ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/chainLength/thiolsRNEMD.bib
Revision: 3861
Committed: Mon Feb 18 18:09:53 2013 UTC (12 years, 11 months ago) by kstocke1
File size: 87733 byte(s)
Log Message:

File Contents

# User Rev Content
1 kstocke1 3801 %% This BibTeX bibliography file was created using BibDesk.
2     %% http://bibdesk.sourceforge.net/
3    
4    
5 kstocke1 3861 %% Created for Kelsey Stocker at 2013-02-18 13:04:43 -0500
6 kstocke1 3801
7    
8     %% Saved with string encoding Unicode (UTF-8)
9    
10    
11 gezelter 3819 @string{acp = {Adv. Chem. Phys.}}
12 kstocke1 3801
13 gezelter 3819 @string{bj = {Biophys. J.}}
14    
15     @string{ccp5 = {CCP5 Information Quarterly}}
16    
17     @string{cp = {Chem. Phys.}}
18    
19     @string{cpl = {Chem. Phys. Lett.}}
20    
21     @string{ea = {Electrochim. Acta}}
22    
23     @string{jacs = {J. Am. Chem. Soc.}}
24    
25     @string{jbc = {J. Biol. Chem.}}
26    
27     @string{jcat = {J. Catalysis}}
28    
29     @string{jcc = {J. Comp. Chem.}}
30    
31     @string{jcop = {J. Comp. Phys.}}
32    
33     @string{jcp = {J. Chem. Phys.}}
34    
35     @string{jctc = {J. Chem. Theory Comp.}}
36    
37     @string{jmc = {J. Med. Chem.}}
38    
39     @string{jml = {J. Mol. Liq.}}
40    
41     @string{jmm = {J. Mol. Model.}}
42    
43     @string{jpc = {J. Phys. Chem.}}
44    
45     @string{jpca = {J. Phys. Chem. A}}
46    
47     @string{jpcb = {J. Phys. Chem. B}}
48    
49     @string{jpcc = {J. Phys. Chem. C}}
50    
51     @string{jpcl = {J. Phys. Chem. Lett.}}
52    
53     @string{mp = {Mol. Phys.}}
54    
55     @string{pams = {Proc. Am. Math Soc.}}
56    
57     @string{pccp = {Phys. Chem. Chem. Phys.}}
58    
59     @string{pnas = {Proc. Natl. Acad. Sci. USA}}
60    
61     @string{pr = {Phys. Rev.}}
62    
63     @string{pra = {Phys. Rev. A}}
64    
65     @string{prb = {Phys. Rev. B}}
66    
67     @string{pre = {Phys. Rev. E}}
68    
69     @string{prl = {Phys. Rev. Lett.}}
70    
71     @string{rmp = {Rev. Mod. Phys.}}
72    
73     @string{ss = {Surf. Sci.}}
74    
75    
76 kstocke1 3857 @article{hartland2011,
77     Author = {Hartland, Gregory V.},
78     Date-Added = {2013-02-11 22:54:29 +0000},
79 kstocke1 3861 Date-Modified = {2013-02-18 17:56:29 +0000},
80     Journal = {Chem. Rev.},
81 kstocke1 3857 Pages = {3858-3887},
82     Title = {Optical Studies of Dynamics in Noble Metal Nanostructures},
83     Volume = {11},
84     Year = {2011}}
85    
86 gezelter 3855 @article{hase:2010,
87     Abstract = {Model non-equilibrium molecular dynamics (MD) simulations are presented of heat transfer from a hot Au {111} substrate to an alkylthiolate self-assembled monolayer (H-SAM) to assist in obtaining an atomic-level understanding of experiments by Wang et al. (Z. Wang{,} J. A. Carter{,} A. Lagutchev{,} Y. K. Koh{,} N.-H. Seong{,} D. G. Cahill{,} and D. D. Dlott{,} Science{,} 2007{,} 317{,} 787). Different models are considered to determine how they affect the heat transfer dynamics. They include temperature equilibrated (TE) and temperature gradient (TG) thermostat models for the Au(s) surface{,} and soft and stiff S/Au(s) models for bonding of the S-atoms to the Au(s) surface. A detailed analysis of the non-equilibrium heat transfer at the heterogeneous interface is presented. There is a short time temperature gradient within the top layers of the Au(s) surface. The S-atoms heat rapidly{,} much faster than do the C-atoms in the alkylthiolate chains. A high thermal conductivity in the H-SAM{,} perpendicular to the interface{,} results in nearly identical temperatures for the CH2 and CH3 groups versus time. Thermal-induced disorder is analyzed for the Au(s) substrate{,} the S/Au(s) interface and the H-SAM. Before heat transfer occurs from the hot Au(s) substrate to the H-SAM{,} there is disorder at the S/Au(s) interface and within the alkylthiolate chains arising from heat-induced disorder near the surface of hot Au(s). The short-time rapid heating of the S-atoms enhances this disorder. The increasing disorder of H-SAM chains with time results from both disorder at the Au/S interface and heat transfer to the H-SAM chains.},
88     Author = {Zhang, Yue and Barnes, George L. and Yan, Tianying and Hase, William L.},
89     Date-Added = {2012-12-25 17:47:40 +0000},
90     Date-Modified = {2012-12-25 17:47:40 +0000},
91     Doi = {10.1039/B923858C},
92     Issue = {17},
93     Journal = {Phys. Chem. Chem. Phys.},
94     Pages = {4435-4445},
95     Publisher = {The Royal Society of Chemistry},
96 kstocke1 3861 Title = {Model Non-Equilibrium Molecular Dynamics Simulations of Heat Transfer from a Hot Gold Surface to an Alkylthiolate Self-Assembled Monolayer},
97 gezelter 3855 Url = {http://dx.doi.org/10.1039/B923858C},
98     Volume = {12},
99     Year = {2010},
100     Bdsk-Url-1 = {http://dx.doi.org/10.1039/B923858C}}
101    
102     @article{hase:2011,
103     Abstract = { In a previous article (Phys. Chem. Chem. Phys.2010, 12, 4435), nonequilibrium molecular dynamics (MD) simulations of heat transfer from a hot Au{111} substrate to an alkylthiolate self-assembled monolayer (H-SAM) were presented. The simulations were performed for an H-SAM chain length of eight carbon atoms, and a qualitative agreement with the experiments of Wang et al. (Science2007, 317, 787) was found. Here, simulation results are presented for heat transfer to H-SAM surfaces with carbon chain lengths of 10--20 carbon atoms. Relaxation times for heat transfer are extracted, compared with experiment, and a qualitative agreement is obtained. The same relaxation time is found from either the temperature of the H-SAM or the orientational disorder of the H-SAM versus time. For a simulation model with the Au substrate thermally equilibrated, the relaxation times determined from the simulations are approximately a factor of 4 larger than the experimental values. },
104     Author = {Manikandan, Paranjothy and Carter, Jeffrey A. and Dlott, Dana D. and Hase, William L.},
105     Date-Added = {2012-12-25 17:47:40 +0000},
106 kstocke1 3861 Date-Modified = {2013-02-18 17:57:24 +0000},
107 gezelter 3855 Doi = {10.1021/jp200672e},
108     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp200672e},
109 kstocke1 3861 Journal = {J. Phys. Chem. C},
110 gezelter 3855 Number = {19},
111     Pages = {9622-9628},
112     Title = {Effect of Carbon Chain Length on the Dynamics of Heat Transfer at a Gold/Hydrocarbon Interface: Comparison of Simulation with Experiment},
113     Url = {http://pubs.acs.org/doi/abs/10.1021/jp200672e},
114     Volume = {115},
115     Year = {2011},
116     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp200672e},
117     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp200672e}}
118    
119 kstocke1 3851 @article{RevModPhys.61.605,
