.999 & 0.999 & 1.000 & 1.000 & 1.000 & 1.000 \\
778 + \midrule
779 + PC  &     & 1.984 & 0.000 & 0.012 & 0.000 & 1.357 & 0.000 \\
780 + SP  & 0.0 & 0.850 & 0.552 & 0.907 & 0.703 & 0.938 & 0.793 \\
781 +    & 0.1 & 0.924 & 0.755 & 0.980 & 0.936 & 0.995 & 0.988 \\
782 +    & 0.2 & 0.985 & 0.983 & 0.986 & 0.988 & 0.987 & 0.988 \\
783 +    & 0.3 & 0.961 & 0.966 & 0.959 & 0.964 & 0.960 & 0.966 \\
784 + SF  & 0.0 & 0.977 & 0.989 & 0.987 & 0.995 & 0.992 & 0.998 \\
785 +    & 0.1 & 0.982 & 0.989 & 0.992 & 0.996 & 0.997 & 0.998 \\
786 +    & 0.2 & 0.984 & 0.987 & 0.986 & 0.987 & 0.987 & 0.988 \\
787 +    & 0.3 & 0.961 & 0.966 & 0.959 & 0.964 & 0.960 & 0.966 \\
788 + GSC &     & 0.995 & 0.981 & 0.999 & 0.990 & 1.000 & 0.993 \\
789 + RF  &     & 0.993 & 0.988 & 0.997 & 0.995 & 0.999 & 0.998 \\
790 + \bottomrule
791 + \end{tabular}
792 + \label{tab:argon}
793 + \end{table}
794 +
795 + \begin{table}[htbp]
796 + \centering
797 + \caption{VARIANCE RESULTS FROM GAUSSIAN FITS TO ANGULAR
798 + DISTRIBUTIONS OF THE FORCE AND TORQUE VECTORS IN THE 6~\AA\ SPHERE OF
799 + ARGON IN LIQUID WATER SYSTEM}  
800 +
801 + \footnotesize
802 + \begin{tabular}{@{} ccrrrrrr @{}}
803 + \toprule
804 + \toprule
805 + & & \multicolumn{3}{c}{Force $\sigma^2$} & \multicolumn{3}{c}{Torque $\sigma^2$} \\
806 + \cmidrule(lr){3-5}
807 + \cmidrule(l){6-8}
808 + Method & $\alpha$ & 9~\AA & 12~\AA & 15~\AA & 9~\AA & 12~\AA & 15~\AA \\
809 + \midrule
810 + PC  &     & 568.025 & 265.993 & 195.099 & 246.626 & 138.600 & 91.654 \\
811 + SP  & 0.0 & 504.578 & 251.694 & 179.932 & 231.568 & 131.444 & 85.119 \\
812 +    & 0.1 & 224.886 & 49.746 & 9.346 & 104.482 & 23.683 & 4.480 \\
813 +    & 0.2 & 4.889 & 0.197 & 0.155 & 6.029 & 2.507 & 2.269 \\
814 +    & 0.3 & 0.817 & 0.833 & 0.812 & 8.286 & 8.436 & 8.135 \\
815 + SF  & 0.0 & 1.924 & 0.675 & 0.304 & 3.658 & 1.448 & 0.600 \\
816 +    & 0.1 & 1.937 & 0.515 & 0.143 & 3.565 & 1.308 & 0.546 \\
817 +    & 0.2 & 0.407 & 0.166 & 0.156 & 3.086 & 2.501 & 2.274 \\
818 +    & 0.3 & 0.815 & 0.833 & 0.812 & 8.330 & 8.437 & 8.135 \\
819 + GSC &     & 2.098 & 0.584 & 0.284 & 5.391 & 2.414 & 1.501 \\
820 + RF  &     & 1.822 & 0.408 & 0.142 & 3.799 & 1.362 & 0.550 \\
821 + \midrule
822 + GSSP  & 0.0 & 2.098 & 0.584 & 0.284 & 5.391 & 2.414 & 1.501 \\
823 +      & 0.1 & 1.652 & 0.309 & 0.087 & 4.197 & 1.401 & 0.590 \\
824 +      & 0.2 & 0.465 & 0.165 & 0.153 & 3.323 & 2.529 & 2.273 \\
825 +      & 0.3 & 0.813 & 0.825 & 0.816 & 8.316 & 8.447 & 8.132 \\
826 + GSSF  & 0.0 & 1.173 & 0.292 & 0.113 & 3.452 & 1.347 & 0.583 \\
827 +      & 0.1 & 1.166 & 0.240 & 0.076 & 3.381 & 1.281 & 0.575 \\
828 +      & 0.2 & 0.459 & 0.165 & 0.153 & 3.430 & 2.542 & 2.273 \\
829 +      & 0.3 & 0.814 & 0.825 & 0.816 & 8.325 & 8.447 & 8.132 \\
830 + \bottomrule
831 + \end{tabular}
832 + \label{tab:argonAng}
833 + \end{table}
834 +
835 + This system does not appear to show any significant deviations from
836 + the previously observed results. The {\sc sp} and {\sc sf} methods
837 + have agreements similar to those observed in section
838 + \ref{sec:WaterResults}. The only significant difference is the
839 + improvement in the configuration energy differences for the {\sc rf}
840 + method. This is surprising in that we are introducing an inhomogeneity
841 + to the system; however, this inhomogeneity is charge-neutral and does
842 + not result in charged cutoff spheres. The charge-neutrality of the
843 + cutoff spheres, which the {\sc sp} and {\sc sf} methods explicitly
844 + enforce, seems to play a greater role in the stability of the {\sc rf}
845 + method than the required homogeneity of the environment.

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines