ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/chrisDissertation/IndividualSystems.tex
Revision: 3023
Committed: Tue Sep 26 03:07:59 2006 UTC (18 years, 7 months ago) by chrisfen
Content type: application/x-tex
File size: 38941 byte(s)
Log Message:
Refinements.  Just a little proof checking left...

File Contents

# Content
1 \chapter{\label{app:IndividualResults} INDIVIDUAL SYSTEM ANALYSIS RESULTS}
2
3 The combined system results in chapter \ref{chap:electrostatics}
4 (sections \ref{sec:EnergyResults} through \ref{sec:FTDirResults}) show
5 how the pairwise methods compare to the Ewald summation in the general
6 sense over all of the system types. It is also useful to consider
7 each of the studied systems in an individual fashion, so that we can
8 identify conditions that are particularly difficult for a selected
9 pairwise method to address. This allows us to further establish the
10 limitations of these pairwise techniques. In this appendix, the
11 energy difference, force vector, and torque vector analyses are
12 presented on an individual system basis.
13
14 \section{SPC/E Water Results}\label{sec:WaterResults}
15
16 The first system considered was liquid water at 300~K using the SPC/E
17 model of water.\cite{Berendsen87} The results for the energy gap
18 comparisons and the force and torque vector magnitude comparisons are
19 shown in table \ref{tab:spce}. The force and torque vector
20 directionality results are displayed separately in table
21 \ref{tab:spceAng}, where the effect of group-based cutoffs and
22 switching functions on the {\sc sp} and {\sc sf} potentials are also
23 investigated. In all of the individual results table, the method
24 abbreviations are as follows:
25
26 \begin{itemize}[itemsep=0pt]
27 \item PC = Pure Cutoff,
28 \item SP = Shifted Potential,
29 \item SF = Shifted Force,
30 \item GSC = Group Switched Cutoff,
31 \item RF = Reaction Field (where $\varepsilon \approx\infty$),
32 \item GSSP = Group Switched Shifted Potential, and
33 \item GSSF = Group Switched Shifted Force.
34 \end{itemize}
35
36 \begin{table}[htbp]
37 \centering
38 \caption{REGRESSION RESULTS OF THE LIQUID WATER SYSTEM FOR THE
39 $\Delta E$ VALUES ({\it upper}), FORCE VECTOR MAGNITUDES ({\it middle})
40 AND TORQUE VECTOR MAGNITUDES ({\it lower})}
41
42 \footnotesize
43 \begin{tabular}{@{} ccrrrrrr @{}}
44 \toprule
45 \toprule
46 & & \multicolumn{2}{c}{9~\AA} & \multicolumn{2}{c}{12~\AA} & \multicolumn{2}{c}{15~\AA}\\
47 \cmidrule(lr){3-4}
48 \cmidrule(lr){5-6}
49 \cmidrule(l){7-8}
50 Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
51 \midrule
52 PC & & 3.046 & 0.002 & -3.018 & 0.002 & 4.719 & 0.005 \\
53 SP & 0.0 & 1.035 & 0.218 & 0.908 & 0.313 & 1.037 & 0.470 \\
54 & 0.1 & 1.021 & 0.387 & 0.965 & 0.752 & 1.006 & 0.947 \\
55 & 0.2 & 0.997 & 0.962 & 1.001 & 0.994 & 0.994 & 0.996 \\
56 & 0.3 & 0.984 & 0.980 & 0.997 & 0.985 & 0.982 & 0.987 \\
57 SF & 0.0 & 0.977 & 0.974 & 0.996 & 0.992 & 0.991 & 0.997 \\
58 & 0.1 & 0.983 & 0.974 & 1.001 & 0.994 & 0.996 & 0.998 \\
59 & 0.2 & 0.992 & 0.989 & 1.001 & 0.995 & 0.994 & 0.996 \\
60 & 0.3 & 0.984 & 0.980 & 0.996 & 0.985 & 0.982 & 0.987 \\
61 GSC & & 0.918 & 0.862 & 0.852 & 0.756 & 0.801 & 0.700 \\
62 RF & & 0.971 & 0.958 & 0.975 & 0.987 & 0.959 & 0.983 \\
63 \midrule
64 PC & & -1.647 & 0.000 & -0.127 & 0.000 & -0.979 & 0.000 \\
65 SP & 0.0 & 0.735 & 0.368 & 0.813 & 0.537 & 0.865 & 0.659 \\
66 & 0.1 & 0.850 & 0.612 & 0.956 & 0.887 & 0.992 & 0.979 \\
67 & 0.2 & 0.996 & 0.989 & 1.000 & 1.000 & 1.000 & 1.000 \\
68 & 0.3 & 0.996 & 0.998 & 0.997 & 0.998 & 0.996 & 0.998 \\
69 SF & 0.0 & 0.998 & 0.995 & 1.000 & 0.999 & 1.000 & 0.999 \\
70 & 0.1 & 0.998 & 0.995 & 1.000 & 0.999 & 1.000 & 1.000 \\
71 & 0.2 & 0.999 & 0.998 & 1.000 & 1.000 & 1.000 & 1.000 \\
72 & 0.3 & 0.996 & 0.998 & 0.997 & 0.998 & 0.996 & 0.998 \\
73 GSC & & 0.998 & 0.995 & 1.000 & 0.999 & 1.000 & 1.000 \\
74 RF & & 0.999 & 0.995 & 1.000 & 0.999 & 1.000 & 1.000 \\
75 \midrule
76 PC & & 2.387 & 0.000 & 0.183 & 0.000 & 1.282 & 0.000 \\
77 SP & 0.0 & 0.847 & 0.543 & 0.904 & 0.694 & 0.935 & 0.786 \\
78 & 0.1 & 0.922 & 0.749 & 0.980 & 0.934 & 0.996 & 0.988 \\
79 & 0.2 & 0.987 & 0.985 & 0.989 & 0.992 & 0.990 & 0.993 \\
80 & 0.3 & 0.965 & 0.973 & 0.967 & 0.975 & 0.967 & 0.976 \\
81 SF & 0.0 & 0.978 & 0.990 & 0.988 & 0.997 & 0.993 & 0.999 \\
82 & 0.1 & 0.983 & 0.991 & 0.993 & 0.997 & 0.997 & 0.999 \\
83 & 0.2 & 0.986 & 0.989 & 0.989 & 0.992 & 0.990 & 0.993 \\
84 & 0.3 & 0.965 & 0.973 & 0.967 & 0.975 & 0.967 & 0.976 \\
85 GSC & & 0.995 & 0.981 & 0.999 & 0.991 & 1.001 & 0.994 \\
86 RF & & 0.993 & 0.989 & 0.998 & 0.996 & 1.000 & 0.999 \\
87 \bottomrule
88 \end{tabular}
89 \label{tab:spce}
90 \end{table}
91
92 \begin{table}[htbp]
93 \centering
94 \caption{VARIANCE RESULTS FROM GAUSSIAN FITS TO ANGULAR
95 DISTRIBUTIONS OF THE FORCE AND TORQUE VECTORS IN THE LIQUID WATER
96 SYSTEM}
97
98 \footnotesize
99 \begin{tabular}{@{} ccrrrrrr @{}}
100 \toprule
101 \toprule
102 & & \multicolumn{3}{c}{Force $\sigma^2$} & \multicolumn{3}{c}{Torque $\sigma^2$} \\
103 \cmidrule(lr){3-5}
104 \cmidrule(l){6-8}
105 Method & $\alpha$ & 9~\AA & 12~\AA & 15~\AA & 9~\AA & 12~\AA & 15~\AA \\
106 \midrule
107 PC & & 783.759 & 481.353 & 332.677 & 248.674 & 144.382 & 98.535 \\
108 SP & 0.0 & 659.440 & 380.699 & 250.002 & 235.151 & 134.661 & 88.135 \\
109 & 0.1 & 293.849 & 67.772 & 11.609 & 105.090 & 23.813 & 4.369 \\
110 & 0.2 & 5.975 & 0.136 & 0.094 & 5.553 & 1.784 & 1.536 \\
111 & 0.3 & 0.725 & 0.707 & 0.693 & 7.293 & 6.933 & 6.748 \\
112 SF & 0.0 & 2.238 & 0.713 & 0.292 & 3.290 & 1.090 & 0.416 \\
113 & 0.1 & 2.238 & 0.524 & 0.115 & 3.184 & 0.945 & 0.326 \\
114 & 0.2 & 0.374 & 0.102 & 0.094 & 2.598 & 1.755 & 1.537 \\
115 & 0.3 & 0.721 & 0.707 & 0.693 & 7.322 & 6.933 & 6.748 \\
116 GSC & & 2.431 & 0.614 & 0.274 & 5.135 & 2.133 & 1.339 \\
117 RF & & 2.091 & 0.403 & 0.113 & 3.583 & 1.071 & 0.399 \\
118 \midrule
119 GSSP & 0.0 & 2.431 & 0.614 & 0.274 & 5.135 & 2.133 & 1.339 \\
120 & 0.1 & 1.879 & 0.291 & 0.057 & 3.983 & 1.117 & 0.370 \\
121 & 0.2 & 0.443 & 0.103 & 0.093 & 2.821 & 1.794 & 1.532 \\
122 & 0.3 & 0.728 & 0.694 & 0.692 & 7.387 & 6.942 & 6.748 \\
123 GSSF & 0.0 & 1.298 & 0.270 & 0.083 & 3.098 & 0.992 & 0.375 \\
124 & 0.1 & 1.296 & 0.210 & 0.044 & 3.055 & 0.922 & 0.330 \\
125 & 0.2 & 0.433 & 0.104 & 0.093 & 2.895 & 1.797 & 1.532 \\
126 & 0.3 & 0.728 & 0.694 & 0.692 & 7.410 & 6.942 & 6.748 \\
127 \bottomrule
128 \end{tabular}
129 \label{tab:spceAng}
130 \end{table}
131
132 The water results parallel the combined results seen in sections
133 \ref{sec:EnergyResults} through \ref{sec:FTDirResults}. There is good
134 agreement with {\sc spme} in both energetic and dynamic behavior when
135 using the {\sc sf} method with and without damping. The {\sc sp}
136 method does well with an $\alpha$ around 0.2~\AA$^{-1}$, particularly
137 with cutoff radii greater than 12~\AA. Over-damping the electrostatics
138 reduces the agreement between both these methods and {\sc spme}.
139
140 The pure cutoff ({\sc pc}) method performs poorly, again mirroring the
141 observations from the combined results. In contrast to these results, however, the use of a switching function and group
142 based cutoffs greatly improves the results for these neutral water
143 molecules. The group switched cutoff ({\sc gsc}) does not mimic the
144 energetics of {\sc spme} as well as the {\sc sp} (with moderate
145 damping) and {\sc sf} methods, but the dynamics are quite good. The
146 switching functions correct discontinuities in the potential and
147 forces, leading to these improved results. Such improvements with the
148 use of a switching function have been recognized in previous
149 studies,\cite{Andrea83,Steinbach94} and this proves to be a useful
150 tactic for stably incorporating local area electrostatic effects.
151
152 The reaction field ({\sc rf}) method simply extends upon the results
153 observed in the {\sc gsc} case. Both methods are similar in form
154 (i.e. neutral groups, switching function), but {\sc rf} incorporates
155 an added effect from the external dielectric. This similarity
156 translates into the same good dynamic results and improved energetic
157 agreement with {\sc spme}. Though this agreement is not to the level
158 of the moderately damped {\sc sp} and {\sc sf} methods, these results
159 show how incorporating some implicit properties of the surroundings
160 (i.e. $\epsilon_\textrm{S}$) can improve the solvent depiction.
161
162 As a final note for the liquid water system, use of group cutoffs and a
163 switching function leads to noticeable improvements in the {\sc sp}
164 and {\sc sf} methods, primarily in directionality of the force and
165 torque vectors (table \ref{tab:spceAng}). The {\sc sp} method shows
166 significant narrowing of the angle distribution when using little to
167 no damping and only modest improvement for the recommended conditions
168 ($\alpha = 0.2$~\AA$^{-1}$ and $R_\textrm{c}~\geqslant~12$~\AA). The
169 {\sc sf} method shows modest narrowing across all damping and cutoff
170 ranges of interest. When over-damping these methods, group cutoffs and
171 the switching function do not improve the force and torque
172 directionalities.
173
174 \section{SPC/E Ice I$_\textrm{c}$ Results}\label{sec:IceResults}
175
176 In addition to the disordered molecular system above, the ordered
177 molecular system of ice I$_\textrm{c}$ was also considered. Ice
178 polymorph could have been used to fit this role; however, ice
179 I$_\textrm{c}$ was chosen because it can form an ideal periodic
180 lattice with the same number of water molecules used in the disordered
181 liquid state case. The results for the energy gap comparisons and the
182 force and torque vector magnitude comparisons are shown in table
183 \ref{tab:ice}. The force and torque vector directionality results are
184 displayed separately in table \ref{tab:iceAng}, where the effect of
185 group-based cutoffs and switching functions on the {\sc sp} and {\sc
186 sf} potentials are also displayed.
