| 1 | chrisfen | 3001 | \chapter{\label{app:IndividualResults} INDIVIDUAL SYSTEM ANALYSIS RESULTS} | 
| 2 | chrisfen | 2987 |  | 
| 3 | chrisfen | 3001 | The combined system results in chapter \ref{chap:electrostatics} | 
| 4 |  |  | (sections \ref{sec:EnergyResults} through \ref{sec:FTDirResults}) show | 
| 5 |  |  | how the pairwise methods compare to the Ewald summation in the general | 
| 6 | chrisfen | 3029 | sense over all of the system types investigated.  It is also useful to | 
| 7 |  |  | consider each of the studied systems in an individual fashion, so that | 
| 8 |  |  | we can identify conditions that are particularly difficult for a | 
| 9 |  |  | selected pairwise method to address. This allows us to further | 
| 10 |  |  | establish the limitations of these pairwise techniques.  In this | 
| 11 |  |  | appendix, the energy difference, force vector, and torque vector | 
| 12 |  |  | analyses are presented on an individual system basis. | 
| 13 | chrisfen | 3001 |  | 
| 14 |  |  | \section{SPC/E Water Results}\label{sec:WaterResults} | 
| 15 |  |  |  | 
| 16 |  |  | The first system considered was liquid water at 300~K using the SPC/E | 
| 17 |  |  | model of water.\cite{Berendsen87} The results for the energy gap | 
| 18 |  |  | comparisons and the force and torque vector magnitude comparisons are | 
| 19 |  |  | shown in table \ref{tab:spce}.  The force and torque vector | 
| 20 |  |  | directionality results are displayed separately in table | 
| 21 |  |  | \ref{tab:spceAng}, where the effect of group-based cutoffs and | 
| 22 |  |  | switching functions on the {\sc sp} and {\sc sf} potentials are also | 
| 23 |  |  | investigated.  In all of the individual results table, the method | 
| 24 |  |  | abbreviations are as follows: | 
| 25 |  |  |  | 
| 26 |  |  | \begin{itemize}[itemsep=0pt] | 
| 27 |  |  | \item PC = Pure Cutoff, | 
| 28 |  |  | \item SP = Shifted Potential, | 
| 29 |  |  | \item SF = Shifted Force, | 
| 30 |  |  | \item GSC = Group Switched Cutoff, | 
| 31 |  |  | \item RF = Reaction Field (where $\varepsilon \approx\infty$), | 
| 32 |  |  | \item GSSP = Group Switched Shifted Potential, and | 
| 33 |  |  | \item GSSF = Group Switched Shifted Force. | 
| 34 |  |  | \end{itemize} | 
| 35 |  |  |  | 
| 36 |  |  | \begin{table}[htbp] | 
| 37 |  |  | \centering | 
| 38 |  |  | \caption{REGRESSION RESULTS OF THE LIQUID WATER SYSTEM FOR THE | 
| 39 |  |  | $\Delta E$ VALUES ({\it upper}), FORCE VECTOR MAGNITUDES ({\it middle}) | 
| 40 |  |  | AND TORQUE VECTOR MAGNITUDES ({\it lower})} | 
| 41 |  |  |  | 
| 42 |  |  | \footnotesize | 
| 43 |  |  | \begin{tabular}{@{} ccrrrrrr @{}} | 
| 44 |  |  | \toprule | 
| 45 |  |  | \toprule | 
| 46 |  |  | & & \multicolumn{2}{c}{9~\AA} & \multicolumn{2}{c}{12~\AA} & \multicolumn{2}{c}{15~\AA}\\ | 
| 47 |  |  | \cmidrule(lr){3-4} | 
| 48 |  |  | \cmidrule(lr){5-6} | 
| 49 |  |  | \cmidrule(l){7-8} | 
| 50 |  |  | Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\ | 
| 51 |  |  | \midrule | 
| 52 |  |  | PC  &     & 3.046 & 0.002 & -3.018 & 0.002 & 4.719 & 0.005 \\ | 
| 53 |  |  | SP  & 0.0 & 1.035 & 0.218 & 0.908 & 0.313 & 1.037 & 0.470 \\ | 
| 54 |  |  | & 0.1 & 1.021 & 0.387 & 0.965 & 0.752 & 1.006 & 0.947 \\ | 
| 55 |  |  | & 0.2 & 0.997 & 0.962 & 1.001 & 0.994 & 0.994 & 0.996 \\ | 
| 56 |  |  | & 0.3 & 0.984 & 0.980 & 0.997 & 0.985 & 0.982 & 0.987 \\ | 
| 57 |  |  | SF  & 0.0 & 0.977 & 0.974 & 0.996 & 0.992 & 0.991 & 0.997 \\ | 
| 58 |  |  | & 0.1 & 0.983 & 0.974 & 1.001 & 0.994 & 0.996 & 0.998 \\ | 
| 59 |  |  | & 0.2 & 0.992 & 0.989 & 1.001 & 0.995 & 0.994 & 0.996 \\ | 
| 60 |  |  | & 0.3 & 0.984 & 0.980 & 0.996 & 0.985 & 0.982 & 0.987 \\ | 
| 61 |  |  | GSC &     & 0.918 & 0.862 & 0.852 & 0.756 & 0.801 & 0.700 \\ | 
| 62 |  |  | RF  &     & 0.971 & 0.958 & 0.975 & 0.987 & 0.959 & 0.983 \\ | 
| 63 |  |  | \midrule | 
| 64 |  |  | PC  &     & -1.647 & 0.000 & -0.127 & 0.000 & -0.979 & 0.000 \\ | 
| 65 |  |  | SP  & 0.0 & 0.735 & 0.368 & 0.813 & 0.537 & 0.865 & 0.659 \\ | 
| 66 |  |  | & 0.1 & 0.850 & 0.612 & 0.956 & 0.887 & 0.992 & 0.979 \\ | 
| 67 |  |  | & 0.2 & 0.996 & 0.989 & 1.000 & 1.000 & 1.000 & 1.000 \\ | 
| 68 |  |  | & 0.3 & 0.996 & 0.998 & 0.997 & 0.998 & 0.996 & 0.998 \\ | 
| 69 |  |  | SF  & 0.0 & 0.998 & 0.995 & 1.000 & 0.999 & 1.000 & 0.999 \\ | 
| 70 |  |  | & 0.1 & 0.998 & 0.995 & 1.000 & 0.999 & 1.000 & 1.000 \\ | 
| 71 |  |  | & 0.2 & 0.999 & 0.998 & 1.000 & 1.000 & 1.000 & 1.000 \\ | 
| 72 |  |  | & 0.3 & 0.996 & 0.998 & 0.997 & 0.998 & 0.996 & 0.998 \\ | 
| 73 |  |  | GSC &     & 0.998 & 0.995 & 1.000 & 0.999 & 1.000 & 1.000 \\ | 
| 74 |  |  | RF  &     & 0.999 & 0.995 & 1.000 & 0.999 & 1.000 & 1.000 \\ | 
| 75 |  |  | \midrule | 
| 76 |  |  | PC  &     & 2.387 & 0.000 & 0.183 & 0.000 & 1.282 & 0.000 \\ | 
| 77 |  |  | SP  & 0.0 & 0.847 & 0.543 & 0.904 & 0.694 & 0.935 & 0.786 \\ | 
| 78 |  |  | & 0.1 & 0.922 & 0.749 & 0.980 & 0.934 & 0.996 & 0.988 \\ | 
| 79 |  |  | & 0.2 & 0.987 & 0.985 & 0.989 & 0.992 & 0.990 & 0.993 \\ | 
| 80 |  |  | & 0.3 & 0.965 & 0.973 & 0.967 & 0.975 & 0.967 & 0.976 \\ | 
| 81 |  |  | SF  & 0.0 & 0.978 & 0.990 & 0.988 & 0.997 & 0.993 & 0.999 \\ | 
| 82 |  |  | & 0.1 & 0.983 & 0.991 & 0.993 & 0.997 & 0.997 & 0.999 \\ | 
| 83 |  |  | & 0.2 & 0.986 & 0.989 & 0.989 & 0.992 & 0.990 & 0.993 \\ | 
| 84 |  |  | & 0.3 & 0.965 & 0.973 & 0.967 & 0.975 & 0.967 & 0.976 \\ | 
| 85 |  |  | GSC &     & 0.995 & 0.981 & 0.999 & 0.991 & 1.001 & 0.994 \\ | 
| 86 |  |  | RF  &     & 0.993 & 0.989 & 0.998 & 0.996 & 1.000 & 0.999 \\ | 
| 87 |  |  | \bottomrule | 
| 88 |  |  | \end{tabular} | 
| 89 |  |  | \label{tab:spce} | 
| 90 |  |  | \end{table} | 
| 91 |  |  |  | 
| 92 |  |  | \begin{table}[htbp] | 
| 93 |  |  | \centering | 
| 94 |  |  | \caption{VARIANCE RESULTS FROM GAUSSIAN FITS TO ANGULAR | 
| 95 |  |  | DISTRIBUTIONS OF THE FORCE AND TORQUE VECTORS IN THE LIQUID WATER | 
| 96 |  |  | SYSTEM} | 
| 97 |  |  |  | 
| 98 |  |  | \footnotesize | 
| 99 |  |  | \begin{tabular}{@{} ccrrrrrr @{}} | 
| 100 |  |  | \toprule | 
| 101 |  |  | \toprule | 
| 102 |  |  | & & \multicolumn{3}{c}{Force $\sigma^2$} & \multicolumn{3}{c}{Torque $\sigma^2$} \\ | 
| 103 |  |  | \cmidrule(lr){3-5} | 
| 104 |  |  | \cmidrule(l){6-8} | 
| 105 |  |  | Method & $\alpha$ & 9~\AA & 12~\AA & 15~\AA & 9~\AA & 12~\AA & 15~\AA \\ | 
| 106 |  |  | \midrule | 
| 107 |  |  | PC  &     & 783.759 & 481.353 & 332.677 & 248.674 & 144.382 & 98.535 \\ | 
| 108 |  |  | SP  & 0.0 & 659.440 & 380.699 & 250.002 & 235.151 & 134.661 & 88.135 \\ | 