120     Author = {Swartz, E. T. and Pohl, R. O.},
121     Date-Added = {2012-12-21 20:34:12 +0000},
122     Date-Modified = {2012-12-21 20:34:12 +0000},
123     Doi = {10.1103/RevModPhys.61.605},
124     Issue = {3},
125     Journal = {Rev. Mod. Phys.},
126     Month = {Jul},
127     Pages = {605--668},
128     Publisher = {American Physical Society},
129 kstocke1 3861 Title = {Thermal Boundary Resistance},
130 kstocke1 3851 Url = {http://link.aps.org/doi/10.1103/RevModPhys.61.605},
131     Volume = {61},
132     Year = {1989},
133     Bdsk-Url-1 = {http://link.aps.org/doi/10.1103/RevModPhys.61.605},
134     Bdsk-Url-2 = {http://dx.doi.org/10.1103/RevModPhys.61.605}}
135    
136 gezelter 3855 @article{packmol,
137     Author = {L. Mart\'{\i}nez and R. Andrade and Ernesto G. Birgin and Jos{\'e} Mario Mart\'{\i}nez},
138     Bibsource = {DBLP, http://dblp.uni-trier.de},
139     Date-Added = {2011-02-01 15:13:02 -0500},
140 kstocke1 3861 Date-Modified = {2013-02-18 18:01:34 +0000},
141 gezelter 3855 Ee = {http://dx.doi.org/10.1002/jcc.21224},
142 kstocke1 3861 Journal = {J. Comput. Chem.},
143 gezelter 3855 Number = {13},
144     Pages = {2157-2164},
145 kstocke1 3861 Title = {PACKMOL: A Package for Building Initial Configurations for Molecular Dynamics Simulations},
146 gezelter 3855 Volume = {30},
147     Year = {2009}}
148    
149 gezelter 3819 @article{doi:10.1021/jp034405s,
150     Abstract = { We use the universal force field (UFF) developed by Rapp{\'e} et al. (Rapp{\'e}, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard, W. A.; Skiff, W. M. J. Am. Chem. Soc. 1992, 114, 10024) and the specific classical potentials developed from ab initio calculations for Au−benzenedithiol (BDT) molecule interaction to perform molecular dynamics (MD) simulations of a BDT monolayer on an extended Au(111) surface. The simulation system consists of 100 BDT molecules and three rigid Au layers in a simulation box that is rhombic in the plane of the Au surface. A multiple time scale algorithm, the double-reversible reference system propagator algorithm (double RESPA) based on the Nos{\'e}−Hoover dynamics scheme, and the Ewald summation with a boundary correction term for the treatment of long-range electrostatic interactions in a 2-D slab have been incorporated into the simulation technique. We investigate the local bonding properties of Au−BDT contacts and molecular orientation distributions of BDT molecules. These results show that whereas different basis sets from ab initio calculations may generate different local bonding geometric parameters (the bond length, etc.) the packing structures of BDT molecules maintain approximately the same well-ordered herringbone structure with small peak differences in the probability distributions of global geometric parameters. The methodology developed here opens an avenue for classical simulations of a metal−molecule−metal complex in molecular electronics devices. },
151     Author = {Leng, Y. and Keffer, David J. and Cummings, Peter T.},
152     Date-Added = {2012-12-17 18:38:38 +0000},
153     Date-Modified = {2012-12-17 18:38:38 +0000},
154     Doi = {10.1021/jp034405s},
155     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp034405s},
156     Journal = {J. Phys. Chem. B},
157     Number = {43},
158     Pages = {11940-11950},
159     Title = {Structure and Dynamics of a Benzenedithiol Monolayer on a Au(111) Surface},
160     Url = {http://pubs.acs.org/doi/abs/10.1021/jp034405s},
161     Volume = {107},
162     Year = {2003},
163     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp034405s},
164     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp034405s}}
165    
166     @article{hautman:4994,
167     Author = {Joseph Hautman and Michael L. Klein},
168     Date-Added = {2012-12-17 18:38:26 +0000},
169     Date-Modified = {2012-12-17 18:38:26 +0000},
170     Doi = {10.1063/1.457621},
171     Journal = {J. Chem. Phys.},
172     Keywords = {MOLECULAR DYNAMICS CALCULATIONS; SIMULATION; MONOLAYERS; THIOLS; ALKYL COMPOUNDS; CHAINS; SURFACE STRUCTURE; GOLD; SUBSTRATES; CHEMISORPTION; SURFACE PROPERTIES},
173     Number = {8},
174     Pages = {4994-5001},
175     Publisher = {AIP},
176 kstocke1 3861 Title = {Simulation of a Monolayer of Alkyl Thiol Chains},
177 gezelter 3819 Url = {http://link.aip.org/link/?JCP/91/4994/1},
178     Volume = {91},
179     Year = {1989},
180     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/91/4994/1},
181     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.457621}}
182    
183     @article{vlugt:cpc2007154,
184     Author = {Philipp Schapotschnikow and Ren{\'e} Pool and Thijs J.H. Vlugt},
185     Date-Added = {2012-12-17 18:38:20 +0000},
186 kstocke1 3861 Date-Modified = {2013-02-18 18:04:43 +0000},
187 gezelter 3819 Doi = {DOI: 10.1016/j.cpc.2007.02.028},
188     Issn = {0010-4655},
189     Journal = {Comput. Phys. Commun.},
190     Keywords = {Gold nanocrystals},
191 kstocke1 3861 Note = {Proceedings of the Conference on Computational Physics 2006: CCP 2006 - Conference on Computational Physics 2006},
192 gezelter 3819 Number = {1-2},
193     Pages = {154 - 157},
194 kstocke1 3861 Title = {Selective Adsorption of Alkyl Thiols on Gold in Different Geometries},
195 gezelter 3819 Url = {http://www.sciencedirect.com/science/article/B6TJ5-4N3WYP0-1/2/66dbe8892f456c230b9b8fcd9c23f456},
196     Volume = {177},
197     Year = {2007},
198     Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/B6TJ5-4N3WYP0-1/2/66dbe8892f456c230b9b8fcd9c23f456},
199     Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.cpc.2007.02.028}}
200    
201     @article{landman:1998,
202     Abstract = { Equilibrium structures and thermodynamic properties of dodecanethiol self-assembled monolayers on small (Au140) and larger (Au1289) gold nanocrystallites were investigated with the use of molecular dynamics simulations. Compact passivating monolayers are formed on the (111) and (100) facets of the nanocrystallites, with adsorption site geometries differing from those found on extended flat Au(111) and Au(100) surfaces, as well as with higher packing densities. At lower temperatures the passivating molecules organize into preferentially oriented molecular bundles with the molecules in the bundles aligned approximately parallel to each other. Thermal disordering starts at T ≳200 K, initiating at the boundaries of the bundles and involving generation of intramolecular conformational (gauche) defects which occur first at bonds near the chains' outer terminus and propagate inward toward the underlying gold nanocrystalline surface as the temperature is increased. The disordering process culminates in melting of the molecular bundles, resulting in a uniform orientational distribution of the molecules around the gold nanocrystallites. From the inflection points in the calculated caloric curves, melting temperatures were determined as 280 and 294 K for the monolayers adsorbed on the smaller and larger gold nanocrystallites, respectively. These temperatures are significantly lower than the melting temperature estimated for a self-assembled monolayer of dodecanethiol adsorbed on an extended Au(111) surface. The theoretically predicted disordering mechanisms and melting scenario, resulting in a temperature-broadened transition, support recent experimental investigations. },
203     Author = {Luedtke, W. D. and Landman, Uzi},
204     Date-Added = {2012-12-17 18:38:13 +0000},
205     Date-Modified = {2012-12-17 18:38:13 +0000},
206     Doi = {10.1021/jp981745i},
207     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp981745i},
208     Journal = {J. Phys. Chem. B},
209     Number = {34},
210     Pages = {6566-6572},
211     Title = {Structure and Thermodynamics of Self-Assembled Monolayers on Gold Nanocrystallites},
212     Url = {http://pubs.acs.org/doi/abs/10.1021/jp981745i},
213     Volume = {102},
214     Year = {1998},
215     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp981745i},
216     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp981745i}}
217    
218     @article{PhysRevLett.96.186101,
219     Author = {Ge, Zhenbin and Cahill, David G. and Braun, Paul V.},
220     Date-Added = {2012-12-17 17:44:53 +0000},
221     Date-Modified = {2012-12-17 17:44:53 +0000},
222     Doi = {10.1103/PhysRevLett.96.186101},
223     Journal = prl,
224     Month = {May},
225     Number = {18},
226     Numpages = {4},
227     Pages = {186101},
228     Publisher = {American Physical Society},
229     Title = {Thermal Conductance of Hydrophilic and Hydrophobic Interfaces},
230     Volume = {96},
231     Year = {2006},
232     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevLett.96.186101}}
233    
234     @article{Larson:2007hw,
235     Abstract = {Nanoparticles which consist of a plasmonic layer and an iron oxide moiety could provide a promising platform for development of multimodal imaging and therapy approaches in future medicine. However, the feasibility of this platform has yet to be fully explored. In this study we demonstrated the use of gold-coated iron oxide hybrid nanoparticles for combined molecular specific MRI/optical imaging and photothermal therapy of cancer cells. The gold layer exhibits a surface plasmon resonance that provides optical contrast due to light scattering in the visible region and also presents a convenient surface for conjugating targeting moieties, while the iron oxide cores give strong T-2 (spin-spin relaxation time) contrast. The strong optical absorption of the plasmonic gold layer also makes these nanoparticles a promising agent for photothermal therapy. We synthesized hybrid nanoparticles which specifically target epidermal growth factor receptor (EGFR), a common biomarker for many epithelial cancers. We demonstrated molecular specific MRI and optical imaging in MDA-MB-468 breast cancer cells. Furthermore, we showed that receptor-mediated aggregation of anti-EGFR hybrid nanoparticles allows selective destruction of highly proliferative cancer cells using a nanosecond pulsed laser at 700 nm wavelength, a significant shift from the peak absorbance of isolated hybrid nanoparticles at 532 nm.},
236     Address = {DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND},
237     Author = {Larson, Timothy A. and Bankson, James and Aaron, Jesse and Sokolov, Konstantin},
238     Date = {AUG 15 2007},
239     Date-Added = {2012-12-17 17:44:44 +0000},
240 kstocke1 3861 Date-Modified = {2013-02-18 17:34:30 +0000},
241 gezelter 3819 Doi = {ARTN 325101},
242     Journal = {Nanotechnology},
243 kstocke1 3861 Pages = {325101},
244 gezelter 3819 Publisher = {IOP PUBLISHING LTD},
245     Timescited = {5},
246 kstocke1 3861 Title = {Hybrid Plasmonic Magnetic Nanoparticles as Molecular Specific Agents for MRI/Optical Imaging and Photothermal Therapy of Cancer Cells},
247 gezelter 3819 Volume = {18},
248     Year = {2007},
249     Bdsk-Url-1 = {http://dx.doi.org/325101}}
250    
251     @article{Huff:2007ye,
252     Abstract = {Plasmon-resonant gold nanorods, which have large absorption cross sections at near-infrared frequencies, are excellent candidates as multifunctional agents for image-guided therapies based on localized hyperthermia. The controlled modification of the surface chemistry of the nanorods is of critical importance, as issues of cell-specific targeting and nonspecific uptake must be addressed prior to clinical evaluation. Nanorods coated with cetyltrimethylammonium bromide (a cationic surfactant used in nanorod synthesis) are internalized within hours into KB cells by a nonspecific uptake pathway, whereas the careful removal of cetyltrimethylammonium bromide from nanorods functionalized with folate results in their accumulation on the cell surface over the same time interval. In either case, the nanorods render the tumor cells highly susceptible to photothermal damage when irradiated at the nanorods' longitudinal plasmon resonance, generating extensive blebbing of the cell membrane at laser fluences as low as 30 J/cm(2).},
253     Address = {UNITEC HOUSE, 3RD FLOOR, 2 ALBERT PLACE, FINCHLEY CENTRAL, LONDON, N3 1QB, ENGLAND},
254     Author = {Huff, Terry B. and Tong, Ling and Zhao, Yan and Hansen, Matthew N. and Cheng, Ji-Xin and Wei, Alexander},
255     Date = {FEB 2007},
256     Date-Added = {2012-12-17 17:44:36 +0000},
257     Date-Modified = {2012-12-17 17:44:36 +0000},
258     Doi = {DOI 10.2217/17435889.2.1.125},
259     Journal = {Nanomedicine},
260     Keywords = {folate receptor; hyperthermia; imaging; nanorods; nonlinear optical microscopy; plasmon resonance; targeted therapy},
261     Pages = {125-132},
262     Publisher = {FUTURE MEDICINE LTD},
263     Timescited = {13},
264 kstocke1 3861 Title = {Hyperthermic Effects of Gold Nanorods on Tumor Cells},
265 gezelter 3819 Volume = {2},
266     Year = {2007},
267     Bdsk-Url-1 = {http://dx.doi.org/10.2217/17435889.2.1.125}}
268    
269     @article{JiangHao_jp802942v,
270     Abstract = {Abstract: Nonequilibrium molecular dynamics simulations with the nonpolarizable SPC/E (Berendsen et al., J. Phys. Chem. 1987, 91, 6269) and the polarizable COS/G2 (Yu and van Gunsteren, J. Chem. Phys. 2004, 121, 9549) force fields have been employed to calculate the thermal conductivity and other associated properties of methane hydrate over a temperature range from 30 to 260 K. The calculated results are compared to experimental data over this same range. The values of the thermal conductivity calculated with the COS/G2 model are closer to the experimental values than are those calculated with the nonpolarizable SPC/E model. The calculations match the temperature trend in the experimental data at temperatures below 50 K; however, they exhibit a slight decrease in thermal conductivity at higher temperatures in comparison to an opposite trend in the experimental data. The calculated thermal conductivity values are found to be relatively insensitive to the occupancy of the cages except at low (T d 50 K) temperatures, which indicates that the differences between the two lattice structures may have a more dominant role than generally thought in explaining the low thermal conductivity of methane hydrate compared to ice Ih. The introduction of defects into the water lattice is found to cause a reduction in the thermal conductivity but to have a negligible impact on its temperature dependence.},
271     Affiliation = {National Energy Technology Laboratory, U.S. Department of Energy, Post Office Box 10940, Pittsburgh, Pennsylvania 15236, Department of Chemistry and Center for Molecular and Materials Simulations, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, and Parsons Project Services, Inc., South Park, Pennsylvania 15129},
272     Author = {Jiang, Hao and Myshakin, Evgeniy M. and Jordan, Kenneth D. and Warzinski, Robert P.},
273     Date-Added = {2012-12-17 16:57:19 +0000},
274 kstocke1 3861 Date-Modified = {2013-02-18 18:00:08 +0000},
275 gezelter 3819 Doi = {10.1021/jp802942v},
276     Issn = {1520-6106},
277     Journal = jpcb,
278 kstocke1 3861 Pages = {10207-10216},
279 gezelter 3819 Title = {Molecular Dynamics Simulations of the Thermal Conductivity of Methane Hydrate},
280 kstocke1 3861 Volume = {112},
281 gezelter 3819 Year = {2008},
282     Bdsk-Url-1 = {http://pubs3.acs.org/acs/journals/doilookup?in_doi=10.1021/jp802942v}}
283    
284     @article{Schelling:2002dp,
285     Author = {Schelling, P. K. and Phillpot, S. R. and Keblinski, P.},
286     Date = {APR 1 2002},
287     Date-Added = {2012-12-17 16:57:10 +0000},
288     Date-Modified = {2012-12-17 16:57:10 +0000},
289     Doi = {10.1103/PhysRevB.65.144306},
290     Isi = {WOS:000174980300055},
291     Issn = {1098-0121},
292     Journal = prb,
293     Month = {Apr},
294     Number = {14},
295     Pages = {144306},
296     Publication-Type = {J},
297     Times-Cited = {288},
298 kstocke1 3861 Title = {Comparison of Atomic-Level Simulation Methods for Computing Thermal Conductivity},
299 gezelter 3819 Volume = {65},
300     Year = {2002},
301     Z8 = {12},
302     Z9 = {296},
303     Zb = {0},
304     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevB.65.144306}}
305    
306     @article{Evans:2002ai,
307     Author = {Evans, D. J. and Searles, D. J.},
308     Date = {NOV 2002},
309     Date-Added = {2012-12-17 16:56:59 +0000},
310     Date-Modified = {2012-12-17 16:56:59 +0000},
311     Doi = {10.1080/00018730210155133},
312     Isi = {WOS:000179448200001},
313     Issn = {0001-8732},
314     Journal = {Adv. Phys.},
315     Month = {Nov},
316     Number = {7},
317     Pages = {1529--1585},
318     Publication-Type = {J},
319     Times-Cited = {309},
320 kstocke1 3861 Title = {The Fluctuation Theorem},
321 gezelter 3819 Volume = {51},
322     Year = {2002},
323     Z8 = {3},
324     Z9 = {311},
325     Zb = {9},
326     Bdsk-Url-1 = {http://dx.doi.org/10.1080/00018730210155133}}
327    
328     @article{Berthier:2002ij,
329     Author = {Berthier, L. and Barrat, J. L.},
330     Date = {APR 8 2002},
331     Date-Added = {2012-12-17 16:56:47 +0000},
332     Date-Modified = {2012-12-17 16:56:47 +0000},
333     Doi = {10.1063/1.1460862},
334     Isi = {WOS:000174634200036},
335     Issn = {0021-9606},
336     Journal = jcp,
337     Month = {Apr},
338     Number = {14},
339     Pages = {6228--6242},
340     Publication-Type = {J},
341     Times-Cited = {172},
342 kstocke1 3861 Title = {Nonequilibrium Dynamics and Fluctuation-Dissipation Relation in a Sheared Fluid},
343 gezelter 3819 Volume = {116},
344     Year = {2002},
345     Z8 = {0},
346     Z9 = {172},
347     Zb = {1},
348     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.1460862}}
349    
350     @article{MAGINN:1993hc,
351 kstocke1 3854 Author = {Maginn, E. J. and Bell, A. T. and Theodorou, D. N.},
352 gezelter 3819 Date = {APR 22 1993},
353     Date-Added = {2012-12-17 16:56:40 +0000},
354 kstocke1 3854 Date-Modified = {2012-12-21 22:43:10 +0000},
355 gezelter 3819 Doi = {10.1021/j100118a038},
356     Isi = {WOS:A1993KY46600039},
357     Issn = {0022-3654},
358     Journal = jpc,
359     Month = {Apr},
360     Number = {16},
361     Pages = {4173--4181},
362     Publication-Type = {J},
363     Times-Cited = {198},
364 kstocke1 3861 Title = {Transport Diffusivity of Methane in Silicalite from Equilibrium and Nonequilibrium Simulations},
365 gezelter 3819 Volume = {97},
366     Year = {1993},
367     Z8 = {4},
368     Z9 = {201},
369     Zb = {0},
370     Bdsk-Url-1 = {http://dx.doi.org/10.1021/j100118a038}}
371    
372     @article{ERPENBECK:1984sp,
373 kstocke1 3854 Author = {Erpenbeck, J. J.},
374 gezelter 3819 Date = {1984},
375     Date-Added = {2012-12-17 16:56:32 +0000},
376 kstocke1 3854 Date-Modified = {2012-12-21 22:42:45 +0000},
377 gezelter 3819 Doi = {10.1103/PhysRevLett.52.1333},
378     Isi = {WOS:A1984SK96700021},
379     Issn = {0031-9007},
380     Journal = prl,
381     Number = {15},
382     Pages = {1333--1335},
383     Publication-Type = {J},
384     Times-Cited = {189},
385 kstocke1 3861 Title = {Shear Viscosity of the Hard-Sphere Fluid via Nonequilibrium Molecular Dynamics},
386 gezelter 3819 Volume = {52},
387     Year = {1984},
388     Z8 = {0},
389     Z9 = {189},
390     Zb = {1},
391     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevLett.52.1333}}
392    
393     @article{Evans:1982zk,
394     Author = {Evans, Denis J.},
395     Date-Added = {2012-12-17 16:56:24 +0000},
396 kstocke1 3861 Date-Modified = {2013-02-18 17:59:06 +0000},
397     Journal = {Phys. Lett. A},
398 gezelter 3819 Number = {9},
399     Pages = {457--460},
400 kstocke1 3861 Title = {Homogeneous NEMD Algorithm for Thermal Conductivity -- Application of Non-Canonical Linear Response Theory},
401 gezelter 3819 Ty = {JOUR},
402     Url = {http://www.sciencedirect.com/science/article/B6TVM-46SXM58-S0/1/b270d693318250f3ed0dbce1a535ea50},
403     Volume = {91},
404     Year = {1982},
405     Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/B6TVM-46SXM58-S0/1/b270d693318250f3ed0dbce1a535ea50}}
406    
407     @article{ASHURST:1975tg,
408 kstocke1 3854 Author = {Ashurst, W. T. and Hoover, W. G.},
409 gezelter 3819 Date = {1975},
410     Date-Added = {2012-12-17 16:56:05 +0000},
411 kstocke1 3854 Date-Modified = {2012-12-21 22:42:31 +0000},
412 gezelter 3819 Doi = {10.1103/PhysRevA.11.658},
413     Isi = {WOS:A1975V548400036},
414     Issn = {1050-2947},
415     Journal = pra,
416     Number = {2},
417     Pages = {658--678},
418     Publication-Type = {J},
419     Times-Cited = {295},
420 kstocke1 3861 Title = {Dense-Fluid Shear Viscosity via Nonequilibrium Molecular Dynamics},
421 gezelter 3819 Volume = {11},
422     Year = {1975},
423     Z8 = {3},
424     Z9 = {298},
425     Zb = {1},
426     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevA.11.658}}
427    
428     @article{kinaci:014106,
429     Author = {A. Kinaci and J. B. Haskins and T. \c{C}a\u{g}in},
430     Date-Added = {2012-12-17 16:55:56 +0000},
431     Date-Modified = {2012-12-17 16:55:56 +0000},
432     Doi = {10.1063/1.4731450},
433     Eid = {014106},
434     Journal = jcp,
435     Keywords = {argon; elemental semiconductors; Ge-Si alloys; molecular dynamics method; nanostructured materials; porous semiconductors; silicon; thermal conductivity},
436     Number = {1},
437     Numpages = {8},
438     Pages = {014106},
439     Publisher = {AIP},
440 kstocke1 3861 Title = {On Calculation of Thermal Conductivity from Einstein Relation in Equilibrium Molecular Dynamics},
441 gezelter 3819 Url = {http://link.aip.org/link/?JCP/137/014106/1},
442     Volume = {137},
443     Year = {2012},
444     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/137/014106/1},
445     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.4731450}}
446    
447     @article{che:6888,
448     Author = {Jianwei Che and Tahir Cagin and Weiqiao Deng and William A. Goddard III},
449     Date-Added = {2012-12-17 16:55:48 +0000},
450     Date-Modified = {2012-12-17 16:55:48 +0000},
451     Doi = {10.1063/1.1310223},
452     Journal = jcp,
453     Keywords = {diamond; thermal conductivity; digital simulation; vacancies (crystal); Green's function methods; isotope effects},
454     Number = {16},
455     Pages = {6888-6900},
456     Publisher = {AIP},
457 kstocke1 3861 Title = {Thermal Conductivity of Diamond and Related Materials from Molecular Dynamics Simulations},
458 gezelter 3819 Url = {http://link.aip.org/link/?JCP/113/6888/1},
459     Volume = {113},
460     Year = {2000},
461     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/113/6888/1},
462     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.1310223}}
463    
464     @article{Viscardy:2007rp,
465     Abstract = {The thermal conductivity is calculated with the Helfand-moment method in the Lennard-Jones fluid near the triple point. The Helfand moment of thermal conductivity is here derived for molecular dynamics with periodic boundary conditions. Thermal conductivity is given by a generalized Einstein relation with this Helfand moment. The authors compute thermal conductivity by this new method and compare it with their own values obtained by the standard Green-Kubo method. The agreement is excellent. (C) 2007 American Institute of Physics.},
466     Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
467     Author = {Viscardy, S. and Servantie, J. and Gaspard, P.},
468     Date = {MAY 14 2007},
469     Date-Added = {2012-12-17 16:55:32 +0000},
470 kstocke1 3861 Date-Modified = {2013-02-18 17:58:40 +0000},
471 gezelter 3819 Doi = {ARTN 184513},
472     Journal = jcp,
473 kstocke1 3861 Pages = {184513},
474 gezelter 3819 Publisher = {AMER INST PHYSICS},
475     Timescited = {1},
476 kstocke1 3861 Title = {Transport and Helfand Moments in the Lennard-Jones Fluid. II. Thermal Conductivity},
477 gezelter 3819 Volume = {126},
478     Year = {2007},
479     Bdsk-Url-1 = {http://dx.doi.org/184513}}
480    
481     @article{PhysRev.119.1,
482     Author = {Helfand, Eugene},
483     Date-Added = {2012-12-17 16:55:19 +0000},
484     Date-Modified = {2012-12-17 16:55:19 +0000},
485     Doi = {10.1103/PhysRev.119.1},
486     Journal = {Phys. Rev.},
487     Month = {Jul},
488     Number = {1},
489     Numpages = {8},
490     Pages = {1--9},
491     Publisher = {American Physical Society},
492     Title = {Transport Coefficients from Dissipation in a Canonical Ensemble},
493     Volume = {119},
494     Year = {1960},
495     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRev.119.1}}
496    
497     @article{PhysRevA.34.1449,
498     Author = {Evans, Denis J.},
499     Date-Added = {2012-12-17 16:55:19 +0000},
500     Date-Modified = {2012-12-17 16:55:19 +0000},
501     Doi = {10.1103/PhysRevA.34.1449},
502     Journal = {Phys. Rev. A},
503     Month = {Aug},
504     Number = {2},
505     Numpages = {4},
506     Pages = {1449--1453},
507     Publisher = {American Physical Society},
508 kstocke1 3861 Title = {Thermal Conductivity of the Lennard-Jones Fluid},
509 gezelter 3819 Volume = {34},
510     Year = {1986},
511     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevA.34.1449}}
512    
513     @article{MASSOBRIO:1984bl,
514     Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA},
515 kstocke1 3854 Author = {Massobrio, C and Ciccotti, G},
516 gezelter 3819 Date = {1984},
517     Date-Added = {2012-12-17 16:55:03 +0000},
518 kstocke1 3854 Date-Modified = {2012-12-21 22:42:02 +0000},
519 gezelter 3819 Journal = pra,
520     Pages = {3191-3197},
521     Publisher = {AMERICAN PHYSICAL SOC},
522     Timescited = {29},
523 kstocke1 3861 Title = {Lennard-Jones Triple-Point Conductivity via Weak External Fields},
524 gezelter 3819 Volume = {30},
525     Year = {1984}}
526    
527     @article{PhysRevB.37.5677,
528     Author = {Heyes, David M.},
529     Date-Added = {2012-12-17 16:54:55 +0000},
530     Date-Modified = {2012-12-17 16:54:55 +0000},
531     Doi = {10.1103/PhysRevB.37.5677},
532     Journal = prb,
533     Month = {Apr},
534     Number = {10},
535     Numpages = {19},
536     Pages = {5677--5696},
537     Publisher = {American Physical Society},
538 kstocke1 3861 Title = {Transport Coefficients of Lennard-Jones Fluids: A Molecular-Dynamics and Effective-Hard-Sphere Treatment},
539 gezelter 3819 Volume = {37},
540     Year = {1988},
541     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevB.37.5677}}
542    
543     @article{PhysRevB.80.195406,
544     Author = {Juv\'e, Vincent and Scardamaglia, Mattia and Maioli, Paolo and Crut, Aur\'elien and Merabia, Samy and Joly, Laurent and Del Fatti, Natalia and Vall\'ee, Fabrice},
545     Date-Added = {2012-12-17 16:54:55 +0000},
546     Date-Modified = {2012-12-17 16:54:55 +0000},
547     Doi = {10.1103/PhysRevB.80.195406},
548     Journal = prb,
549     Month = {Nov},
550     Number = {19},
551     Numpages = {6},
552     Pages = {195406},
553     Publisher = {American Physical Society},
554 kstocke1 3861 Title = {Cooling Dynamics and Thermal Interface Resistance of Glass-Embedded Metal Nanoparticles},
555 gezelter 3819 Volume = {80},
556     Year = {2009},
557     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevB.80.195406}}
558    
559     @article{Wang10082007,