187
188 \begin{table}[htbp]
189 \centering
190 \caption{REGRESSION RESULTS OF THE ICE I$_\textrm{c}$ SYSTEM FOR
191 $\Delta E$ VALUES ({\it upper}), FORCE VECTOR MAGNITUDES ({\it
192 middle}) AND TORQUE VECTOR MAGNITUDES ({\it lower})}
193
194 \footnotesize
195 \begin{tabular}{@{} ccrrrrrr @{}}
196 \toprule
197 \toprule
198 & & \multicolumn{2}{c}{9~\AA} & \multicolumn{2}{c}{12~\AA} & \multicolumn{2}{c}{15~\AA}\\
199 \cmidrule(lr){3-4}
200 \cmidrule(lr){5-6}
201 \cmidrule(l){7-8}
202 Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
203 \midrule
204 PC & & 19.897 & 0.047 & -29.214 & 0.048 & -3.771 & 0.001 \\
205 SP & 0.0 & -0.014 & 0.000 & 2.135 & 0.347 & 0.457 & 0.045 \\
206 & 0.1 & 0.321 & 0.017 & 1.490 & 0.584 & 0.886 & 0.796 \\
207 & 0.2 & 0.896 & 0.872 & 1.011 & 0.998 & 0.997 & 0.999 \\
208 & 0.3 & 0.983 & 0.997 & 0.992 & 0.997 & 0.991 & 0.997 \\
209 SF & 0.0 & 0.943 & 0.979 & 1.048 & 0.978 & 0.995 & 0.999 \\
210 & 0.1 & 0.948 & 0.979 & 1.044 & 0.983 & 1.000 & 0.999 \\
211 & 0.2 & 0.982 & 0.997 & 0.969 & 0.960 & 0.997 & 0.999 \\
212 & 0.3 & 0.985 & 0.997 & 0.961 & 0.961 & 0.991 & 0.997 \\
213 GSC & & 0.983 & 0.985 & 0.966 & 0.994 & 1.003 & 0.999 \\
214 RF & & 0.924 & 0.944 & 0.990 & 0.996 & 0.991 & 0.998 \\
215 \midrule
216 PC & & -4.375 & 0.000 & 6.781 & 0.000 & -3.369 & 0.000 \\
217 SP & 0.0 & 0.515 & 0.164 & 0.856 & 0.426 & 0.743 & 0.478 \\
218 & 0.1 & 0.696 & 0.405 & 0.977 & 0.817 & 0.974 & 0.964 \\
219 & 0.2 & 0.981 & 0.980 & 1.001 & 1.000 & 1.000 & 1.000 \\
220 & 0.3 & 0.996 & 0.998 & 0.997 & 0.999 & 0.997 & 0.999 \\
221 SF & 0.0 & 0.991 & 0.995 & 1.003 & 0.998 & 0.999 & 1.000 \\
222 & 0.1 & 0.992 & 0.995 & 1.003 & 0.998 & 1.000 & 1.000 \\
223 & 0.2 & 0.998 & 0.998 & 0.981 & 0.962 & 1.000 & 1.000 \\
224 & 0.3 & 0.996 & 0.998 & 0.976 & 0.957 & 0.997 & 0.999 \\
225 GSC & & 0.997 & 0.996 & 0.998 & 0.999 & 1.000 & 1.000 \\
226 RF & & 0.988 & 0.989 & 1.000 & 0.999 & 1.000 & 1.000 \\
227 \midrule
228 PC & & -6.367 & 0.000 & -3.552 & 0.000 & -3.447 & 0.000 \\
229 SP & 0.0 & 0.643 & 0.409 & 0.833 & 0.607 & 0.961 & 0.805 \\
230 & 0.1 & 0.791 & 0.683 & 0.957 & 0.914 & 1.000 & 0.989 \\
231 & 0.2 & 0.974 & 0.991 & 0.993 & 0.998 & 0.993 & 0.998 \\
232 & 0.3 & 0.976 & 0.992 & 0.977 & 0.992 & 0.977 & 0.992 \\
233 SF & 0.0 & 0.979 & 0.997 & 0.992 & 0.999 & 0.994 & 1.000 \\
234 & 0.1 & 0.984 & 0.997 & 0.996 & 0.999 & 0.998 & 1.000 \\
235 & 0.2 & 0.991 & 0.997 & 0.974 & 0.958 & 0.993 & 0.998 \\
236 & 0.3 & 0.977 & 0.992 & 0.956 & 0.948 & 0.977 & 0.992 \\
237 GSC & & 0.999 & 0.997 & 0.996 & 0.999 & 1.002 & 1.000 \\
238 RF & & 0.994 & 0.997 & 0.997 & 0.999 & 1.000 & 1.000 \\
239 \bottomrule
240 \end{tabular}
241 \label{tab:ice}
242 \end{table}
243
244 \begin{table}[htbp]
245 \centering
246 \caption{VARIANCE RESULTS FROM GAUSSIAN FITS TO ANGULAR DISTRIBUTIONS
247 OF THE FORCE AND TORQUE VECTORS IN THE ICE I$_\textrm{c}$ SYSTEM}
248
249 \footnotesize
250 \begin{tabular}{@{} ccrrrrrr @{}}
251 \toprule
252 \toprule
253 & & \multicolumn{3}{c}{Force $\sigma^2$} & \multicolumn{3}{c}{Torque
254 $\sigma^2$} \\
255 \cmidrule(lr){3-5}
256 \cmidrule(l){6-8}
257 Method & $\alpha$ & 9~\AA & 12~\AA & 15~\AA & 9~\AA & 12~\AA & 15~\AA \\
258 \midrule
259 PC & & 2128.921 & 603.197 & 715.579 & 329.056 & 221.397 & 81.042 \\
260 SP & 0.0 & 1429.341 & 470.320 & 447.557 & 301.678 & 197.437 & 73.840 \\
261 & 0.1 & 590.008 & 107.510 & 18.883 & 118.201 & 32.472 & 3.599 \\
262 & 0.2 & 10.057 & 0.105 & 0.038 & 2.875 & 0.572 & 0.518 \\
263 & 0.3 & 0.245 & 0.260 & 0.262 & 2.365 & 2.396 & 2.327 \\
264 SF & 0.0 & 1.745 & 1.161 & 0.212 & 1.135 & 0.426 & 0.155 \\
265 & 0.1 & 1.721 & 0.868 & 0.082 & 1.118 & 0.358 & 0.118 \\
266 & 0.2 & 0.201 & 0.040 & 0.038 & 0.786 & 0.555 & 0.518 \\
267 & 0.3 & 0.241 & 0.260 & 0.262 & 2.368 & 2.400 & 2.327 \\
268 GSC & & 1.483 & 0.261 & 0.099 & 0.926 & 0.295 & 0.095 \\
269 RF & & 2.887 & 0.217 & 0.107 & 1.006 & 0.281 & 0.085 \\
270 \midrule
271 GSSP & 0.0 & 1.483 & 0.261 & 0.099 & 0.926 & 0.295 & 0.095 \\
272 & 0.1 & 1.341 & 0.123 & 0.037 & 0.835 & 0.234 & 0.085 \\
273 & 0.2 & 0.558 & 0.040 & 0.037 & 0.823 & 0.557 & 0.519 \\
274 & 0.3 & 0.250 & 0.251 & 0.259 & 2.387 & 2.395 & 2.328 \\
275 GSSF & 0.0 & 2.124 & 0.132 & 0.069 & 0.919 & 0.263 & 0.099 \\
276 & 0.1 & 2.165 & 0.101 & 0.035 & 0.895 & 0.244 & 0.096 \\
277 & 0.2 & 0.706 & 0.040 & 0.037 & 0.870 & 0.559 & 0.519 \\
278 & 0.3 & 0.251 & 0.251 & 0.259 & 2.387 & 2.395 & 2.328 \\
279 \bottomrule
280 \end{tabular}
281 \label{tab:iceAng}
282 \end{table}
283
284 Highly ordered systems are a difficult test for the pairwise methods
285 in that they lack the implicit periodicity of the Ewald summation. As
286 expected, the energy gap agreement with {\sc spme} is reduced for the
287 {\sc sp} and {\sc sf} methods with parameters that were ideal for the
288 disordered liquid system. Moving to higher $R_\textrm{c}$ helps
289 improve the agreement, though at an increase in computational cost.
290 The dynamics of this crystalline system (both in magnitude and
291 direction) are little affected. Both methods still reproduce the Ewald
292 behavior with the same parameter recommendations from the previous
293 section.
294
295 It is also worth noting that {\sc rf} exhibits improved energy gap
296 results over the liquid water system. One possible explanation is
297 that the ice I$_\textrm{c}$ crystal is ordered such that the net
298 dipole moment of the crystal is zero. With $\epsilon_\textrm{S} =
299 \infty$, the reaction field incorporates this structural organization
300 by actively enforcing a zeroed dipole moment within each cutoff
301 sphere.
302
303 \section{NaCl Melt Results}\label{sec:SaltMeltResults}
304
305 A high temperature NaCl melt was tested to gauge the accuracy of the
306 pairwise summation methods in a disordered system of charges. The
307 results for the energy gap comparisons and the force vector magnitude
308 comparisons are shown in table \ref{tab:melt}. The force vector
309 directionality results are displayed separately in table
310 \ref{tab:meltAng}.