| 109 |  |  | & 0.1 & 293.849 & 67.772 & 11.609 & 105.090 & 23.813 & 4.369 \\ | 
| 110 |  |  | & 0.2 & 5.975 & 0.136 & 0.094 & 5.553 & 1.784 & 1.536 \\ | 
| 111 |  |  | & 0.3 & 0.725 & 0.707 & 0.693 & 7.293 & 6.933 & 6.748 \\ | 
| 112 |  |  | SF  & 0.0 & 2.238 & 0.713 & 0.292 & 3.290 & 1.090 & 0.416 \\ | 
| 113 |  |  | & 0.1 & 2.238 & 0.524 & 0.115 & 3.184 & 0.945 & 0.326 \\ | 
| 114 |  |  | & 0.2 & 0.374 & 0.102 & 0.094 & 2.598 & 1.755 & 1.537 \\ | 
| 115 |  |  | & 0.3 & 0.721 & 0.707 & 0.693 & 7.322 & 6.933 & 6.748 \\ | 
| 116 |  |  | GSC &     & 2.431 & 0.614 & 0.274 & 5.135 & 2.133 & 1.339 \\ | 
| 117 |  |  | RF  &     & 2.091 & 0.403 & 0.113 & 3.583 & 1.071 & 0.399 \\ | 
| 118 |  |  | \midrule | 
| 119 |  |  | GSSP  & 0.0 & 2.431 & 0.614 & 0.274 & 5.135 & 2.133 & 1.339 \\ | 
| 120 |  |  | & 0.1 & 1.879 & 0.291 & 0.057 & 3.983 & 1.117 & 0.370 \\ | 
| 121 |  |  | & 0.2 & 0.443 & 0.103 & 0.093 & 2.821 & 1.794 & 1.532 \\ | 
| 122 |  |  | & 0.3 & 0.728 & 0.694 & 0.692 & 7.387 & 6.942 & 6.748 \\ | 
| 123 |  |  | GSSF  & 0.0 & 1.298 & 0.270 & 0.083 & 3.098 & 0.992 & 0.375 \\ | 
| 124 |  |  | & 0.1 & 1.296 & 0.210 & 0.044 & 3.055 & 0.922 & 0.330 \\ | 
| 125 |  |  | & 0.2 & 0.433 & 0.104 & 0.093 & 2.895 & 1.797 & 1.532 \\ | 
| 126 |  |  | & 0.3 & 0.728 & 0.694 & 0.692 & 7.410 & 6.942 & 6.748 \\ | 
| 127 |  |  | \bottomrule | 
| 128 |  |  | \end{tabular} | 
| 129 |  |  | \label{tab:spceAng} | 
| 130 |  |  | \end{table} | 
| 131 |  |  |  | 
| 132 |  |  | The water results parallel the combined results seen in sections | 
| 133 |  |  | \ref{sec:EnergyResults} through \ref{sec:FTDirResults}.  There is good | 
| 134 |  |  | agreement with {\sc spme} in both energetic and dynamic behavior when | 
| 135 |  |  | using the {\sc sf} method with and without damping. The {\sc sp} | 
| 136 |  |  | method does well with an $\alpha$ around 0.2~\AA$^{-1}$, particularly | 
| 137 |  |  | with cutoff radii greater than 12~\AA. Over-damping the electrostatics | 
| 138 |  |  | reduces the agreement between both these methods and {\sc spme}. | 
| 139 |  |  |  | 
| 140 |  |  | The pure cutoff ({\sc pc}) method performs poorly, again mirroring the | 
| 141 |  |  | observations from the combined results.  In contrast to these results, however, the use of a switching function and group | 
| 142 |  |  | based cutoffs greatly improves the results for these neutral water | 
| 143 |  |  | molecules.  The group switched cutoff ({\sc gsc}) does not mimic the | 
| 144 |  |  | energetics of {\sc spme} as well as the {\sc sp} (with moderate | 
| 145 |  |  | damping) and {\sc sf} methods, but the dynamics are quite good.  The | 
| 146 |  |  | switching functions correct discontinuities in the potential and | 
| 147 |  |  | forces, leading to these improved results.  Such improvements with the | 
| 148 |  |  | use of a switching function have been recognized in previous | 
| 149 |  |  | studies,\cite{Andrea83,Steinbach94} and this proves to be a useful | 
| 150 |  |  | tactic for stably incorporating local area electrostatic effects. | 
| 151 |  |  |  | 
| 152 |  |  | The reaction field ({\sc rf}) method simply extends upon the results | 
| 153 |  |  | observed in the {\sc gsc} case.  Both methods are similar in form | 
| 154 |  |  | (i.e. neutral groups, switching function), but {\sc rf} incorporates | 
| 155 |  |  | an added effect from the external dielectric. This similarity | 
| 156 |  |  | translates into the same good dynamic results and improved energetic | 
| 157 |  |  | agreement with {\sc spme}.  Though this agreement is not to the level | 
| 158 |  |  | of the moderately damped {\sc sp} and {\sc sf} methods, these results | 
| 159 |  |  | show how incorporating some implicit properties of the surroundings | 
| 160 |  |  | (i.e. $\epsilon_\textrm{S}$) can improve the solvent depiction. | 
| 161 |  |  |  | 
| 162 |  |  | As a final note for the liquid water system, use of group cutoffs and a | 
| 163 |  |  | switching function leads to noticeable improvements in the {\sc sp} | 
| 164 |  |  | and {\sc sf} methods, primarily in directionality of the force and | 
| 165 |  |  | torque vectors (table \ref{tab:spceAng}). The {\sc sp} method shows | 
| 166 |  |  | significant narrowing of the angle distribution when using little to | 
| 167 |  |  | no damping and only modest improvement for the recommended conditions | 
| 168 |  |  | ($\alpha = 0.2$~\AA$^{-1}$ and $R_\textrm{c}~\geqslant~12$~\AA).  The | 
| 169 |  |  | {\sc sf} method shows modest narrowing across all damping and cutoff | 
| 170 |  |  | ranges of interest.  When over-damping these methods, group cutoffs and | 
| 171 |  |  | the switching function do not improve the force and torque | 
| 172 |  |  | directionalities. | 
| 173 |  |  |  | 
| 174 |  |  | \section{SPC/E Ice I$_\textrm{c}$ Results}\label{sec:IceResults} | 
| 175 |  |  |  | 
| 176 |  |  | In addition to the disordered molecular system above, the ordered | 
| 177 | chrisfen | 3029 | molecular system of ice I$_\textrm{c}$ was also considered. Any ice | 
| 178 | chrisfen | 3001 | polymorph could have been used to fit this role; however, ice | 
| 179 |  |  | I$_\textrm{c}$ was chosen because it can form an ideal periodic | 
| 180 |  |  | lattice with the same number of water molecules used in the disordered | 
| 181 | chrisfen | 3029 | liquid state system.  The results for the energy gap comparisons and | 
| 182 |  |  | the force and torque vector magnitude comparisons are shown in table | 
| 183 | chrisfen | 3001 | \ref{tab:ice}.  The force and torque vector directionality results are | 
| 184 |  |  | displayed separately in table \ref{tab:iceAng}, where the effect of | 
| 185 |  |  | group-based cutoffs and switching functions on the {\sc sp} and {\sc | 
| 186 |  |  | sf} potentials are also displayed. | 
| 187 |  |  |  | 
| 188 |  |  | \begin{table}[htbp] | 
| 189 |  |  | \centering | 
| 190 |  |  | \caption{REGRESSION RESULTS OF THE ICE I$_\textrm{c}$ SYSTEM FOR | 
| 191 |  |  | $\Delta E$ VALUES ({\it upper}), FORCE VECTOR MAGNITUDES ({\it | 
| 192 |  |  | middle}) AND TORQUE VECTOR MAGNITUDES ({\it lower})} | 
| 193 |  |  |  | 
| 194 |  |  | \footnotesize | 
| 195 |  |  | \begin{tabular}{@{} ccrrrrrr @{}} | 
| 196 |  |  | \toprule | 
| 197 |  |  | \toprule | 
| 198 |  |  | & & \multicolumn{2}{c}{9~\AA} & \multicolumn{2}{c}{12~\AA} & \multicolumn{2}{c}{15~\AA}\\ | 
| 199 |  |  | \cmidrule(lr){3-4} | 
| 200 |  |  | \cmidrule(lr){5-6} | 
| 201 |  |  | \cmidrule(l){7-8} | 
| 202 |  |  | Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\ | 
| 203 |  |  | \midrule | 
| 204 |  |  | PC  &     & 19.897 & 0.047 & -29.214 & 0.048 & -3.771 & 0.001 \\ | 
| 205 |  |  | SP  & 0.0 & -0.014 & 0.000 & 2.135 & 0.347 & 0.457 & 0.045 \\ | 
| 206 |  |  | & 0.1 & 0.321 & 0.017 & 1.490 & 0.584 & 0.886 & 0.796 \\ | 
| 207 |  |  | & 0.2 & 0.896 & 0.872 & 1.011 & 0.998 & 0.997 & 0.999 \\ | 
| 208 |  |  | & 0.3 & 0.983 & 0.997 & 0.992 & 0.997 & 0.991 & 0.997 \\ | 
| 209 |  |  | SF  & 0.0 & 0.943 & 0.979 & 1.048 & 0.978 & 0.995 & 0.999 \\ | 
| 210 |  |  | & 0.1 & 0.948 & 0.979 & 1.044 & 0.983 & 1.000 & 0.999 \\ | 
| 211 |  |  | & 0.2 & 0.982 & 0.997 & 0.969 & 0.960 & 0.997 & 0.999 \\ | 
| 212 |  |  | & 0.3 & 0.985 & 0.997 & 0.961 & 0.961 & 0.991 & 0.997 \\ | 
| 213 |  |  | GSC &     & 0.983 & 0.985 & 0.966 & 0.994 & 1.003 & 0.999 \\ | 
| 214 |  |  | RF  &     & 0.924 & 0.944 & 0.990 & 0.996 & 0.991 & 0.998 \\ | 
| 215 |  |  | \midrule | 
| 216 |  |  | PC  &     & -4.375 & 0.000 & 6.781 & 0.000 & -3.369 & 0.000 \\ | 
| 217 |  |  | SP  & 0.0 & 0.515 & 0.164 & 0.856 & 0.426 & 0.743 & 0.478 \\ | 
| 218 |  |  | & 0.1 & 0.696 & 0.405 & 0.977 & 0.817 & 0.974 & 0.964 \\ | 
| 219 |  |  | & 0.2 & 0.981 & 0.980 & 1.001 & 1.000 & 1.000 & 1.000 \\ | 
| 220 |  |  | & 0.3 & 0.996 & 0.998 & 0.997 & 0.999 & 0.997 & 0.999 \\ | 
| 221 |  |  | SF  & 0.0 & 0.991 & 0.995 & 1.003 & 0.998 & 0.999 & 1.000 \\ | 
| 222 |  |  | & 0.1 & 0.992 & 0.995 & 1.003 & 0.998 & 1.000 & 1.000 \\ | 
| 223 |  |  | & 0.2 & 0.998 & 0.998 & 0.981 & 0.962 & 1.000 & 1.000 \\ | 
| 224 |  |  | & 0.3 & 0.996 & 0.998 & 0.976 & 0.957 & 0.997 & 0.999 \\ | 
| 225 |  |  | GSC &     & 0.997 & 0.996 & 0.998 & 0.999 & 1.000 & 1.000 \\ | 
| 226 |  |  | RF  &     & 0.988 & 0.989 & 1.000 & 0.999 & 1.000 & 1.000 \\ | 
| 227 |  |  | \midrule | 
| 228 |  |  | PC  &     & -6.367 & 0.000 & -3.552 & 0.000 & -3.447 & 0.000 \\ | 
| 229 |  |  | SP  & 0.0 & 0.643 & 0.409 & 0.833 & 0.607 & 0.961 & 0.805 \\ | 
| 230 |  |  | & 0.1 & 0.791 & 0.683 & 0.957 & 0.914 & 1.000 & 0.989 \\ | 
| 231 |  |  | & 0.2 & 0.974 & 0.991 & 0.993 & 0.998 & 0.993 & 0.998 \\ | 
| 232 |  |  | & 0.3 & 0.976 & 0.992 & 0.977 & 0.992 & 0.977 & 0.992 \\ | 
| 233 |  |  | SF  & 0.0 & 0.979 & 0.997 & 0.992 & 0.999 & 0.994 & 1.000 \\ | 
| 234 |  |  | & 0.1 & 0.984 & 0.997 & 0.996 & 0.999 & 0.998 & 1.000 \\ | 
| 235 |  |  | & 0.2 & 0.991 & 0.997 & 0.974 & 0.958 & 0.993 & 0.998 \\ | 
| 236 |  |  | & 0.3 & 0.977 & 0.992 & 0.956 & 0.948 & 0.977 & 0.992 \\ | 
| 237 |  |  | GSC &     & 0.999 & 0.997 & 0.996 & 0.999 & 1.002 & 1.000 \\ | 
| 238 |  |  | RF  &     & 0.994 & 0.997 & 0.997 & 0.999 & 1.000 & 1.000 \\ | 
| 239 |  |  | \bottomrule | 
| 240 |  |  | \end{tabular} | 
| 241 |  |  | \label{tab:ice} | 
| 242 |  |  | \end{table} | 
| 243 |  |  |  | 
| 244 |  |  | \begin{table}[htbp] | 
| 245 |  |  | \centering | 
| 246 |  |  | \caption{VARIANCE RESULTS FROM GAUSSIAN FITS TO ANGULAR DISTRIBUTIONS | 
| 247 |  |  | OF THE FORCE AND TORQUE VECTORS IN THE ICE I$_\textrm{c}$ SYSTEM} | 
| 248 |  |  |  | 
| 249 |  |  | \footnotesize | 
| 250 |  |  | \begin{tabular}{@{} ccrrrrrr @{}} | 
| 251 |  |  | \toprule | 
| 252 |  |  | \toprule | 
| 253 |  |  | & & \multicolumn{3}{c}{Force $\sigma^2$} & \multicolumn{3}{c}{Torque | 
| 254 |  |  | $\sigma^2$} \\ | 
| 255 |  |  | \cmidrule(lr){3-5} | 
| 256 |  |  | \cmidrule(l){6-8} | 
| 257 |  |  | Method & $\alpha$ & 9~\AA & 12~\AA & 15~\AA & 9~\AA & 12~\AA & 15~\AA \\ | 
| 258 |  |  | \midrule | 
| 259 |  |  | PC  &     & 2128.921 & 603.197 & 715.579 & 329.056 & 221.397 & 81.042 \\ | 
| 260 |  |  | SP  & 0.0 & 1429.341 & 470.320 & 447.557 & 301.678 & 197.437 & 73.840 \\ | 
| 261 |  |  | & 0.1 & 590.008 & 107.510 & 18.883 & 118.201 & 32.472 & 3.599 \\ | 
| 262 |  |  | & 0.2 & 10.057 & 0.105 & 0.038 & 2.875 & 0.572 & 0.518 \\ | 
| 263 |  |  | & 0.3 & 0.245 & 0.260 & 0.262 & 2.365 & 2.396 & 2.327 \\ | 
| 264 |  |  | SF  & 0.0 & 1.745 & 1.161 & 0.212 & 1.135 & 0.426 & 0.155 \\ | 
| 265 |  |  | & 0.1 & 1.721 & 0.868 & 0.082 & 1.118 & 0.358 & 0.118 \\ | 
| 266 |  |  | & 0.2 & 0.201 & 0.040 & 0.038 & 0.786 & 0.555 & 0.518 \\ | 
| 267 |  |  | & 0.3 & 0.241 & 0.260 & 0.262 & 2.368 & 2.400 & 2.327 \\ | 
| 268 |  |  | GSC &     & 1.483 & 0.261 & 0.099 & 0.926 & 0.295 & 0.095 \\ | 
| 269 |  |  | RF  &     & 2.887 & 0.217 & 0.107 & 1.006 & 0.281 & 0.085 \\ | 
| 270 |  |  | \midrule | 
| 271 |  |  | GSSP  & 0.0 & 1.483 & 0.261 & 0.099 & 0.926 & 0.295 & 0.095 \\ | 
| 272 |  |  | & 0.1 & 1.341 & 0.123 & 0.037 & 0.835 & 0.234 & 0.085 \\ | 
| 273 |  |  | & 0.2 & 0.558 & 0.040 & 0.037 & 0.823 & 0.557 & 0.519 \\ | 
| 274 |  |  | & 0.3 & 0.250 & 0.251 & 0.259 & 2.387 & 2.395 & 2.328 \\ | 
| 275 |  |  | GSSF  & 0.0 & 2.124 & 0.132 & 0.069 & 0.919 & 0.263 & 0.099 \\ | 
| 276 |  |  | & 0.1 & 2.165 & 0.101 & 0.035 & 0.895 & 0.244 & 0.096 \\ | 
| 277 |  |  | & 0.2 & 0.706 & 0.040 & 0.037 & 0.870 & 0.559 & 0.519 \\ | 
| 278 |  |  | & 0.3 & 0.251 & 0.251 & 0.259 & 2.387 & 2.395 & 2.328 \\ | 
| 279 |  |  | \bottomrule | 
| 280 |  |  | \end{tabular} | 
| 281 |  |  | \label{tab:iceAng} | 
| 282 |  |  | \end{table} | 
| 283 |  |  |  | 
| 284 |  |  | Highly ordered systems are a difficult test for the pairwise methods | 
| 285 |  |  | in that they lack the implicit periodicity of the Ewald summation.  As | 
| 286 |  |  | expected, the energy gap agreement with {\sc spme} is reduced for the | 
| 287 |  |  | {\sc sp} and {\sc sf} methods with parameters that were ideal for the | 
| 288 |  |  | disordered liquid system.  Moving to higher $R_\textrm{c}$ helps | 
| 289 |  |  | improve the agreement, though at an increase in computational cost. | 
| 290 |  |  | The dynamics of this crystalline system (both in magnitude and | 
| 291 |  |  | direction) are little affected. Both methods still reproduce the Ewald | 
| 292 |  |  | behavior with the same parameter recommendations from the previous | 
| 293 |  |  | section. | 
| 294 |  |  |  | 
| 295 |  |  | It is also worth noting that {\sc rf} exhibits improved energy gap | 
| 296 |  |  | results over the liquid water system.  One possible explanation is | 
| 297 |  |  | that the ice I$_\textrm{c}$ crystal is ordered such that the net | 
| 298 |  |  | dipole moment of the crystal is zero.  With $\epsilon_\textrm{S} = | 
| 299 |  |  | \infty$, the reaction field incorporates this structural organization | 
| 300 |  |  | by actively enforcing a zeroed dipole moment within each cutoff | 
| 301 |  |  | sphere. | 
| 302 |  |  |  | 
| 303 |  |  | \section{NaCl Melt Results}\label{sec:SaltMeltResults} | 
| 304 |  |  |  | 
| 305 |  |  | A high temperature NaCl melt was tested to gauge the accuracy of the | 
| 306 |  |  | pairwise summation methods in a disordered system of charges. The | 
| 307 |  |  | results for the energy gap comparisons and the force vector magnitude | 
| 308 |  |  | comparisons are shown in table \ref{tab:melt}.  The force vector | 
| 309 |  |  | directionality results are displayed separately in table | 
| 310 |  |  | \ref{tab:meltAng}. | 
| 311 |  |  |  | 
| 312 |  |  | \begin{table}[htbp] | 
| 313 |  |  | \centering | 
| 314 |  |  | \caption{REGRESSION RESULTS OF THE MOLTEN SODIUM CHLORIDE SYSTEM FOR | 
| 315 |  |  | $\Delta E$ VALUES ({\it upper}) AND FORCE VECTOR MAGNITUDES ({\it | 
| 316 |  |  | lower})} | 
| 317 |  |  |  | 
| 318 |  |  | \footnotesize | 
| 319 |  |  | \begin{tabular}{@{} ccrrrrrr @{}} | 
| 320 |  |  | \toprule | 
| 321 |  |  | \toprule | 
| 322 |  |  | & & \multicolumn{2}{c}{9~\AA} & \multicolumn{2}{c}{12~\AA} & \multicolumn{2}{c}{15~\AA}\\ | 
| 323 |  |  | \cmidrule(lr){3-4} | 
| 324 |  |  | \cmidrule(lr){5-6} | 
| 325 |  |  | \cmidrule(l){7-8} | 
| 326 |  |  | Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\ | 
| 327 |  |  | \midrule | 
| 328 |  |  | PC  &     & -0.008 & 0.000 & -0.049 & 0.005 & -0.136 & 0.020 \\ | 
| 329 |  |  | SP  & 0.0 & 0.928 & 0.996 & 0.931 & 0.998 & 0.950 & 0.999 \\ | 
| 330 |  |  | & 0.1 & 0.977 & 0.998 & 0.998 & 1.000 & 0.997 & 1.000 \\ | 
| 331 |  |  | & 0.2 & 0.960 & 1.000 & 0.813 & 0.996 & 0.811 & 0.954 \\ | 
| 332 |  |  | & 0.3 & 0.671 & 0.994 & 0.439 & 0.929 & 0.535 & 0.831 \\ | 
| 333 |  |  | SF  & 0.0 & 0.996 & 1.000 & 0.995 & 1.000 & 0.997 & 1.000 \\ | 
| 334 |  |  | & 0.1 & 1.021 & 1.000 & 1.024 & 1.000 & 1.007 & 1.000 \\ | 
| 335 |  |  | & 0.2 & 0.966 & 1.000 & 0.813 & 0.996 & 0.811 & 0.954 \\ | 
| 336 |  |  | & 0.3 & 0.671 & 0.994 & 0.439 & 0.929 & 0.535 & 0.831 \\ | 
| 337 |  |  | \midrule | 
| 338 |  |  | PC  &     & 1.103 & 0.000 & 0.989 & 0.000 & 0.802 & 0.000 \\ | 
| 339 |  |  | SP  & 0.0 & 0.973 & 0.981 & 0.975 & 0.988 & 0.979 & 0.992 \\ | 
| 340 |  |  | & 0.1 & 0.987 & 0.992 & 0.993 & 0.998 & 0.997 & 0.999 \\ | 
| 341 |  |  | & 0.2 & 0.993 & 0.996 & 0.985 & 0.988 & 0.986 & 0.981 \\ | 
| 342 |  |  | & 0.3 & 0.956 & 0.956 & 0.940 & 0.912 & 0.948 & 0.929 \\ | 
| 343 |  |  | SF  & 0.0 & 0.996 & 0.997 & 0.997 & 0.999 & 0.998 & 1.000 \\ | 
| 344 |  |  | & 0.1 & 1.000 & 0.997 & 1.001 & 0.999 & 1.000 & 1.000 \\ | 
| 345 |  |  | & 0.2 & 0.994 & 0.996 & 0.985 & 0.988 & 0.986 & 0.981 \\ | 
| 346 |  |  | & 0.3 & 0.956 & 0.956 & 0.940 & 0.912 & 0.948 & 0.929 \\ | 
| 347 |  |  | \bottomrule | 
| 348 |  |  | \end{tabular} | 
| 349 |  |  | \label{tab:melt} | 
| 350 |  |  | \end{table} | 
| 351 |  |  |  | 
| 352 |  |  | \begin{table}[htbp] | 
| 353 |  |  | \centering | 
| 354 |  |  | \caption{VARIANCE RESULTS FROM GAUSSIAN FITS TO ANGULAR DISTRIBUTIONS | 
| 355 |  |  | OF THE FORCE VECTORS IN THE MOLTEN SODIUM CHLORIDE SYSTEM} | 
| 356 |  |  |  | 
| 357 |  |  | \footnotesize | 
| 358 |  |  | \begin{tabular}{@{} ccrrrrrr @{}} | 
| 359 |  |  | \toprule | 
| 360 |  |  | \toprule | 
| 361 |  |  | & & \multicolumn{3}{c}{Force $\sigma^2$} \\ | 
| 362 |  |  | \cmidrule(lr){3-5} | 
| 363 |  |  | \cmidrule(l){6-8} | 
| 364 |  |  | Method & $\alpha$ & 9~\AA & 12~\AA & 15~\AA \\ | 
| 365 |  |  | \midrule | 
| 366 |  |  | PC  &     & 13.294 & 8.035 & 5.366 \\ | 
| 367 |  |  | SP  & 0.0 & 13.316 & 8.037 & 5.385 \\ | 
| 368 |  |  | & 0.1 & 5.705 & 1.391 & 0.360 \\ | 
| 369 |  |  | & 0.2 & 2.415 & 7.534 & 13.927 \\ | 
| 370 |  |  | & 0.3 & 23.769 & 67.306 & 57.252 \\ | 
| 371 |  |  | SF  & 0.0 & 1.693 & 0.603 & 0.256 \\ | 
| 372 |  |  | & 0.1 & 1.687 & 0.653 & 0.272 \\ | 
| 373 |  |  | & 0.2 & 2.598 & 7.523 & 13.930 \\ | 
| 374 |  |  | & 0.3 & 23.734 & 67.305 & 57.252 \\ | 
| 375 |  |  | \bottomrule | 
| 376 |  |  | \end{tabular} | 
| 377 |  |  | \label{tab:meltAng} | 
| 378 |  |  | \end{table} | 
| 379 |  |  |  | 
| 380 |  |  | The molten NaCl system shows more sensitivity to the electrostatic | 
| 381 |  |  | damping than the water systems. The most noticeable point is that the | 
| 382 |  |  | undamped {\sc sf} method does very well at replicating the {\sc spme} | 
| 383 |  |  | configurational energy differences and forces. Light damping appears | 
| 384 |  |  | to minimally improve the dynamics, but this comes with a deterioration | 
| 385 |  |  | of the energy gap results. In contrast, this light damping improves | 
| 386 |  |  | the {\sc sp} energy gaps and forces. Moderate and heavy electrostatic | 
| 387 |  |  | damping reduce the agreement with {\sc spme} for both methods. From | 
| 388 |  |  | these observations, the undamped {\sc sf} method is the best choice | 
| 389 |  |  | for disordered systems of charges. | 
| 390 |  |  |  | 
| 391 |  |  | \section{NaCl Crystal Results}\label{sec:SaltCrystalResults} | 
| 392 |  |  |  | 
| 393 |  |  | Similar to the use of ice I$_\textrm{c}$ to investigate the role of | 
| 394 |  |  | order in molecular systems on the effectiveness of the pairwise | 
| 395 | chrisfen | 3029 | methods, the 1000~K NaCl crystal system was sampled to investigate the | 
| 396 | chrisfen | 3001 | accuracy of the pairwise summation methods in an ordered system of | 
| 397 |  |  | charged particles. The results for the energy gap comparisons and the | 
| 398 |  |  | force vector magnitude comparisons are shown in table \ref{tab:salt}. | 
| 399 |  |  | The force vector directionality results are displayed separately in | 
| 400 |  |  | table \ref{tab:saltAng}. | 
| 401 |  |  |  | 
| 402 |  |  | \begin{table}[htbp] | 
| 403 |  |  | \centering | 
| 404 |  |  | \caption{REGRESSION RESULTS OF THE CRYSTALLINE SODIUM CHLORIDE | 
| 405 |  |  | SYSTEM FOR $\Delta E$ VALUES ({\it upper}) AND FORCE VECTOR MAGNITUDES | 
| 406 |  |  | ({\it lower})} | 
| 407 |  |  |  | 
| 408 |  |  | \footnotesize | 
| 409 |  |  | \begin{tabular}{@{} ccrrrrrr @{}} | 
| 410 |  |  | \toprule | 
| 411 |  |  | \toprule | 
| 412 |  |  | & & \multicolumn{2}{c}{9~\AA} & \multicolumn{2}{c}{12~\AA} & \multicolumn{2}{c}{15~\AA}\\ | 
| 413 |  |  | \cmidrule(lr){3-4} | 
| 414 |  |  | \cmidrule(lr){5-6} | 
| 415 |  |  | \cmidrule(l){7-8} | 
| 416 |  |  | Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\ | 
| 417 |  |  | \midrule | 
| 418 |  |  | PC  &     & -20.241 & 0.228 & -20.248 & 0.229 & -20.239 & 0.228 \\ | 
| 419 |  |  | SP  & 0.0 & 1.039 & 0.733 & 2.037 & 0.565 & 1.225 & 0.743 \\ | 
| 420 |  |  | & 0.1 & 1.049 & 0.865 & 1.424 & 0.784 & 1.029 & 0.980 \\ | 
| 421 |  |  | & 0.2 & 0.982 & 0.976 & 0.969 & 0.980 & 0.960 & 0.980 \\ | 
| 422 |  |  | & 0.3 & 0.873 & 0.944 & 0.872 & 0.945 & 0.872 & 0.945 \\ | 
| 423 |  |  | SF  & 0.0 & 1.041 & 0.967 & 0.994 & 0.989 & 0.957 & 0.993 \\ | 
| 424 |  |  | & 0.1 & 1.050 & 0.968 & 0.996 & 0.991 & 0.972 & 0.995 \\ | 
| 425 |  |  | & 0.2 & 0.982 & 0.975 & 0.959 & 0.980 & 0.960 & 0.980 \\ | 
| 426 |  |  | & 0.3 & 0.873 & 0.944 & 0.872 & 0.945 & 0.872 & 0.944 \\ | 
| 427 |  |  | \midrule | 
| 428 |  |  | PC  &     & 0.795 & 0.000 & 0.792 & 0.000 & 0.793 & 0.000 \\ | 
| 429 |  |  | SP  & 0.0 & 0.916 & 0.829 & 1.086 & 0.791 & 1.010 & 0.936 \\ | 
| 430 |  |  | & 0.1 & 0.958 & 0.917 & 1.049 & 0.943 & 1.001 & 0.995 \\ | 
| 431 |  |  | & 0.2 & 0.981 & 0.981 & 0.982 & 0.984 & 0.981 & 0.984 \\ | 
| 432 |  |  | & 0.3 & 0.950 & 0.952 & 0.950 & 0.953 & 0.950 & 0.953 \\ | 
| 433 |  |  | SF  & 0.0 & 1.002 & 0.983 & 0.997 & 0.994 & 0.991 & 0.997 \\ | 
| 434 |  |  | & 0.1 & 1.003 & 0.984 & 0.996 & 0.995 & 0.993 & 0.997 \\ | 
| 435 |  |  | & 0.2 & 0.983 & 0.980 & 0.981 & 0.984 & 0.981 & 0.984 \\ | 
| 436 |  |  | & 0.3 & 0.950 & 0.952 & 0.950 & 0.953 & 0.950 & 0.953 \\ | 
| 437 |  |  | \bottomrule | 
| 438 |  |  | \end{tabular} | 
| 439 |  |  | \label{tab:salt} | 
| 440 |  |  | \end{table} | 
| 441 |  |  |  | 
| 442 |  |  | \begin{table}[htbp] | 
| 443 |  |  | \centering | 
| 444 |  |  | \caption{VARIANCE RESULTS FROM GAUSSIAN FITS TO ANGULAR | 
| 445 |  |  | DISTRIBUTIONS OF THE FORCE VECTORS IN THE CRYSTALLINE SODIUM CHLORIDE | 
| 446 |  |  | SYSTEM} | 
| 447 |  |  |  | 
| 448 |  |  | \footnotesize | 
| 449 |  |  | \begin{tabular}{@{} ccrrrrrr @{}} | 
| 450 |  |  | \toprule | 
| 451 |  |  | \toprule | 
| 452 |  |  | & & \multicolumn{3}{c}{Force $\sigma^2$} \\ | 
| 453 |  |  | \cmidrule(lr){3-5} | 
| 454 |  |  | \cmidrule(l){6-8} | 
| 455 |  |  | Method & $\alpha$ & 9~\AA & 12~\AA & 15~\AA \\ | 
| 456 |  |  | \midrule | 
| 457 |  |  | PC  &     & 111.945 & 111.824 & 111.866 \\ | 
| 458 |  |  | SP  & 0.0 & 112.414 & 152.215 & 38.087 \\ | 
| 459 |  |  | & 0.1 & 52.361 & 42.574 & 2.819 \\ | 
| 460 |  |  | & 0.2 & 10.847 & 9.709 & 9.686 \\ | 
| 461 |  |  | & 0.3 & 31.128 & 31.104 & 31.029 \\ | 
| 462 |  |  | SF  & 0.0 & 10.025 & 3.555 & 1.648 \\ | 
| 463 |  |  | & 0.1 & 9.462 & 3.303 & 1.721 \\ | 
| 464 |  |  | & 0.2 & 11.454 & 9.813 & 9.701 \\ | 
| 465 |  |  | & 0.3 & 31.120 & 31.105 & 31.029 \\ | 
| 466 |  |  | \bottomrule | 
| 467 |  |  | \end{tabular} | 
| 468 |  |  | \label{tab:saltAng} | 
| 469 |  |  | \end{table} | 
| 470 |  |  |  | 
| 471 |  |  | The crystalline NaCl system is the most challenging test case for the | 
| 472 |  |  | pairwise summation methods, as evidenced by the results in tables | 
| 473 |  |  | \ref{tab:salt} and \ref{tab:saltAng}. The undamped and weakly damped | 
| 474 |  |  | {\sc sf} methods seem to be the best choices. These methods match well | 
| 475 |  |  | with {\sc spme} across the energy gap, force magnitude, and force | 
| 476 |  |  | directionality tests.  The {\sc sp} method struggles in all cases, | 
| 477 |  |  | with the exception of good dynamics reproduction when using weak | 
| 478 |  |  | electrostatic damping with a large cutoff radius. | 
| 479 |  |  |  | 
| 480 |  |  | The moderate electrostatic damping case is not as good as we would | 
| 481 |  |  | expect given the long-time dynamics results observed for this system | 
| 482 | chrisfen | 3023 | (see section \ref{sec:LongTimeDynamics}). Since the data in tables | 
| 483 |  |  | \ref{tab:salt} and \ref{tab:saltAng} are a test of instantaneous | 
| 484 |  |  | dynamics, this indicates that good long-time dynamics comes in part at | 
| 485 |  |  | the expense of short-time dynamics. | 
| 486 | chrisfen | 3001 |  | 
| 487 | chrisfen | 3029 | \section{0.11 M NaCl Solution Results} | 
| 488 | chrisfen | 3001 |  | 
| 489 |  |  | In an effort to bridge the charged atomic and neutral molecular | 
| 490 | chrisfen | 3029 | systems, Na$^+$ and Cl$^-$ ions were incorporated into the liquid | 
| 491 |  |  | water system. This low ionic strength system consists of 4 ions in the | 
| 492 |  |  | 1000 SPC/E water solvent ($\approx$0.11 M). The results for the energy | 
| 493 |  |  | gap comparisons and the force and torque vector magnitude comparisons | 
| 494 |  |  | are shown in table \ref{tab:solnWeak}.  The force and torque vector | 
| 495 |  |  | directionality results are displayed separately in table | 
| 496 |  |  | \ref{tab:solnWeakAng}, where the effect of group-based cutoffs and | 
| 497 |  |  | switching functions on the {\sc sp} and {\sc sf} potentials are | 
| 498 |  |  | investigated. | 
| 499 | chrisfen | 3001 |  | 
| 500 |  |  | \begin{table}[htbp] | 
| 501 |  |  | \centering | 
| 502 |  |  | \caption{REGRESSION RESULTS OF THE WEAK SODIUM CHLORIDE SOLUTION | 
| 503 |  |  | SYSTEM FOR $\Delta E$ VALUES ({\it upper}), FORCE VECTOR MAGNITUDES | 
| 504 |  |  | ({\it middle}) AND TORQUE VECTOR MAGNITUDES ({\it lower})} | 
| 505 |  |  |  | 
| 506 |  |  | \footnotesize | 
| 507 |  |  | \begin{tabular}{@{} ccrrrrrr @{}} | 
| 508 |  |  | \toprule | 
| 509 |  |  | \toprule | 
| 510 |  |  | & & \multicolumn{2}{c}{9~\AA} & \multicolumn{2}{c}{12~\AA} & \multicolumn{2}{c}{15~\AA}\\ | 
| 511 |  |  | \cmidrule(lr){3-4} | 
| 512 |  |  | \cmidrule(lr){5-6} | 
| 513 |  |  | \cmidrule(l){7-8} | 
| 514 |  |  | Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\ | 
| 515 |  |  | \midrule | 
| 516 |  |  | PC  &     & 0.247 & 0.000 & -1.103 & 0.001 & 5.480 & 0.015 \\ | 
| 517 |  |  | SP  & 0.0 & 0.935 & 0.388 & 0.984 & 0.541 & 1.010 & 0.685 \\ | 
| 518 |  |  | & 0.1 & 0.951 & 0.603 & 0.993 & 0.875 & 1.001 & 0.979 \\ | 
| 519 |  |  | & 0.2 & 0.969 & 0.968 & 0.996 & 0.997 & 0.994 & 0.997 \\ | 
| 520 |  |  | & 0.3 & 0.955 & 0.966 & 0.984 & 0.992 & 0.978 & 0.991 \\ | 
| 521 |  |  | SF  & 0.0 & 0.963 & 0.971 & 0.989 & 0.996 & 0.991 & 0.998 \\ | 
| 522 |  |  | & 0.1 & 0.970 & 0.971 & 0.995 & 0.997 & 0.997 & 0.999 \\ | 
| 523 |  |  | & 0.2 & 0.972 & 0.975 & 0.996 & 0.997 & 0.994 & 0.997 \\ | 
| 524 |  |  | & 0.3 & 0.955 & 0.966 & 0.984 & 0.992 & 0.978 & 0.991 \\ | 
| 525 |  |  | GSC &     & 0.964 & 0.731 & 0.984 & 0.704 & 1.005 & 0.770 \\ | 
| 526 |  |  | RF  &     & 0.968 & 0.605 & 0.974 & 0.541 & 1.014 & 0.614 \\ | 
| 527 |  |  | \midrule | 
| 528 |  |  | PC  &     & 1.354 & 0.000 & -1.190 & 0.000 & -0.314 & 0.000 \\ | 
| 529 |  |  | SP  & 0.0 & 0.720 & 0.338 & 0.808 & 0.523 & 0.860 & 0.643 \\ | 
| 530 |  |  | & 0.1 & 0.839 & 0.583 & 0.955 & 0.882 & 0.992 & 0.978 \\ | 
| 531 |  |  | & 0.2 & 0.995 & 0.987 & 0.999 & 1.000 & 0.999 & 1.000 \\ | 
| 532 |  |  | & 0.3 & 0.995 & 0.996 & 0.996 & 0.998 & 0.996 & 0.998 \\ | 
| 533 |  |  | SF  & 0.0 & 0.998 & 0.994 & 1.000 & 0.998 & 1.000 & 0.999 \\ | 