560     Abstract = {At the level of individual molecules, familiar concepts of heat transport no longer apply. When large amounts of heat are transported through a molecule, a crucial process in molecular electronic devices, energy is carried by discrete molecular vibrational excitations. We studied heat transport through self-assembled monolayers of long-chain hydrocarbon molecules anchored to a gold substrate by ultrafast heating of the gold with a femtosecond laser pulse. When the heat reached the methyl groups at the chain ends, a nonlinear coherent vibrational spectroscopy technique detected the resulting thermally induced disorder. The flow of heat into the chains was limited by the interface conductance. The leading edge of the heat burst traveled ballistically along the chains at a velocity of 1 kilometer per second. The molecular conductance per chain was 50 picowatts per kelvin.},
561     Author = {Wang, Zhaohui and Carter, Jeffrey A. and Lagutchev, Alexei and Koh, Yee Kan and Seong, Nak-Hyun and Cahill, David G. and Dlott, Dana D.},
562     Date-Added = {2012-12-17 16:54:31 +0000},
563     Date-Modified = {2012-12-17 16:54:31 +0000},
564     Doi = {10.1126/science.1145220},
565     Eprint = {http://www.sciencemag.org/content/317/5839/787.full.pdf},
566     Journal = {Science},
567     Number = {5839},
568     Pages = {787-790},
569     Title = {Ultrafast Flash Thermal Conductance of Molecular Chains},
570     Url = {http://www.sciencemag.org/content/317/5839/787.abstract},
571     Volume = {317},
572     Year = {2007},
573     Bdsk-Url-1 = {http://www.sciencemag.org/content/317/5839/787.abstract},
574     Bdsk-Url-2 = {http://dx.doi.org/10.1126/science.1145220}}
575    
576     @article{doi:10.1021/la904855s,
577 kstocke1 3861 Annote = {PMID: 20166728},
578 gezelter 3819 Author = {Alper, Joshua and Hamad-Schifferli, Kimberly},
579     Date-Added = {2012-12-17 16:54:12 +0000},
580 kstocke1 3861 Date-Modified = {2013-02-18 17:57:03 +0000},
581 gezelter 3819 Doi = {10.1021/la904855s},
582     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/la904855s},
583     Journal = {Langmuir},
584     Number = {6},
585     Pages = {3786-3789},
586     Title = {Effect of Ligands on Thermal Dissipation from Gold Nanorods},
587     Url = {http://pubs.acs.org/doi/abs/10.1021/la904855s},
588     Volume = {26},
589     Year = {2010},
590     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/la904855s},
591     Bdsk-Url-2 = {http://dx.doi.org/10.1021/la904855s}}
592    
593     @article{doi:10.1021/jp048375k,
594     Abstract = { Water- and alcohol-soluble AuPd nanoparticles have been investigated to determine the effect of the organic stabilizing group on the thermal conductance G of the particle/fluid interface. The thermal decays of tiopronin-stabilized 3−5-nm diameter AuPd alloy nanoparticles, thioalkylated ethylene glycol-stabilized 3−5-nm diameter AuPd nanoparticles, and cetyltrimethylammonium bromide-stabilized 22-nm diameter Au-core/AuPd-shell nanoparticles give thermal conductances G ≈ 100−300 MW m-2 K-1 for the particle/water interfaces, approximately an order of magnitude larger than the conductance of the interfaces between alkanethiol-terminated AuPd nanoparticles and toluene. The similar values of G for particles ranging in size from 3 to 24 nm with widely varying surface chemistry indicate that the thermal coupling between AuPd nanoparticles and water is strong regardless of the self-assembled stabilizing group. },
595     Author = {Ge, Zhenbin and Cahill, David G. and Braun, Paul V.},
596     Date-Added = {2012-12-17 16:54:03 +0000},
597     Date-Modified = {2012-12-17 16:54:03 +0000},
598     Doi = {10.1021/jp048375k},
599     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp048375k},
600     Journal = jpcb,
601     Number = {49},
602     Pages = {18870-18875},
603     Title = {AuPd Metal Nanoparticles as Probes of Nanoscale Thermal Transport in Aqueous Solution},
604     Url = {http://pubs.acs.org/doi/abs/10.1021/jp048375k},
605     Volume = {108},
606     Year = {2004},
607     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp048375k},
608     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp048375k}}
609    
610     @article{doi:10.1021/jp8051888,
611     Abstract = { Thermal transport between CTAB passivated gold nanorods and solvent is studied by an optical pump−probe technique. Increasing the free CTAB concentration from 1 mM to 10 mM causes a ∼3× increase in the CTAB layer's effective thermal interface conductance and a corresponding shift in the longitudinal surface plasmon resonance. The transition occurs near the CTAB critical micelle concentration, revealing the importance of the role of free ligand on thermal transport. },
612     Author = {Schmidt, Aaron J. and Alper, Joshua D. and Chiesa, Matteo and Chen, Gang and Das, Sarit K. and Hamad-Schifferli, Kimberly},
613     Date-Added = {2012-12-17 16:54:03 +0000},
614 kstocke1 3861 Date-Modified = {2013-02-18 17:54:59 +0000},
615 gezelter 3819 Doi = {10.1021/jp8051888},
616     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp8051888},
617     Journal = jpcc,
618     Number = {35},
619     Pages = {13320-13323},
620 kstocke1 3861 Title = {Probing the Gold Nanorod-Ligand-Solvent Interface by Plasmonic Absorption and Thermal Decay},
621 gezelter 3819 Url = {http://pubs.acs.org/doi/abs/10.1021/jp8051888},
622     Volume = {112},
623     Year = {2008},
624     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp8051888},
625     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp8051888}}
626    
627     @article{PhysRevB.67.054302,
628     Author = {Costescu, Ruxandra M. and Wall, Marcel A. and Cahill, David G.},
629     Date-Added = {2012-12-17 16:53:48 +0000},
630     Date-Modified = {2012-12-17 16:53:48 +0000},
631     Doi = {10.1103/PhysRevB.67.054302},
632     Journal = prb,
633     Month = {Feb},
634     Number = {5},
635     Numpages = {5},
636     Pages = {054302},
637     Publisher = {American Physical Society},
638 kstocke1 3861 Title = {Thermal Conductance of Epitaxial Interfaces},
639 gezelter 3819 Volume = {67},
640     Year = {2003},
641     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevB.67.054302}}
642    
643     @article{cahill:793,
644     Author = {David G. Cahill and Wayne K. Ford and Kenneth E. Goodson and Gerald D. Mahan and Arun Majumdar and Humphrey J. Maris and Roberto Merlin and Simon R. Phillpot},
645     Date-Added = {2012-12-17 16:53:36 +0000},
646     Date-Modified = {2012-12-17 16:53:36 +0000},
647     Doi = {10.1063/1.1524305},
648     Journal = {J. Appl. Phys.},
649     Keywords = {nanostructured materials; reviews; thermal conductivity; interface phenomena; molecular dynamics method; thermal management (packaging); Boltzmann equation; carbon nanotubes; porosity; semiconductor superlattices; thermoreflectance; interface phonons; thermoelectricity; phonon-phonon interactions},
650     Number = {2},