311
312 \begin{table}[htbp]
313 \centering
314 \caption{REGRESSION RESULTS OF THE MOLTEN SODIUM CHLORIDE SYSTEM FOR
315 $\Delta E$ VALUES ({\it upper}) AND FORCE VECTOR MAGNITUDES ({\it
316 lower})}
317
318 \footnotesize
319 \begin{tabular}{@{} ccrrrrrr @{}}
320 \toprule
321 \toprule
322 & & \multicolumn{2}{c}{9~\AA} & \multicolumn{2}{c}{12~\AA} & \multicolumn{2}{c}{15~\AA}\\
323 \cmidrule(lr){3-4}
324 \cmidrule(lr){5-6}
325 \cmidrule(l){7-8}
326 Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
327 \midrule
328 PC & & -0.008 & 0.000 & -0.049 & 0.005 & -0.136 & 0.020 \\
329 SP & 0.0 & 0.928 & 0.996 & 0.931 & 0.998 & 0.950 & 0.999 \\
330 & 0.1 & 0.977 & 0.998 & 0.998 & 1.000 & 0.997 & 1.000 \\
331 & 0.2 & 0.960 & 1.000 & 0.813 & 0.996 & 0.811 & 0.954 \\
332 & 0.3 & 0.671 & 0.994 & 0.439 & 0.929 & 0.535 & 0.831 \\
333 SF & 0.0 & 0.996 & 1.000 & 0.995 & 1.000 & 0.997 & 1.000 \\
334 & 0.1 & 1.021 & 1.000 & 1.024 & 1.000 & 1.007 & 1.000 \\
335 & 0.2 & 0.966 & 1.000 & 0.813 & 0.996 & 0.811 & 0.954 \\
336 & 0.3 & 0.671 & 0.994 & 0.439 & 0.929 & 0.535 & 0.831 \\
337 \midrule
338 PC & & 1.103 & 0.000 & 0.989 & 0.000 & 0.802 & 0.000 \\
339 SP & 0.0 & 0.973 & 0.981 & 0.975 & 0.988 & 0.979 & 0.992 \\
340 & 0.1 & 0.987 & 0.992 & 0.993 & 0.998 & 0.997 & 0.999 \\
341 & 0.2 & 0.993 & 0.996 & 0.985 & 0.988 & 0.986 & 0.981 \\
342 & 0.3 & 0.956 & 0.956 & 0.940 & 0.912 & 0.948 & 0.929 \\
343 SF & 0.0 & 0.996 & 0.997 & 0.997 & 0.999 & 0.998 & 1.000 \\
344 & 0.1 & 1.000 & 0.997 & 1.001 & 0.999 & 1.000 & 1.000 \\
345 & 0.2 & 0.994 & 0.996 & 0.985 & 0.988 & 0.986 & 0.981 \\
346 & 0.3 & 0.956 & 0.956 & 0.940 & 0.912 & 0.948 & 0.929 \\
347 \bottomrule
348 \end{tabular}
349 \label{tab:melt}
350 \end{table}
351
352 \begin{table}[htbp]
353 \centering
354 \caption{VARIANCE RESULTS FROM GAUSSIAN FITS TO ANGULAR DISTRIBUTIONS
355 OF THE FORCE VECTORS IN THE MOLTEN SODIUM CHLORIDE SYSTEM}
356
357 \footnotesize
358 \begin{tabular}{@{} ccrrrrrr @{}}
359 \toprule
360 \toprule
361 & & \multicolumn{3}{c}{Force $\sigma^2$} \\
362 \cmidrule(lr){3-5}
363 \cmidrule(l){6-8}
364 Method & $\alpha$ & 9~\AA & 12~\AA & 15~\AA \\
365 \midrule
366 PC & & 13.294 & 8.035 & 5.366 \\
367 SP & 0.0 & 13.316 & 8.037 & 5.385 \\
368 & 0.1 & 5.705 & 1.391 & 0.360 \\
369 & 0.2 & 2.415 & 7.534 & 13.927 \\
370 & 0.3 & 23.769 & 67.306 & 57.252 \\
371 SF & 0.0 & 1.693 & 0.603 & 0.256 \\
372 & 0.1 & 1.687 & 0.653 & 0.272 \\
373 & 0.2 & 2.598 & 7.523 & 13.930 \\
374 & 0.3 & 23.734 & 67.305 & 57.252 \\
375 \bottomrule
376 \end{tabular}
377 \label{tab:meltAng}
378 \end{table}
379
380 The molten NaCl system shows more sensitivity to the electrostatic
381 damping than the water systems. The most noticeable point is that the
382 undamped {\sc sf} method does very well at replicating the {\sc spme}
383 configurational energy differences and forces. Light damping appears
384 to minimally improve the dynamics, but this comes with a deterioration
385 of the energy gap results. In contrast, this light damping improves
386 the {\sc sp} energy gaps and forces. Moderate and heavy electrostatic
387 damping reduce the agreement with {\sc spme} for both methods. From
388 these observations, the undamped {\sc sf} method is the best choice
389 for disordered systems of charges.
390
391 \section{NaCl Crystal Results}\label{sec:SaltCrystalResults}
392
393 Similar to the use of ice I$_\textrm{c}$ to investigate the role of
394 order in molecular systems on the effectiveness of the pairwise
395 methods, the 1000~K NaCl crystal system was used to investigate the
396 accuracy of the pairwise summation methods in an ordered system of
397 charged particles. The results for the energy gap comparisons and the
398 force vector magnitude comparisons are shown in table \ref{tab:salt}.
399 The force vector directionality results are displayed separately in
400 table \ref{tab:saltAng}.
401
402 \begin{table}[htbp]
403 \centering
404 \caption{REGRESSION RESULTS OF THE CRYSTALLINE SODIUM CHLORIDE
405 SYSTEM FOR $\Delta E$ VALUES ({\it upper}) AND FORCE VECTOR MAGNITUDES
406 ({\it lower})}
407
408 \footnotesize
409 \begin{tabular}{@{} ccrrrrrr @{}}
410 \toprule
411 \toprule
412 & & \multicolumn{2}{c}{9~\AA} & \multicolumn{2}{c}{12~\AA} & \multicolumn{2}{c}{15~\AA}\\
413 \cmidrule(lr){3-4}
414 \cmidrule(lr){5-6}
415 \cmidrule(l){7-8}
416 Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
417 \midrule
418 PC & & -20.241 & 0.228 & -20.248 & 0.229 & -20.239 & 0.228 \\
419 SP & 0.0 & 1.039 & 0.733 & 2.037 & 0.565 & 1.225 & 0.743 \\
420 & 0.1 & 1.049 & 0.865 & 1.424 & 0.784 & 1.029 & 0.980 \\
421 & 0.2 & 0.982 & 0.976 & 0.969 & 0.980 & 0.960 & 0.980 \\
422 & 0.3 & 0.873 & 0.944 & 0.872 & 0.945 & 0.872 & 0.945 \\
423 SF & 0.0 & 1.041 & 0.967 & 0.994 & 0.989 & 0.957 & 0.993 \\
424 & 0.1 & 1.050 & 0.968 & 0.996 & 0.991 & 0.972 & 0.995 \\
425 & 0.2 & 0.982 & 0.975 & 0.959 & 0.980 & 0.960 & 0.980 \\
426 & 0.3 & 0.873 & 0.944 & 0.872 & 0.945 & 0.872 & 0.944 \\