| 534 |  |  | & 0.1 & 0.997 & 0.994 & 1.000 & 0.999 & 1.000 & 1.000 \\ | 
| 535 |  |  | & 0.2 & 0.999 & 0.998 & 0.999 & 1.000 & 0.999 & 1.000 \\ | 
| 536 |  |  | & 0.3 & 0.995 & 0.996 & 0.996 & 0.998 & 0.996 & 0.998 \\ | 
| 537 |  |  | GSC &     & 0.995 & 0.990 & 0.998 & 0.997 & 0.998 & 0.996 \\ | 
| 538 |  |  | RF  &     & 0.998 & 0.993 & 0.999 & 0.998 & 0.999 & 0.996 \\ | 
| 539 |  |  | \midrule | 
| 540 |  |  | PC  &     & 2.437 & 0.000 & -1.872 & 0.000 & 2.138 & 0.000 \\ | 
| 541 |  |  | SP  & 0.0 & 0.838 & 0.525 & 0.901 & 0.686 & 0.932 & 0.779 \\ | 
| 542 |  |  | & 0.1 & 0.914 & 0.733 & 0.979 & 0.932 & 0.995 & 0.987 \\ | 
| 543 |  |  | & 0.2 & 0.977 & 0.969 & 0.988 & 0.990 & 0.989 & 0.990 \\ | 
| 544 |  |  | & 0.3 & 0.952 & 0.950 & 0.964 & 0.971 & 0.965 & 0.970 \\ | 
| 545 |  |  | SF  & 0.0 & 0.969 & 0.977 & 0.987 & 0.996 & 0.993 & 0.998 \\ | 
| 546 |  |  | & 0.1 & 0.975 & 0.978 & 0.993 & 0.996 & 0.997 & 0.998 \\ | 
| 547 |  |  | & 0.2 & 0.976 & 0.973 & 0.988 & 0.990 & 0.989 & 0.990 \\ | 
| 548 |  |  | & 0.3 & 0.952 & 0.950 & 0.964 & 0.971 & 0.965 & 0.970 \\ | 
| 549 |  |  | GSC &     & 0.980 & 0.959 & 0.990 & 0.983 & 0.992 & 0.989 \\ | 
| 550 |  |  | RF  &     & 0.984 & 0.975 & 0.996 & 0.995 & 0.998 & 0.998 \\ | 
| 551 |  |  | \bottomrule | 
| 552 |  |  | \end{tabular} | 
| 553 |  |  | \label{tab:solnWeak} | 
| 554 |  |  | \end{table} | 
| 555 |  |  |  | 
| 556 |  |  | \begin{table}[htbp] | 
| 557 |  |  | \centering | 
| 558 |  |  | \caption{VARIANCE RESULTS FROM GAUSSIAN FITS TO ANGULAR | 
| 559 |  |  | DISTRIBUTIONS OF THE FORCE AND TORQUE VECTORS IN THE WEAK SODIUM | 
| 560 |  |  | CHLORIDE SOLUTION SYSTEM} | 
| 561 |  |  |  | 
| 562 |  |  | \footnotesize | 
| 563 |  |  | \begin{tabular}{@{} ccrrrrrr @{}} | 
| 564 |  |  | \toprule | 
| 565 |  |  | \toprule | 
| 566 |  |  | & & \multicolumn{3}{c}{Force $\sigma^2$} & \multicolumn{3}{c}{Torque $\sigma^2$} \\ | 
| 567 |  |  | \cmidrule(lr){3-5} | 
| 568 |  |  | \cmidrule(l){6-8} | 
| 569 |  |  | Method & $\alpha$ & 9~\AA & 12~\AA & 15~\AA & 9~\AA & 12~\AA & 15~\AA \\ | 
| 570 |  |  | \midrule | 
| 571 |  |  | PC  &     & 882.863 & 510.435 & 344.201 & 277.691 & 154.231 & 100.131 \\ | 
| 572 |  |  | SP  & 0.0 & 732.569 & 405.704 & 257.756 & 261.445 & 142.245 & 91.497 \\ | 
| 573 |  |  | & 0.1 & 329.031 & 70.746 & 12.014 & 118.496 & 25.218 & 4.711 \\ | 
| 574 |  |  | & 0.2 & 6.772 & 0.153 & 0.118 & 9.780 & 2.101 & 2.102 \\ | 
| 575 |  |  | & 0.3 & 0.951 & 0.774 & 0.784 & 12.108 & 7.673 & 7.851 \\ | 
| 576 |  |  | SF  & 0.0 & 2.555 & 0.762 & 0.313 & 6.590 & 1.328 & 0.558 \\ | 
| 577 |  |  | & 0.1 & 2.561 & 0.560 & 0.123 & 6.464 & 1.162 & 0.457 \\ | 
| 578 |  |  | & 0.2 & 0.501 & 0.118 & 0.118 & 5.698 & 2.074 & 2.099 \\ | 
| 579 |  |  | & 0.3 & 0.943 & 0.774 & 0.784 & 12.118 & 7.674 & 7.851 \\ | 
| 580 |  |  | GSC &     & 2.915 & 0.643 & 0.261 & 9.576 & 3.133 & 1.812 \\ | 
| 581 |  |  | RF  &     & 2.415 & 0.452 & 0.130 & 6.915 & 1.423 & 0.507 \\ | 
| 582 |  |  | \midrule | 
| 583 |  |  | GSSP  & 0.0 & 2.915 & 0.643 & 0.261 & 9.576 & 3.133 & 1.812 \\ | 
| 584 |  |  | & 0.1 & 2.251 & 0.324 & 0.064 & 7.628 & 1.639 & 0.497 \\ | 
| 585 |  |  | & 0.2 & 0.590 & 0.118 & 0.116 & 6.080 & 2.096 & 2.103 \\ | 
| 586 |  |  | & 0.3 & 0.953 & 0.759 & 0.780 & 12.347 & 7.683 & 7.849 \\ | 
| 587 |  |  | GSSF  & 0.0 & 1.541 & 0.301 & 0.096 & 6.407 & 1.316 & 0.496 \\ | 
| 588 |  |  | & 0.1 & 1.541 & 0.237 & 0.050 & 6.356 & 1.202 & 0.457 \\ | 
| 589 |  |  | & 0.2 & 0.568 & 0.118 & 0.116 & 6.166 & 2.105 & 2.105 \\ | 
| 590 |  |  | & 0.3 & 0.954 & 0.759 & 0.780 & 12.337 & 7.684 & 7.849 \\ | 
| 591 |  |  | \bottomrule | 
| 592 |  |  | \end{tabular} | 
| 593 |  |  | \label{tab:solnWeakAng} | 
| 594 |  |  | \end{table} | 
| 595 |  |  |  | 
| 596 |  |  | Because this system is a perturbation of the pure liquid water system, | 
| 597 |  |  | comparisons are best drawn between these two sets. The {\sc sp} and | 
| 598 |  |  | {\sc sf} methods are not significantly affected by the inclusion of a | 
| 599 |  |  | few ions. The aspect of cutoff sphere neutralization aids in the | 
| 600 |  |  | smooth incorporation of these ions; thus, all of the observations | 
| 601 |  |  | regarding these methods carry over from section | 
| 602 |  |  | \ref{sec:WaterResults}. The differences between these systems are more | 
| 603 | chrisfen | 3029 | visible for the {\sc rf} method. Good force agreement is still | 
| 604 |  |  | maintained; however, the energy gaps show a significant increase in | 
| 605 |  |  | the scatter of the data. | 
| 606 | chrisfen | 3001 |  | 
| 607 | chrisfen | 3029 | \section{1.1 M NaCl Solution Results} | 
| 608 | chrisfen | 3001 |  | 
| 609 |  |  | The bridging of the charged atomic and neutral molecular systems was | 
| 610 |  |  | further developed by considering a high ionic strength system | 
| 611 | chrisfen | 3029 | consisting of 40 ions in the 1000 SPC/E water solvent ($\approx$1.1 | 
| 612 | chrisfen | 3001 | M). The results for the energy gap comparisons and the force and | 
| 613 |  |  | torque vector magnitude comparisons are shown in table | 
| 614 |  |  | \ref{tab:solnStr}.  The force and torque vector directionality | 
| 615 |  |  | results are displayed separately in table \ref{tab:solnStrAng}, where | 
| 616 |  |  | the effect of group-based cutoffs and switching functions on the {\sc | 
| 617 |  |  | sp} and {\sc sf} potentials are investigated. | 
| 618 |  |  |  | 
| 619 |  |  | \begin{table}[htbp] | 
| 620 |  |  | \centering | 
| 621 |  |  | \caption{REGRESSION RESULTS OF THE STRONG SODIUM CHLORIDE SOLUTION | 
| 622 |  |  | SYSTEM FOR $\Delta E$ VALUES ({\it upper}), FORCE VECTOR MAGNITUDES | 
| 623 |  |  | ({\it middle}) AND TORQUE VECTOR MAGNITUDES ({\it lower})} | 
| 624 |  |  |  | 
| 625 |  |  | \footnotesize | 
| 626 |  |  | \begin{tabular}{@{} ccrrrrrr @{}} | 
| 627 |  |  | \toprule | 
| 628 |  |  | \toprule | 
| 629 |  |  | & & \multicolumn{2}{c}{9~\AA} & \multicolumn{2}{c}{12~\AA} & \multicolumn{2}{c}{15~\AA}\\ | 
| 630 |  |  | \cmidrule(lr){3-4} | 
| 631 |  |  | \cmidrule(lr){5-6} | 
| 632 |  |  | \cmidrule(l){7-8} | 
| 633 |  |  | Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\ | 
| 634 |  |  | \midrule | 
| 635 |  |  | PC  &     & -0.081 & 0.000 & 0.945 & 0.001 & 0.073 & 0.000 \\ | 
| 636 |  |  | SP  & 0.0 & 0.978 & 0.469 & 0.996 & 0.672 & 0.975 & 0.668 \\ | 
| 637 |  |  | & 0.1 & 0.944 & 0.645 & 0.997 & 0.886 & 0.991 & 0.978 \\ | 
| 638 |  |  | & 0.2 & 0.873 & 0.896 & 0.985 & 0.993 & 0.980 & 0.993 \\ | 