651     Pages = {793-818},
652     Publisher = {AIP},
653 kstocke1 3861 Title = {Nanoscale Thermal Transport},
654 gezelter 3819 Url = {http://link.aip.org/link/?JAP/93/793/1},
655     Volume = {93},
656     Year = {2003},
657     Bdsk-Url-1 = {http://link.aip.org/link/?JAP/93/793/1},
658     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.1524305}}
659    
660     @article{Eapen:2007mw,
661     Abstract = {In a well-dispersed nanofluid with strong cluster-fluid attraction, thermal conduction paths can arise through percolating amorphouslike interfacial structures. This results in a thermal conductivity enhancement beyond the Maxwell limit of 3 phi, with phi being the nanoparticle volume fraction. Our findings from nonequilibrium molecular dynamics simulations, which are amenable to experimental verification, can provide a theoretical basis for the development of future nanofluids.},
662     Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA},
663     Author = {Eapen, Jacob and Li, Ju and Yip, Sidney},
664     Date = {DEC 2007},
665     Date-Added = {2012-12-17 16:53:30 +0000},
666 kstocke1 3861 Date-Modified = {2013-02-18 17:48:08 +0000},
667 gezelter 3819 Doi = {ARTN 062501},
668     Journal = pre,
669 kstocke1 3861 Pages = {062501},
670 gezelter 3819 Publisher = {AMER PHYSICAL SOC},
671     Timescited = {0},
672 kstocke1 3861 Title = {Beyond the Maxwell Limit: Thermal Conduction in Nanofluids with Percolating Fluid Structures},
673 gezelter 3819 Volume = {76},
674     Year = {2007},
675     Bdsk-Url-1 = {http://dx.doi.org/062501}}
676    
677     @article{Xue:2003ya,
678     Abstract = {Using nonequilibrium molecular dynamics simulations in which a temperature gradient is imposed, we determine the thermal resistance of a model liquid-solid interface. Our simulations reveal that the strength of the bonding between liquid and solid atoms plays a key role in determining interfacial thermal resistance. Moreover, we find that the functional dependence of the thermal resistance on the strength of the liquid-solid interactions exhibits two distinct regimes: (i) exponential dependence for weak bonding (nonwetting liquid) and (ii) power law dependence for strong bonding (wetting liquid). The identification of the two regimes of the Kapitza resistance has profound implications for understanding and designing the thermal properties of nanocomposite materials. (C) 2003 American Institute of Physics.},
679     Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
680     Author = {Xue, L and Keblinski, P and Phillpot, SR and Choi, SUS and Eastman, JA},
681     Date = {JAN 1 2003},
682     Date-Added = {2012-12-17 16:53:22 +0000},
683     Date-Modified = {2012-12-17 16:53:22 +0000},
684     Doi = {DOI 10.1063/1.1525806},
685     Journal = jcp,
686     Pages = {337-339},
687     Publisher = {AMER INST PHYSICS},
688     Timescited = {19},
689 kstocke1 3861 Title = {Two Regimes of Thermal Resistance at a Liquid-Solid Interface},
690 gezelter 3819 Volume = {118},
691     Year = {2003},
692     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.1525806}}
693    
694     @article{Xue:2004oa,
695     Abstract = {Using non-equilibrium molecular dynamics simulations in which a temperature gradient is imposed, we study how the ordering of the liquid at the liquid-solid interface affects the interfacial thermal resistance. Our simulations of a simple monoatomic liquid show no effect on the thermal transport either normal to the surface or parallel to the surface. Even for of a liquid that is highly confined between two solids, we find no effect on thermal conductivity. This contrasts with well-known significant effect of confinement on the viscoelastic response. Our findings suggest that the experimentally observed large enhancement of thermal conductivity in suspensions of solid nanosized particles (nanofluids) can not be explained by altered thermal transport properties of the layered liquid. (C) 2004 Elsevier Ltd. All rights reserved.},
696     Address = {THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND},
697     Author = {Xue, L and Keblinski, P and Phillpot, SR and Choi, SUS and Eastman, JA},
698     Date = {SEP 2004},
699     Date-Added = {2012-12-17 16:53:22 +0000},
700 kstocke1 3861 Date-Modified = {2013-02-18 17:47:37 +0000},
701 gezelter 3819 Doi = {DOI 10.1016/ijheatmasstransfer.2004.05.016},
702 kstocke1 3861 Journal = {Int. J. Heat Mass Tran.},
703     Keywords = {interfacial Thermal Resistance; liquid-solid interface; molecular dynamics simulations; nanofluids},
704 gezelter 3819 Pages = {4277-4284},
705     Publisher = {PERGAMON-ELSEVIER SCIENCE LTD},
706     Timescited = {29},
707 kstocke1 3861 Title = {Effect of Liquid Layering at the Liquid-Solid Interface on Thermal Transport},
708 gezelter 3819 Volume = {47},
709     Year = {2004},
710     Bdsk-Url-1 = {http://dx.doi.org/10.1016/ijheatmasstransfer.2004.05.016}}
711    
712     @article{Lee:1999ct,
713     Abstract = {Oxide nanofluids were produced and their thermal conductivities were measured by a transient hot-wire method. The experimental results show that these nanofluids, containing a small amount of nanoparticles, have substantially higher thermal conductivities than the same liquids without nanoparticles. Comparisons between experiments and the Hamilton and Crosser model show that the model can predict the thermal conductivity of nanofluids containing large agglomerated Al2O3 particles. However, the model appears to be inadequate for nanofluids containing CuO particles. This suggests that not only particle shape but size is considered to be dominant in enhancing the thermal conductivity of nanofluids.},
714     Address = {345 E 47TH ST, NEW YORK, NY 10017 USA},
715     Author = {Lee, S and Choi, SUS and Li, S and Eastman, JA},
716     Date = {MAY 1999},
717     Date-Added = {2012-12-17 16:53:15 +0000},
718 kstocke1 3861 Date-Modified = {2013-02-18 17:46:57 +0000},
719     Journal = {J. Heat Transf.},
720 gezelter 3819 Keywords = {conduction; enhancement; heat transfer; nanoscale; two-phase},
721     Pages = {280-289},
722     Publisher = {ASME-AMER SOC MECHANICAL ENG},
723     Timescited = {183},
724 kstocke1 3861 Title = {Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles},
725 gezelter 3819 Volume = {121},
726     Year = {1999}}
727    
728     @article{Keblinski:2002bx,
729     Abstract = {Recent measurements on nanofluids have demonstrated that the thermal conductivity increases with decreasing grain size. However, Such increases cannot be explained by existing theories. We explore four possible explanations for this anomalous increase: Brownian motion of the particles, molecular-level layering of the liquid at the liquid/particle interface, the nature of heat transport in the nanoparticles. and the effects of nanoparticle clustering. We show that the key factors in understanding thermal properties of nanofluids are the ballistic, rather than diffusive, nature of heat transport in the nanoparticles, combined with direct or fluid-mediated clustering effects that provide paths for rapid heat transport. (C) 2001 Elsevier Science Ltd. All rights reserved.},