427 \midrule
428 PC & & 0.795 & 0.000 & 0.792 & 0.000 & 0.793 & 0.000 \\
429 SP & 0.0 & 0.916 & 0.829 & 1.086 & 0.791 & 1.010 & 0.936 \\
430 & 0.1 & 0.958 & 0.917 & 1.049 & 0.943 & 1.001 & 0.995 \\
431 & 0.2 & 0.981 & 0.981 & 0.982 & 0.984 & 0.981 & 0.984 \\
432 & 0.3 & 0.950 & 0.952 & 0.950 & 0.953 & 0.950 & 0.953 \\
433 SF & 0.0 & 1.002 & 0.983 & 0.997 & 0.994 & 0.991 & 0.997 \\
434 & 0.1 & 1.003 & 0.984 & 0.996 & 0.995 & 0.993 & 0.997 \\
435 & 0.2 & 0.983 & 0.980 & 0.981 & 0.984 & 0.981 & 0.984 \\
436 & 0.3 & 0.950 & 0.952 & 0.950 & 0.953 & 0.950 & 0.953 \\
437 \bottomrule
438 \end{tabular}
439 \label{tab:salt}
440 \end{table}
441
442 \begin{table}[htbp]
443 \centering
444 \caption{VARIANCE RESULTS FROM GAUSSIAN FITS TO ANGULAR
445 DISTRIBUTIONS OF THE FORCE VECTORS IN THE CRYSTALLINE SODIUM CHLORIDE
446 SYSTEM}
447
448 \footnotesize
449 \begin{tabular}{@{} ccrrrrrr @{}}
450 \toprule
451 \toprule
452 & & \multicolumn{3}{c}{Force $\sigma^2$} \\
453 \cmidrule(lr){3-5}
454 \cmidrule(l){6-8}
455 Method & $\alpha$ & 9~\AA & 12~\AA & 15~\AA \\
456 \midrule
457 PC & & 111.945 & 111.824 & 111.866 \\
458 SP & 0.0 & 112.414 & 152.215 & 38.087 \\
459 & 0.1 & 52.361 & 42.574 & 2.819 \\
460 & 0.2 & 10.847 & 9.709 & 9.686 \\
461 & 0.3 & 31.128 & 31.104 & 31.029 \\
462 SF & 0.0 & 10.025 & 3.555 & 1.648 \\
463 & 0.1 & 9.462 & 3.303 & 1.721 \\
464 & 0.2 & 11.454 & 9.813 & 9.701 \\
465 & 0.3 & 31.120 & 31.105 & 31.029 \\
466 \bottomrule
467 \end{tabular}
468 \label{tab:saltAng}
469 \end{table}
470
471 The crystalline NaCl system is the most challenging test case for the
472 pairwise summation methods, as evidenced by the results in tables
473 \ref{tab:salt} and \ref{tab:saltAng}. The undamped and weakly damped
474 {\sc sf} methods seem to be the best choices. These methods match well
475 with {\sc spme} across the energy gap, force magnitude, and force
476 directionality tests. The {\sc sp} method struggles in all cases,
477 with the exception of good dynamics reproduction when using weak
478 electrostatic damping with a large cutoff radius.
479
480 The moderate electrostatic damping case is not as good as we would
481 expect given the long-time dynamics results observed for this system
482 (see section \ref{sec:LongTimeDynamics}). Since the data in tables
483 \ref{tab:salt} and \ref{tab:saltAng} are a test of instantaneous
484 dynamics, this indicates that good long-time dynamics comes in part at
485 the expense of short-time dynamics.
486
487 \section{0.11M NaCl Solution Results}
488
489 In an effort to bridge the charged atomic and neutral molecular
490 systems, Na$^+$ and Cl$^-$ ion charge defects were incorporated into
491 the liquid water system. This low ionic strength system consists of 4
492 ions in the 1000 SPC/E water solvent ($\approx$0.11 M). The results
493 for the energy gap comparisons and the force and torque vector
494 magnitude comparisons are shown in table \ref{tab:solnWeak}. The
495 force and torque vector directionality results are displayed
496 separately in table \ref{tab:solnWeakAng}, where the effect of
497 group-based cutoffs and switching functions on the {\sc sp} and {\sc
498 sf} potentials are investigated.
499
500 \begin{table}[htbp]
501 \centering
502 \caption{REGRESSION RESULTS OF THE WEAK SODIUM CHLORIDE SOLUTION
503 SYSTEM FOR $\Delta E$ VALUES ({\it upper}), FORCE VECTOR MAGNITUDES
504 ({\it middle}) AND TORQUE VECTOR MAGNITUDES ({\it lower})}
505
506 \footnotesize
507 \begin{tabular}{@{} ccrrrrrr @{}}
508 \toprule
509 \toprule
510 & & \multicolumn{2}{c}{9~\AA} & \multicolumn{2}{c}{12~\AA} & \multicolumn{2}{c}{15~\AA}\\
511 \cmidrule(lr){3-4}
512 \cmidrule(lr){5-6}
513 \cmidrule(l){7-8}
514 Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
515 \midrule
516 PC & & 0.247 & 0.000 & -1.103 & 0.001 & 5.480 & 0.015 \\
517 SP & 0.0 & 0.935 & 0.388 & 0.984 & 0.541 & 1.010 & 0.685 \\
518 & 0.1 & 0.951 & 0.603 & 0.993 & 0.875 & 1.001 & 0.979 \\
519 & 0.2 & 0.969 & 0.968 & 0.996 & 0.997 & 0.994 & 0.997 \\
520 & 0.3 & 0.955 & 0.966 & 0.984 & 0.992 & 0.978 & 0.991 \\
521 SF & 0.0 & 0.963 & 0.971 & 0.989 & 0.996 & 0.991 & 0.998 \\
522 & 0.1 & 0.970 & 0.971 & 0.995 & 0.997 & 0.997 & 0.999 \\
523 & 0.2 & 0.972 & 0.975 & 0.996 & 0.997 & 0.994 & 0.997 \\
524 & 0.3 & 0.955 & 0.966 & 0.984 & 0.992 & 0.978 & 0.991 \\
525 GSC & & 0.964 & 0.731 & 0.984 & 0.704 & 1.005 & 0.770 \\
526 RF & & 0.968 & 0.605 & 0.974 & 0.541 & 1.014 & 0.614 \\
527 \midrule
528 PC & & 1.354 & 0.000 & -1.190 & 0.000 & -0.314 & 0.000 \\
529 SP & 0.0 & 0.720 & 0.338 & 0.808 & 0.523 & 0.860 & 0.643 \\
530 & 0.1 & 0.839 & 0.583 & 0.955 & 0.882 & 0.992 & 0.978 \\
531 & 0.2 & 0.995 & 0.987 & 0.999 & 1.000 & 0.999 & 1.000 \\
532 & 0.3 & 0.995 & 0.996 & 0.996 & 0.998 & 0.996 & 0.998 \\
533 SF & 0.0 & 0.998 & 0.994 & 1.000 & 0.998 & 1.000 & 0.999 \\
534 & 0.1 & 0.997 & 0.994 & 1.000 & 0.999 & 1.000 & 1.000 \\
535 & 0.2 & 0.999 & 0.998 & 0.999 & 1.000 & 0.999 & 1.000 \\