| 639 |  |  | & 0.3 & 0.831 & 0.860 & 0.960 & 0.979 & 0.955 & 0.977 \\ | 
| 640 |  |  | SF  & 0.0 & 0.858 & 0.905 & 0.985 & 0.970 & 0.990 & 0.998 \\ | 
| 641 |  |  | & 0.1 & 0.865 & 0.907 & 0.992 & 0.974 & 0.994 & 0.999 \\ | 
| 642 |  |  | & 0.2 & 0.862 & 0.894 & 0.985 & 0.993 & 0.980 & 0.993 \\ | 
| 643 |  |  | & 0.3 & 0.831 & 0.859 & 0.960 & 0.979 & 0.955 & 0.977 \\ | 
| 644 |  |  | GSC &     & 1.985 & 0.152 & 0.760 & 0.031 & 1.106 & 0.062 \\ | 
| 645 |  |  | RF  &     & 2.414 & 0.116 & 0.813 & 0.017 & 1.434 & 0.047 \\ | 
| 646 |  |  | \midrule | 
| 647 |  |  | PC  &     & -7.028 & 0.000 & -9.364 & 0.000 & 0.925 & 0.865 \\ | 
| 648 |  |  | SP  & 0.0 & 0.701 & 0.319 & 0.909 & 0.773 & 0.861 & 0.665 \\ | 
| 649 |  |  | & 0.1 & 0.824 & 0.565 & 0.970 & 0.930 & 0.990 & 0.979 \\ | 
| 650 |  |  | & 0.2 & 0.988 & 0.981 & 0.995 & 0.998 & 0.991 & 0.998 \\ | 
| 651 |  |  | & 0.3 & 0.983 & 0.985 & 0.985 & 0.991 & 0.978 & 0.990 \\ | 
| 652 |  |  | SF  & 0.0 & 0.993 & 0.988 & 0.992 & 0.984 & 0.998 & 0.999 \\ | 
| 653 |  |  | & 0.1 & 0.993 & 0.989 & 0.993 & 0.986 & 0.998 & 1.000 \\ | 
| 654 |  |  | & 0.2 & 0.993 & 0.992 & 0.995 & 0.998 & 0.991 & 0.998 \\ | 
| 655 |  |  | & 0.3 & 0.983 & 0.985 & 0.985 & 0.991 & 0.978 & 0.990 \\ | 
| 656 |  |  | GSC &     & 0.964 & 0.897 & 0.970 & 0.917 & 0.925 & 0.865 \\ | 
| 657 |  |  | RF  &     & 0.994 & 0.864 & 0.988 & 0.865 & 0.980 & 0.784 \\ | 
| 658 |  |  | \midrule | 
| 659 |  |  | PC  &     & -2.212 & 0.000 & -0.588 & 0.000 & 0.953 & 0.925 \\ | 
| 660 |  |  | SP  & 0.0 & 0.800 & 0.479 & 0.930 & 0.804 & 0.924 & 0.759 \\ | 
| 661 |  |  | & 0.1 & 0.883 & 0.694 & 0.976 & 0.942 & 0.993 & 0.986 \\ | 
| 662 |  |  | & 0.2 & 0.952 & 0.943 & 0.980 & 0.984 & 0.980 & 0.983 \\ | 
| 663 |  |  | & 0.3 & 0.914 & 0.909 & 0.943 & 0.948 & 0.944 & 0.946 \\ | 
| 664 |  |  | SF  & 0.0 & 0.945 & 0.953 & 0.980 & 0.984 & 0.991 & 0.998 \\ | 
| 665 |  |  | & 0.1 & 0.951 & 0.954 & 0.987 & 0.986 & 0.995 & 0.998 \\ | 
| 666 |  |  | & 0.2 & 0.951 & 0.946 & 0.980 & 0.984 & 0.980 & 0.983 \\ | 
| 667 |  |  | & 0.3 & 0.914 & 0.908 & 0.943 & 0.948 & 0.944 & 0.946 \\ | 
| 668 |  |  | GSC &     & 0.882 & 0.818 & 0.939 & 0.902 & 0.953 & 0.925 \\ | 
| 669 |  |  | RF  &     & 0.949 & 0.939 & 0.988 & 0.988 & 0.992 & 0.993 \\ | 
| 670 |  |  | \bottomrule | 
| 671 |  |  | \end{tabular} | 
| 672 |  |  | \label{tab:solnStr} | 
| 673 |  |  | \end{table} | 
| 674 |  |  |  | 
| 675 |  |  | \begin{table}[htbp] | 
| 676 |  |  | \centering | 
| 677 |  |  | \caption{VARIANCE RESULTS FROM GAUSSIAN FITS TO ANGULAR DISTRIBUTIONS | 
| 678 |  |  | OF THE FORCE AND TORQUE VECTORS IN THE STRONG SODIUM CHLORIDE SOLUTION | 
| 679 |  |  | SYSTEM} | 
| 680 |  |  |  | 
| 681 |  |  | \footnotesize | 
| 682 |  |  | \begin{tabular}{@{} ccrrrrrr @{}} | 
| 683 |  |  | \toprule | 
| 684 |  |  | \toprule | 
| 685 |  |  | & & \multicolumn{3}{c}{Force $\sigma^2$} & \multicolumn{3}{c}{Torque $\sigma^2$} \\ | 
| 686 |  |  | \cmidrule(lr){3-5} | 
| 687 |  |  | \cmidrule(l){6-8} | 
| 688 |  |  | Method & $\alpha$ & 9~\AA & 12~\AA & 15~\AA & 9~\AA & 12~\AA & 15~\AA \\ | 
| 689 |  |  | \midrule | 
| 690 |  |  | PC  &     & 957.784 & 513.373 & 2.260 & 340.043 & 179.443 & 13.079 \\ | 
| 691 |  |  | SP  & 0.0 & 786.244 & 139.985 & 259.289 & 311.519 & 90.280 & 105.187 \\ | 
| 692 |  |  | & 0.1 & 354.697 & 38.614 & 12.274 & 144.531 & 23.787 & 5.401 \\ | 
| 693 |  |  | & 0.2 & 7.674 & 0.363 & 0.215 & 16.655 & 3.601 & 3.634 \\ | 
| 694 |  |  | & 0.3 & 1.745 & 1.456 & 1.449 & 23.669 & 14.376 & 14.240 \\ | 
| 695 |  |  | SF  & 0.0 & 3.282 & 8.567 & 0.369 & 11.904 & 6.589 & 0.717 \\ | 
| 696 |  |  | & 0.1 & 3.263 & 7.479 & 0.142 & 11.634 & 5.750 & 0.591 \\ | 
| 697 |  |  | & 0.2 & 0.686 & 0.324 & 0.215 & 10.809 & 3.580 & 3.635 \\ | 
| 698 |  |  | & 0.3 & 1.749 & 1.456 & 1.449 & 23.635 & 14.375 & 14.240 \\ | 
| 699 |  |  | GSC &     & 6.181 & 2.904 & 2.263 & 44.349 & 19.442 & 12.873 \\ | 
| 700 |  |  | RF  &     & 3.891 & 0.847 & 0.323 & 18.628 & 3.995 & 2.072 \\ | 
| 701 |  |  | \midrule | 
| 702 |  |  | GSSP  & 0.0 & 6.197 & 2.929 & 2.290 & 44.441 & 19.442 & 12.873 \\ | 
| 703 |  |  | & 0.1 & 4.688 & 1.064 & 0.260 & 31.208 & 6.967 & 2.303 \\ | 
| 704 |  |  | & 0.2 & 1.021 & 0.218 & 0.213 & 14.425 & 3.629 & 3.649 \\ | 
| 705 |  |  | & 0.3 & 1.752 & 1.454 & 1.451 & 23.540 & 14.390 & 14.245 \\ | 
| 706 |  |  | GSSF  & 0.0 & 2.494 & 0.546 & 0.217 & 16.391 & 3.230 & 1.613 \\ | 
| 707 |  |  | & 0.1 & 2.448 & 0.429 & 0.106 & 16.390 & 2.827 & 1.159 \\ | 
| 708 |  |  | & 0.2 & 0.899 & 0.214 & 0.213 & 13.542 & 3.583 & 3.645 \\ | 
| 709 |  |  | & 0.3 & 1.752 & 1.454 & 1.451 & 23.587 & 14.390 & 14.245 \\ | 
| 710 |  |  | \bottomrule | 
| 711 |  |  | \end{tabular} | 
| 712 |  |  | \label{tab:solnStrAng} | 
| 713 |  |  | \end{table} | 
| 714 |  |  |  | 
| 715 |  |  | The {\sc rf} method struggles with the jump in ionic strength. The | 
| 716 |  |  | configuration energy differences degrade to unusable levels while the | 
| 717 |  |  | forces and torques show a more modest reduction in the agreement with | 
| 718 |  |  | {\sc spme}. The {\sc rf} method was designed for homogeneous systems, | 
| 719 |  |  | and this attribute is apparent in these results. | 
| 720 |  |  |  | 
| 721 |  |  | The {\sc sp} and {\sc sf} methods require larger cutoffs to maintain | 
| 722 |  |  | their agreement with {\sc spme}. With these results, we still | 
| 723 |  |  | recommend undamped to moderate damping for the {\sc sf} method and | 
| 724 |  |  | moderate damping for the {\sc sp} method, both with cutoffs greater | 
| 725 |  |  | than 12~\AA. | 
| 726 |  |  |  | 
| 727 |  |  | \section{6~\AA\ Argon Sphere in SPC/E Water Results} | 
| 728 |  |  |  | 
| 729 | chrisfen | 3029 | The final model system studied was a 6~\AA\ sphere of argon solvated | 
| 730 | chrisfen | 3001 | by SPC/E water. This serves as a test case of a specifically sized | 
| 731 |  |  | electrostatic defect in a disordered molecular system. The results for | 
| 732 |  |  | the energy gap comparisons and the force and torque vector magnitude | 
| 733 |  |  | comparisons are shown in table \ref{tab:argon}.  The force and torque | 
| 734 |  |  | vector directionality results are displayed separately in table | 
| 735 |  |  | \ref{tab:argonAng}, where the effect of group-based cutoffs and | 
| 736 |  |  | switching functions on the {\sc sp} and {\sc sf} potentials are | 
| 737 |  |  | investigated. | 
| 738 |  |  |  | 
| 739 |  |  | \begin{table}[htbp] | 
| 740 |  |  | \centering | 
| 741 |  |  | \caption{REGRESSION RESULTS OF THE 6~\AA\ ARGON SPHERE IN LIQUID | 