536 & 0.3 & 0.995 & 0.996 & 0.996 & 0.998 & 0.996 & 0.998 \\
537 GSC & & 0.995 & 0.990 & 0.998 & 0.997 & 0.998 & 0.996 \\
538 RF & & 0.998 & 0.993 & 0.999 & 0.998 & 0.999 & 0.996 \\
539 \midrule
540 PC & & 2.437 & 0.000 & -1.872 & 0.000 & 2.138 & 0.000 \\
541 SP & 0.0 & 0.838 & 0.525 & 0.901 & 0.686 & 0.932 & 0.779 \\
542 & 0.1 & 0.914 & 0.733 & 0.979 & 0.932 & 0.995 & 0.987 \\
543 & 0.2 & 0.977 & 0.969 & 0.988 & 0.990 & 0.989 & 0.990 \\
544 & 0.3 & 0.952 & 0.950 & 0.964 & 0.971 & 0.965 & 0.970 \\
545 SF & 0.0 & 0.969 & 0.977 & 0.987 & 0.996 & 0.993 & 0.998 \\
546 & 0.1 & 0.975 & 0.978 & 0.993 & 0.996 & 0.997 & 0.998 \\
547 & 0.2 & 0.976 & 0.973 & 0.988 & 0.990 & 0.989 & 0.990 \\
548 & 0.3 & 0.952 & 0.950 & 0.964 & 0.971 & 0.965 & 0.970 \\
549 GSC & & 0.980 & 0.959 & 0.990 & 0.983 & 0.992 & 0.989 \\
550 RF & & 0.984 & 0.975 & 0.996 & 0.995 & 0.998 & 0.998 \\
551 \bottomrule
552 \end{tabular}
553 \label{tab:solnWeak}
554 \end{table}
555
556 \begin{table}[htbp]
557 \centering
558 \caption{VARIANCE RESULTS FROM GAUSSIAN FITS TO ANGULAR
559 DISTRIBUTIONS OF THE FORCE AND TORQUE VECTORS IN THE WEAK SODIUM
560 CHLORIDE SOLUTION SYSTEM}
561
562 \footnotesize
563 \begin{tabular}{@{} ccrrrrrr @{}}
564 \toprule
565 \toprule
566 & & \multicolumn{3}{c}{Force $\sigma^2$} & \multicolumn{3}{c}{Torque $\sigma^2$} \\
567 \cmidrule(lr){3-5}
568 \cmidrule(l){6-8}
569 Method & $\alpha$ & 9~\AA & 12~\AA & 15~\AA & 9~\AA & 12~\AA & 15~\AA \\
570 \midrule
571 PC & & 882.863 & 510.435 & 344.201 & 277.691 & 154.231 & 100.131 \\
572 SP & 0.0 & 732.569 & 405.704 & 257.756 & 261.445 & 142.245 & 91.497 \\
573 & 0.1 & 329.031 & 70.746 & 12.014 & 118.496 & 25.218 & 4.711 \\
574 & 0.2 & 6.772 & 0.153 & 0.118 & 9.780 & 2.101 & 2.102 \\
575 & 0.3 & 0.951 & 0.774 & 0.784 & 12.108 & 7.673 & 7.851 \\
576 SF & 0.0 & 2.555 & 0.762 & 0.313 & 6.590 & 1.328 & 0.558 \\
577 & 0.1 & 2.561 & 0.560 & 0.123 & 6.464 & 1.162 & 0.457 \\
578 & 0.2 & 0.501 & 0.118 & 0.118 & 5.698 & 2.074 & 2.099 \\
579 & 0.3 & 0.943 & 0.774 & 0.784 & 12.118 & 7.674 & 7.851 \\
580 GSC & & 2.915 & 0.643 & 0.261 & 9.576 & 3.133 & 1.812 \\
581 RF & & 2.415 & 0.452 & 0.130 & 6.915 & 1.423 & 0.507 \\
582 \midrule
583 GSSP & 0.0 & 2.915 & 0.643 & 0.261 & 9.576 & 3.133 & 1.812 \\
584 & 0.1 & 2.251 & 0.324 & 0.064 & 7.628 & 1.639 & 0.497 \\
585 & 0.2 & 0.590 & 0.118 & 0.116 & 6.080 & 2.096 & 2.103 \\
586 & 0.3 & 0.953 & 0.759 & 0.780 & 12.347 & 7.683 & 7.849 \\
587 GSSF & 0.0 & 1.541 & 0.301 & 0.096 & 6.407 & 1.316 & 0.496 \\
588 & 0.1 & 1.541 & 0.237 & 0.050 & 6.356 & 1.202 & 0.457 \\
589 & 0.2 & 0.568 & 0.118 & 0.116 & 6.166 & 2.105 & 2.105 \\
590 & 0.3 & 0.954 & 0.759 & 0.780 & 12.337 & 7.684 & 7.849 \\
591 \bottomrule
592 \end{tabular}
593 \label{tab:solnWeakAng}
594 \end{table}
595
596 Because this system is a perturbation of the pure liquid water system,
597 comparisons are best drawn between these two sets. The {\sc sp} and
598 {\sc sf} methods are not significantly affected by the inclusion of a
599 few ions. The aspect of cutoff sphere neutralization aids in the
600 smooth incorporation of these ions; thus, all of the observations
601 regarding these methods carry over from section
602 \ref{sec:WaterResults}. The differences between these systems are more
603 visible for the {\sc rf} method. Though good force agreement is still
604 maintained, the energy gaps show a significant increase in the scatter
605 of the data.
606
607 \section{1.1M NaCl Solution Results}
608
609 The bridging of the charged atomic and neutral molecular systems was
610 further developed by considering a high ionic strength system
611 consisting of 40 ions in the 1000 SPC/E water solvent ($\approx$1.1
612 M). The results for the energy gap comparisons and the force and
613 torque vector magnitude comparisons are shown in table
614 \ref{tab:solnStr}. The force and torque vector directionality
615 results are displayed separately in table \ref{tab:solnStrAng}, where
616 the effect of group-based cutoffs and switching functions on the {\sc
617 sp} and {\sc sf} potentials are investigated.
618
619 \begin{table}[htbp]
620 \centering
621 \caption{REGRESSION RESULTS OF THE STRONG SODIUM CHLORIDE SOLUTION
622 SYSTEM FOR $\Delta E$ VALUES ({\it upper}), FORCE VECTOR MAGNITUDES
623 ({\it middle}) AND TORQUE VECTOR MAGNITUDES ({\it lower})}
624
625 \footnotesize
626 \begin{tabular}{@{} ccrrrrrr @{}}
627 \toprule
628 \toprule
629 & & \multicolumn{2}{c}{9~\AA} & \multicolumn{2}{c}{12~\AA} & \multicolumn{2}{c}{15~\AA}\\
630 \cmidrule(lr){3-4}
631 \cmidrule(lr){5-6}
632 \cmidrule(l){7-8}
633 Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
634 \midrule
635 PC & & -0.081 & 0.000 & 0.945 & 0.001 & 0.073 & 0.000 \\
636 SP & 0.0 & 0.978 & 0.469 & 0.996 & 0.672 & 0.975 & 0.668 \\
637 & 0.1 & 0.944 & 0.645 & 0.997 & 0.886 & 0.991 & 0.978 \\
638 & 0.2 & 0.873 & 0.896 & 0.985 & 0.993 & 0.980 & 0.993 \\
639 & 0.3 & 0.831 & 0.860 & 0.960 & 0.979 & 0.955 & 0.977 \\