| 742 |  |  | WATER SYSTEM FOR $\Delta E$ VALUES ({\it upper}), FORCE VECTOR | 
| 743 |  |  | MAGNITUDES ({\it middle}) AND TORQUE VECTOR MAGNITUDES ({\it lower})} | 
| 744 |  |  |  | 
| 745 |  |  | \footnotesize | 
| 746 |  |  | \begin{tabular}{@{} ccrrrrrr @{}} | 
| 747 |  |  | \toprule | 
| 748 |  |  | \toprule | 
| 749 |  |  | & & \multicolumn{2}{c}{9~\AA} & \multicolumn{2}{c}{12~\AA} & \multicolumn{2}{c}{15~\AA}\\ | 
| 750 |  |  | \cmidrule(lr){3-4} | 
| 751 |  |  | \cmidrule(lr){5-6} | 
| 752 |  |  | \cmidrule(l){7-8} | 
| 753 |  |  | Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\ | 
| 754 |  |  | \midrule | 
| 755 |  |  | PC  &     & 2.320 & 0.008 & -0.650 & 0.001 & 3.848 & 0.029 \\ | 
| 756 |  |  | SP  & 0.0 & 1.053 & 0.711 & 0.977 & 0.820 & 0.974 & 0.882 \\ | 
| 757 |  |  | & 0.1 & 1.032 & 0.846 & 0.989 & 0.965 & 0.992 & 0.994 \\ | 
| 758 |  |  | & 0.2 & 0.993 & 0.995 & 0.982 & 0.998 & 0.986 & 0.998 \\ | 
| 759 |  |  | & 0.3 & 0.968 & 0.995 & 0.954 & 0.992 & 0.961 & 0.994 \\ | 
| 760 |  |  | SF  & 0.0 & 0.982 & 0.996 & 0.992 & 0.999 & 0.993 & 1.000 \\ | 
| 761 |  |  | & 0.1 & 0.987 & 0.996 & 0.996 & 0.999 & 0.997 & 1.000 \\ | 
| 762 |  |  | & 0.2 & 0.989 & 0.998 & 0.984 & 0.998 & 0.989 & 0.998 \\ | 
| 763 |  |  | & 0.3 & 0.971 & 0.995 & 0.957 & 0.992 & 0.965 & 0.994 \\ | 
| 764 |  |  | GSC &     & 1.002 & 0.983 & 0.992 & 0.973 & 0.996 & 0.971 \\ | 
| 765 |  |  | RF  &     & 0.998 & 0.995 & 0.999 & 0.998 & 0.998 & 0.998 \\ | 
| 766 |  |  | \midrule | 
| 767 |  |  | PC  &     & -36.559 & 0.002 & -44.917 & 0.004 & -52.945 & 0.006 \\ | 
| 768 |  |  | SP  & 0.0 & 0.890 & 0.786 & 0.927 & 0.867 & 0.949 & 0.909 \\ | 
| 769 |  |  | & 0.1 & 0.942 & 0.895 & 0.984 & 0.974 & 0.997 & 0.995 \\ | 
| 770 |  |  | & 0.2 & 0.999 & 0.997 & 1.000 & 1.000 & 1.000 & 1.000 \\ | 
| 771 |  |  | & 0.3 & 1.001 & 0.999 & 1.001 & 1.000 & 1.001 & 1.000 \\ | 
| 772 |  |  | SF  & 0.0 & 1.000 & 0.999 & 1.000 & 1.000 & 1.000 & 1.000 \\ | 
| 773 |  |  | & 0.1 & 1.000 & 0.999 & 1.000 & 1.000 & 1.000 & 1.000 \\ | 
| 774 |  |  | & 0.2 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 \\ | 
| 775 |  |  | & 0.3 & 1.001 & 0.999 & 1.001 & 1.000 & 1.001 & 1.000 \\ | 
| 776 |  |  | GSC &     & 0.999 & 0.999 & 1.000 & 1.000 & 1.000 & 1.000 \\ | 
| 777 |  |  | RF  &     & 0.999 & 0.999 & 1.000 & 1.000 & 1.000 & 1.000 \\ | 
| 778 |  |  | \midrule | 
| 779 |  |  | PC  &     & 1.984 & 0.000 & 0.012 & 0.000 & 1.357 & 0.000 \\ | 
| 780 |  |  | SP  & 0.0 & 0.850 & 0.552 & 0.907 & 0.703 & 0.938 & 0.793 \\ | 
| 781 |  |  | & 0.1 & 0.924 & 0.755 & 0.980 & 0.936 & 0.995 & 0.988 \\ | 
| 782 |  |  | & 0.2 & 0.985 & 0.983 & 0.986 & 0.988 & 0.987 & 0.988 \\ | 
| 783 |  |  | & 0.3 & 0.961 & 0.966 & 0.959 & 0.964 & 0.960 & 0.966 \\ | 
| 784 |  |  | SF  & 0.0 & 0.977 & 0.989 & 0.987 & 0.995 & 0.992 & 0.998 \\ | 
| 785 |  |  | & 0.1 & 0.982 & 0.989 & 0.992 & 0.996 & 0.997 & 0.998 \\ | 
| 786 |  |  | & 0.2 & 0.984 & 0.987 & 0.986 & 0.987 & 0.987 & 0.988 \\ | 
| 787 |  |  | & 0.3 & 0.961 & 0.966 & 0.959 & 0.964 & 0.960 & 0.966 \\ | 
| 788 |  |  | GSC &     & 0.995 & 0.981 & 0.999 & 0.990 & 1.000 & 0.993 \\ | 
| 789 |  |  | RF  &     & 0.993 & 0.988 & 0.997 & 0.995 & 0.999 & 0.998 \\ | 
| 790 |  |  | \bottomrule | 
| 791 |  |  | \end{tabular} | 
| 792 |  |  | \label{tab:argon} | 
| 793 |  |  | \end{table} | 
| 794 |  |  |  | 
| 795 |  |  | \begin{table}[htbp] | 
| 796 |  |  | \centering | 
| 797 |  |  | \caption{VARIANCE RESULTS FROM GAUSSIAN FITS TO ANGULAR | 
| 798 |  |  | DISTRIBUTIONS OF THE FORCE AND TORQUE VECTORS IN THE 6~\AA\ SPHERE OF | 
| 799 |  |  | ARGON IN LIQUID WATER SYSTEM} | 
| 800 |  |  |  | 
| 801 |  |  | \footnotesize | 
| 802 |  |  | \begin{tabular}{@{} ccrrrrrr @{}} | 
| 803 |  |  | \toprule | 
| 804 |  |  | \toprule | 
| 805 |  |  | & & \multicolumn{3}{c}{Force $\sigma^2$} & \multicolumn{3}{c}{Torque $\sigma^2$} \\ | 
| 806 |  |  | \cmidrule(lr){3-5} | 
| 807 |  |  | \cmidrule(l){6-8} | 
| 808 |  |  | Method & $\alpha$ & 9~\AA & 12~\AA & 15~\AA & 9~\AA & 12~\AA & 15~\AA \\ | 
| 809 |  |  | \midrule | 
| 810 |  |  | PC  &     & 568.025 & 265.993 & 195.099 & 246.626 & 138.600 & 91.654 \\ | 
| 811 |  |  | SP  & 0.0 & 504.578 & 251.694 & 179.932 & 231.568 & 131.444 & 85.119 \\ | 
| 812 |  |  | & 0.1 & 224.886 & 49.746 & 9.346 & 104.482 & 23.683 & 4.480 \\ | 
| 813 |  |  | & 0.2 & 4.889 & 0.197 & 0.155 & 6.029 & 2.507 & 2.269 \\ | 
| 814 |  |  | & 0.3 & 0.817 & 0.833 & 0.812 & 8.286 & 8.436 & 8.135 \\ | 
| 815 |  |  | SF  & 0.0 & 1.924 & 0.675 & 0.304 & 3.658 & 1.448 & 0.600 \\ | 
| 816 |  |  | & 0.1 & 1.937 & 0.515 & 0.143 & 3.565 & 1.308 & 0.546 \\ | 
| 817 |  |  | & 0.2 & 0.407 & 0.166 & 0.156 & 3.086 & 2.501 & 2.274 \\ | 
| 818 |  |  | & 0.3 & 0.815 & 0.833 & 0.812 & 8.330 & 8.437 & 8.135 \\ | 
| 819 |  |  | GSC &     & 2.098 & 0.584 & 0.284 & 5.391 & 2.414 & 1.501 \\ | 
| 820 |  |  | RF  &     & 1.822 & 0.408 & 0.142 & 3.799 & 1.362 & 0.550 \\ | 
| 821 |  |  | \midrule | 
| 822 |  |  | GSSP  & 0.0 & 2.098 & 0.584 & 0.284 & 5.391 & 2.414 & 1.501 \\ | 
| 823 |  |  | & 0.1 & 1.652 & 0.309 & 0.087 & 4.197 & 1.401 & 0.590 \\ | 
| 824 |  |  | & 0.2 & 0.465 & 0.165 & 0.153 & 3.323 & 2.529 & 2.273 \\ | 
| 825 |  |  | & 0.3 & 0.813 & 0.825 & 0.816 & 8.316 & 8.447 & 8.132 \\ | 
| 826 |  |  | GSSF  & 0.0 & 1.173 & 0.292 & 0.113 & 3.452 & 1.347 & 0.583 \\ | 
| 827 |  |  | & 0.1 & 1.166 & 0.240 & 0.076 & 3.381 & 1.281 & 0.575 \\ | 
| 828 |  |  | & 0.2 & 0.459 & 0.165 & 0.153 & 3.430 & 2.542 & 2.273 \\ | 
| 829 |  |  | & 0.3 & 0.814 & 0.825 & 0.816 & 8.325 & 8.447 & 8.132 \\ | 
| 830 |  |  | \bottomrule | 
| 831 |  |  | \end{tabular} | 
| 832 |  |  | \label{tab:argonAng} | 
| 833 |  |  | \end{table} | 
| 834 |  |  |  | 
| 835 |  |  | This system does not appear to show any significant deviations from | 
| 836 |  |  | the previously observed results. The {\sc sp} and {\sc sf} methods | 
| 837 |  |  | have agreements similar to those observed in section | 
| 838 |  |  | \ref{sec:WaterResults}. The only significant difference is the | 
| 839 |  |  | improvement in the configuration energy differences for the {\sc rf} | 
| 840 |  |  | method. This is surprising in that we are introducing an inhomogeneity | 
| 841 |  |  | to the system; however, this inhomogeneity is charge-neutral and does | 
| 842 |  |  | not result in charged cutoff spheres. The charge-neutrality of the | 
| 843 |  |  | cutoff spheres, which the {\sc sp} and {\sc sf} methods explicitly | 
| 844 |  |  | enforce, seems to play a greater role in the stability of the {\sc rf} | 
| 845 |  |  | method than the required homogeneity of the environment. |