640 SF & 0.0 & 0.858 & 0.905 & 0.985 & 0.970 & 0.990 & 0.998 \\
641 & 0.1 & 0.865 & 0.907 & 0.992 & 0.974 & 0.994 & 0.999 \\
642 & 0.2 & 0.862 & 0.894 & 0.985 & 0.993 & 0.980 & 0.993 \\
643 & 0.3 & 0.831 & 0.859 & 0.960 & 0.979 & 0.955 & 0.977 \\
644 GSC & & 1.985 & 0.152 & 0.760 & 0.031 & 1.106 & 0.062 \\
645 RF & & 2.414 & 0.116 & 0.813 & 0.017 & 1.434 & 0.047 \\
646 \midrule
647 PC & & -7.028 & 0.000 & -9.364 & 0.000 & 0.925 & 0.865 \\
648 SP & 0.0 & 0.701 & 0.319 & 0.909 & 0.773 & 0.861 & 0.665 \\
649 & 0.1 & 0.824 & 0.565 & 0.970 & 0.930 & 0.990 & 0.979 \\
650 & 0.2 & 0.988 & 0.981 & 0.995 & 0.998 & 0.991 & 0.998 \\
651 & 0.3 & 0.983 & 0.985 & 0.985 & 0.991 & 0.978 & 0.990 \\
652 SF & 0.0 & 0.993 & 0.988 & 0.992 & 0.984 & 0.998 & 0.999 \\
653 & 0.1 & 0.993 & 0.989 & 0.993 & 0.986 & 0.998 & 1.000 \\
654 & 0.2 & 0.993 & 0.992 & 0.995 & 0.998 & 0.991 & 0.998 \\
655 & 0.3 & 0.983 & 0.985 & 0.985 & 0.991 & 0.978 & 0.990 \\
656 GSC & & 0.964 & 0.897 & 0.970 & 0.917 & 0.925 & 0.865 \\
657 RF & & 0.994 & 0.864 & 0.988 & 0.865 & 0.980 & 0.784 \\
658 \midrule
659 PC & & -2.212 & 0.000 & -0.588 & 0.000 & 0.953 & 0.925 \\
660 SP & 0.0 & 0.800 & 0.479 & 0.930 & 0.804 & 0.924 & 0.759 \\
661 & 0.1 & 0.883 & 0.694 & 0.976 & 0.942 & 0.993 & 0.986 \\
662 & 0.2 & 0.952 & 0.943 & 0.980 & 0.984 & 0.980 & 0.983 \\
663 & 0.3 & 0.914 & 0.909 & 0.943 & 0.948 & 0.944 & 0.946 \\
664 SF & 0.0 & 0.945 & 0.953 & 0.980 & 0.984 & 0.991 & 0.998 \\
665 & 0.1 & 0.951 & 0.954 & 0.987 & 0.986 & 0.995 & 0.998 \\
666 & 0.2 & 0.951 & 0.946 & 0.980 & 0.984 & 0.980 & 0.983 \\
667 & 0.3 & 0.914 & 0.908 & 0.943 & 0.948 & 0.944 & 0.946 \\
668 GSC & & 0.882 & 0.818 & 0.939 & 0.902 & 0.953 & 0.925 \\
669 RF & & 0.949 & 0.939 & 0.988 & 0.988 & 0.992 & 0.993 \\
670 \bottomrule
671 \end{tabular}
672 \label{tab:solnStr}
673 \end{table}
674
675 \begin{table}[htbp]
676 \centering
677 \caption{VARIANCE RESULTS FROM GAUSSIAN FITS TO ANGULAR DISTRIBUTIONS
678 OF THE FORCE AND TORQUE VECTORS IN THE STRONG SODIUM CHLORIDE SOLUTION
679 SYSTEM}
680
681 \footnotesize
682 \begin{tabular}{@{} ccrrrrrr @{}}
683 \toprule
684 \toprule
685 & & \multicolumn{3}{c}{Force $\sigma^2$} & \multicolumn{3}{c}{Torque $\sigma^2$} \\
686 \cmidrule(lr){3-5}
687 \cmidrule(l){6-8}
688 Method & $\alpha$ & 9~\AA & 12~\AA & 15~\AA & 9~\AA & 12~\AA & 15~\AA \\
689 \midrule
690 PC & & 957.784 & 513.373 & 2.260 & 340.043 & 179.443 & 13.079 \\
691 SP & 0.0 & 786.244 & 139.985 & 259.289 & 311.519 & 90.280 & 105.187 \\
692 & 0.1 & 354.697 & 38.614 & 12.274 & 144.531 & 23.787 & 5.401 \\
693 & 0.2 & 7.674 & 0.363 & 0.215 & 16.655 & 3.601 & 3.634 \\
694 & 0.3 & 1.745 & 1.456 & 1.449 & 23.669 & 14.376 & 14.240 \\
695 SF & 0.0 & 3.282 & 8.567 & 0.369 & 11.904 & 6.589 & 0.717 \\
696 & 0.1 & 3.263 & 7.479 & 0.142 & 11.634 & 5.750 & 0.591 \\
697 & 0.2 & 0.686 & 0.324 & 0.215 & 10.809 & 3.580 & 3.635 \\
698 & 0.3 & 1.749 & 1.456 & 1.449 & 23.635 & 14.375 & 14.240 \\
699 GSC & & 6.181 & 2.904 & 2.263 & 44.349 & 19.442 & 12.873 \\
700 RF & & 3.891 & 0.847 & 0.323 & 18.628 & 3.995 & 2.072 \\
701 \midrule
702 GSSP & 0.0 & 6.197 & 2.929 & 2.290 & 44.441 & 19.442 & 12.873 \\
703 & 0.1 & 4.688 & 1.064 & 0.260 & 31.208 & 6.967 & 2.303 \\
704 & 0.2 & 1.021 & 0.218 & 0.213 & 14.425 & 3.629 & 3.649 \\
705 & 0.3 & 1.752 & 1.454 & 1.451 & 23.540 & 14.390 & 14.245 \\
706 GSSF & 0.0 & 2.494 & 0.546 & 0.217 & 16.391 & 3.230 & 1.613 \\
707 & 0.1 & 2.448 & 0.429 & 0.106 & 16.390 & 2.827 & 1.159 \\
708 & 0.2 & 0.899 & 0.214 & 0.213 & 13.542 & 3.583 & 3.645 \\
709 & 0.3 & 1.752 & 1.454 & 1.451 & 23.587 & 14.390 & 14.245 \\
710 \bottomrule
711 \end{tabular}
712 \label{tab:solnStrAng}
713 \end{table}
714
715 The {\sc rf} method struggles with the jump in ionic strength. The
716 configuration energy differences degrade to unusable levels while the
717 forces and torques show a more modest reduction in the agreement with
718 {\sc spme}. The {\sc rf} method was designed for homogeneous systems,
719 and this attribute is apparent in these results.
720
721 The {\sc sp} and {\sc sf} methods require larger cutoffs to maintain
722 their agreement with {\sc spme}. With these results, we still
723 recommend undamped to moderate damping for the {\sc sf} method and
724 moderate damping for the {\sc sp} method, both with cutoffs greater
725 than 12~\AA.
726
727 \section{6~\AA\ Argon Sphere in SPC/E Water Results}
728
729 The final model system studied was a 6~\AA\ sphere of Argon solvated
730 by SPC/E water. This serves as a test case of a specifically sized
731 electrostatic defect in a disordered molecular system. The results for
732 the energy gap comparisons and the force and torque vector magnitude
733 comparisons are shown in table \ref{tab:argon}. The force and torque
734 vector directionality results are displayed separately in table
735 \ref{tab:argonAng}, where the effect of group-based cutoffs and
736 switching functions on the {\sc sp} and {\sc sf} potentials are
737 investigated.
738
739 \begin{table}[htbp]
740 \centering
741 \caption{REGRESSION RESULTS OF THE 6~\AA\ ARGON SPHERE IN LIQUID
742 WATER SYSTEM FOR $\Delta E$ VALUES ({\it upper}), FORCE VECTOR
743 MAGNITUDES ({\it middle}) AND TORQUE VECTOR MAGNITUDES ({\it lower})}
744
745 \footnotesize
746 \begin{tabular}{@{} ccrrrrrr @{}}
747 \toprule
748 \toprule
749 & & \multicolumn{2}{c}{9~\AA} & \multicolumn{2}{c}{12~\AA} & \multicolumn{2}{c}{15~\AA}\\
750 \cmidrule(lr){3-4}
751 \cmidrule(lr){5-6}
752 \cmidrule(l){7-8}
753 Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
754 \midrule
755 PC & & 2.320 & 0.008 & -0.650 & 0.001 & 3.848 & 0.029 \\
756 SP & 0.0 & 1.053 & 0.711 & 0.977 & 0.820 & 0.974 & 0.882 \\
757 & 0.1 & 1.032 & 0.846 & 0.989 & 0.965 & 0.992 & 0.994 \\
758 & 0.2 & 0.993 & 0.995 & 0.982 & 0.998 & 0.986 & 0.998 \\
759 & 0.3 & 0.968 & 0.995 & 0.954 & 0.992 & 0.961 & 0.994 \\
760 SF & 0.0 & 0.982 & 0.996 & 0.992 & 0.999 & 0.993 & 1.000 \\
761 & 0.1 & 0.987 & 0.996 & 0.996 & 0.999 & 0.997 & 1.000 \\
762 & 0.2 & 0.989 & 0.998 & 0.984 & 0.998 & 0.989 & 0.998 \\
763 & 0.3 & 0.971 & 0.995 & 0.957 & 0.992 & 0.965 & 0.994 \\
764 GSC & & 1.002 & 0.983 & 0.992 & 0.973 & 0.996 & 0.971 \\
765 RF & & 0.998 & 0.995 & 0.999 & 0.998 & 0.998 & 0.998 \\
766 \midrule
767 PC & & -36.559 & 0.002 & -44.917 & 0.004 & -52.945 & 0.006 \\
768 SP & 0.0 & 0.890 & 0.786 & 0.927 & 0.867 & 0.949 & 0.909 \\
769 & 0.1 & 0.942 & 0.895 & 0.984 & 0.974 & 0.997 & 0.995 \\
770 & 0.2 & 0.999 & 0.997 & 1.000 & 1.000 & 1.000 & 1.000 \\
771 & 0.3 & 1.001 & 0.999 & 1.001 & 1.000 & 1.001 & 1.000 \\
772 SF & 0.0 & 1.000 & 0.999 & 1.000 & 1.000 & 1.000 & 1.000 \\
773 & 0.1 & 1.000 & 0.999 & 1.000 & 1.000 & 1.000 & 1.000 \\
774 & 0.2 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 \\
775 & 0.3 & 1.001 & 0.999 & 1.001 & 1.000 & 1.001 & 1.000 \\
776 GSC & & 0.999 & 0.999 & 1.000 & 1.000 & 1.000 & 1.000 \\
777 RF & & 0.999 & 0.999 & 1.000 & 1.000 & 1.000 & 1.000 \\
778 \midrule
779 PC & & 1.984 & 0.000 & 0.012 & 0.000 & 1.357 & 0.000 \\
780 SP & 0.0 & 0.850 & 0.552 & 0.907 & 0.703 & 0.938 & 0.793 \\
781 & 0.1 & 0.924 & 0.755 & 0.980 & 0.936 & 0.995 & 0.988 \\
782 & 0.2 & 0.985 & 0.983 & 0.986 & 0.988 & 0.987 & 0.988 \\
783 & 0.3 & 0.961 & 0.966 & 0.959 & 0.964 & 0.960 & 0.966 \\
784 SF & 0.0 & 0.977 & 0.989 & 0.987 & 0.995 & 0.992 & 0.998 \\
785 & 0.1 & 0.982 & 0.989 & 0.992 & 0.996 & 0.997 & 0.998 \\
786 & 0.2 & 0.984 & 0.987 & 0.986 & 0.987 & 0.987 & 0.988 \\
787 & 0.3 & 0.961 & 0.966 & 0.959 & 0.964 & 0.960 & 0.966 \\
788 GSC & & 0.995 & 0.981 & 0.999 & 0.990 & 1.000 & 0.993 \\
789 RF & & 0.993 & 0.988 & 0.997 & 0.995 & 0.999 & 0.998 \\
790 \bottomrule
791 \end{tabular}
792 \label{tab:argon}
793 \end{table}
794
795 \begin{table}[htbp]
796 \centering
797 \caption{VARIANCE RESULTS FROM GAUSSIAN FITS TO ANGULAR
798 DISTRIBUTIONS OF THE FORCE AND TORQUE VECTORS IN THE 6~\AA\ SPHERE OF
799 ARGON IN LIQUID WATER SYSTEM}
800
801 \footnotesize
802 \begin{tabular}{@{} ccrrrrrr @{}}
803 \toprule
804 \toprule
805 & & \multicolumn{3}{c}{Force $\sigma^2$} & \multicolumn{3}{c}{Torque $\sigma^2$} \\
806 \cmidrule(lr){3-5}
807 \cmidrule(l){6-8}
808 Method & $\alpha$ & 9~\AA & 12~\AA & 15~\AA & 9~\AA & 12~\AA & 15~\AA \\
809 \midrule
810 PC & & 568.025 & 265.993 & 195.099 & 246.626 & 138.600 & 91.654 \\
811 SP & 0.0 & 504.578 & 251.694 & 179.932 & 231.568 & 131.444 & 85.119 \\
812 & 0.1 & 224.886 & 49.746 & 9.346 & 104.482 & 23.683 & 4.480 \\
813 & 0.2 & 4.889 & 0.197 & 0.155 & 6.029 & 2.507 & 2.269 \\
814 & 0.3 & 0.817 & 0.833 & 0.812 & 8.286 & 8.436 & 8.135 \\
815 SF & 0.0 & 1.924 & 0.675 & 0.304 & 3.658 & 1.448 & 0.600 \\
816 & 0.1 & 1.937 & 0.515 & 0.143 & 3.565 & 1.308 & 0.546 \\
817 & 0.2 & 0.407 & 0.166 & 0.156 & 3.086 & 2.501 & 2.274 \\
818 & 0.3 & 0.815 & 0.833 & 0.812 & 8.330 & 8.437 & 8.135 \\
819 GSC & & 2.098 & 0.584 & 0.284 & 5.391 & 2.414 & 1.501 \\
820 RF & & 1.822 & 0.408 & 0.142 & 3.799 & 1.362 & 0.550 \\
821 \midrule
822 GSSP & 0.0 & 2.098 & 0.584 & 0.284 & 5.391 & 2.414 & 1.501 \\
823 & 0.1 & 1.652 & 0.309 & 0.087 & 4.197 & 1.401 & 0.590 \\
824 & 0.2 & 0.465 & 0.165 & 0.153 & 3.323 & 2.529 & 2.273 \\
825 & 0.3 & 0.813 & 0.825 & 0.816 & 8.316 & 8.447 & 8.132 \\
826 GSSF & 0.0 & 1.173 & 0.292 & 0.113 & 3.452 & 1.347 & 0.583 \\
827 & 0.1 & 1.166 & 0.240 & 0.076 & 3.381 & 1.281 & 0.575 \\
828 & 0.2 & 0.459 & 0.165 & 0.153 & 3.430 & 2.542 & 2.273 \\
829 & 0.3 & 0.814 & 0.825 & 0.816 & 8.325 & 8.447 & 8.132 \\
830 \bottomrule
831 \end{tabular}
832 \label{tab:argonAng}
833 \end{table}
834
835 This system does not appear to show any significant deviations from
836 the previously observed results. The {\sc sp} and {\sc sf} methods
837 have agreements similar to those observed in section
838 \ref{sec:WaterResults}. The only significant difference is the
839 improvement in the configuration energy differences for the {\sc rf}
840 method. This is surprising in that we are introducing an inhomogeneity
841 to the system; however, this inhomogeneity is charge-neutral and does
842 not result in charged cutoff spheres. The charge-neutrality of the
843 cutoff spheres, which the {\sc sp} and {\sc sf} methods explicitly
844 enforce, seems to play a greater role in the stability of the {\sc rf}
845 method than the required homogeneity of the environment.