730     Address = {THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND},
731     Author = {Keblinski, P and Phillpot, SR and Choi, SUS and Eastman, JA},
732     Date = {FEB 2002},
733     Date-Added = {2012-12-17 16:53:06 +0000},
734 kstocke1 3861 Date-Modified = {2013-02-18 17:41:04 +0000},
735     Journal = {Int. J. Heat Mass Tran.},
736 gezelter 3819 Keywords = {thermal conductivity; nanofluids; molecular dynamics simulations; ballistic heat transport},
737     Pages = {855-863},
738     Publisher = {PERGAMON-ELSEVIER SCIENCE LTD},
739     Timescited = {161},
740 kstocke1 3861 Title = {Mechanisms of Heat Flow in Suspensions of Nano-Sized Particles (Nanofluids)},
741 gezelter 3819 Volume = {45},
742     Year = {2002}}
743    
744     @article{Eastman:2001wb,
745     Abstract = {It is shown that a "nanofluid" consisting of copper nanometer-sized particles dispersed in ethylene glycol has a much higher effective thermal conductivity than either pure ethylene glycol or ethylene glycol containing the same volume fraction of dispersed oxide nanoparticles. The effective thermal conductivity of ethylene glycol is shown to be increased by up to 40\% for a nanofluid consisting of ethylene glycol containing approximately 0.3 vol \% Cu nanoparticles of mean diameter < 10 nm. The results are anomalous based on previous theoretical calculations that had predicted a strong effect of particle shape on effective nanofluid thermal conductivity, but no effect of either particle size or particle thermal conductivity. (C) 2001 American Institute of Physics.},
746     Address = {2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA},
747     Author = {Eastman, JA and Choi, SUS and Li, S and Yu, W and Thompson, LJ},
748     Date = {FEB 5 2001},
749     Date-Added = {2012-12-17 16:52:55 +0000},
750 kstocke1 3861 Date-Modified = {2013-02-18 17:40:41 +0000},
751     Journal = {Appl. Phys. Lett.},
752 gezelter 3819 Pages = {718-720},
753     Publisher = {AMER INST PHYSICS},
754     Timescited = {246},
755 kstocke1 3861 Title = {Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles},
756 gezelter 3819 Volume = {78},
757     Year = {2001}}
758    
759     @article{Eapen:2007th,
760     Abstract = {Transient hot-wire data on thermal conductivity of suspensions of silica and perfluorinated particles show agreement with the mean-field theory of Maxwell but not with the recently postulated microconvection mechanism. The influence of interfacial thermal resistance, convective effects at microscales, and the possibility of thermal conductivity enhancements beyond the Maxwell limit are discussed.},
761     Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA},
762     Author = {Eapen, Jacob and Williams, Wesley C. and Buongiorno, Jacopo and Hu, Lin-Wen and Yip, Sidney and Rusconi, Roberto and Piazza, Roberto},
763     Date = {AUG 31 2007},
764     Date-Added = {2012-12-17 16:52:46 +0000},
765 kstocke1 3861 Date-Modified = {2013-02-18 17:40:15 +0000},
766 gezelter 3819 Doi = {ARTN 095901},
767     Journal = prl,
768 kstocke1 3861 Pages = {095901},
769 gezelter 3819 Publisher = {AMER PHYSICAL SOC},
770     Timescited = {8},
771 kstocke1 3861 Title = {Mean-Field Versus Microconvection Effects in Nanofluid Thermal Conduction},
772 gezelter 3819 Volume = {99},
773     Year = {2007},
774     Bdsk-Url-1 = {http://dx.doi.org/095901}}
775    
776     @article{Plech:2005kx,
777     Abstract = {The transient structural response of laser excited gold nanoparticle sols has been recorded by pulsed X-ray scattering. Time resolved wide angle and small angle scattering (SAXS) record the changes in structure both of the nanoparticles and the water environment subsequent to femtosecond laser excitation. Within the first nanosecond after the excitation of the nanoparticles, the water phase shows a signature of compression, induced by a heat-induced evaporation of the water shell close to the heated nanoparticles. The particles themselves undergo a melting transition and are fragmented to Form new clusters in the nanometer range. (C) 2004 Elsevier B.V. All rights reserved.},
778     Author = {Plech, A and Kotaidis, V and Lorenc, M and Wulff, M},
779     Date-Added = {2012-12-17 16:52:34 +0000},
780     Date-Modified = {2012-12-17 16:52:34 +0000},
781     Doi = {DOI 10.1016/j.cplett.2004.11.072},
782     Journal = cpl,
783     Local-Url = {file://localhost/Users/charles/Documents/Papers/sdarticle3.pdf},
784     Pages = {565-569},
785 kstocke1 3861 Title = {Thermal Dynamics in Laser Excited Metal Nanoparticles},
786 gezelter 3819 Volume = {401},
787     Year = {2005},
788     Bdsk-Url-1 = {http://dx.doi.org/10.1016/j.cplett.2004.11.072}}
789    
790     @article{Wilson:2002uq,
791     Abstract = {We investigate suspensions of 3-10 nm diameter Au, Pt, and AuPd nanoparticles as probes of thermal transport in fluids and determine approximate values for the thermal conductance G of the particle/fluid interfaces. Subpicosecond lambda=770 nm optical pulses from a Ti:sapphire mode-locked laser are used to heat the particles and interrogate the decay of their temperature through time-resolved changes in optical absorption. The thermal decay of alkanethiol-terminated Au nanoparticles in toluene is partially obscured by other effects; we set a lower limit G>20 MW m(-2)K(-1). The thermal decay of citrate-stabilized Pt nanoparticles in water gives Gapproximate to130 MW m(-2) K-1. AuPd alloy nanoparticles in toluene and stabilized by alkanethiol termination give Gapproximate to5 MW m(-2) K-1. The measured G are within a factor of 2 of theoretical estimates based on the diffuse-mismatch model.},
792     Author = {Wilson, OM and Hu, XY and Cahill, DG and Braun, PV},
793     Date-Added = {2012-12-17 16:52:22 +0000},
794 kstocke1 3861 Date-Modified = {2013-02-18 17:34:52 +0000},
795 gezelter 3819 Doi = {ARTN 224301},
796     Journal = {Phys. Rev. B},
797     Local-Url = {file://localhost/Users/charles/Documents/Papers/e2243010.pdf},
798 kstocke1 3861 Pages = {224301},
799     Title = {Colloidal Metal Particles as Probes of Nanoscale Thermal Transport in Fluids},
800 gezelter 3819 Volume = {66},
801     Year = {2002},
802     Bdsk-Url-1 = {http://dx.doi.org/224301}}
803    
804     @article{Mazzaglia:2008to,
805     Abstract = {Amphiphilic cyclodextrins (CDs) modified in the upper rim with thiohexyl groups and in the lower rim with oligoethylene amino (SC6NH2) or oligoethylene hydroxyl groups (SC6OH) can bind gold colloids, yielding Au/CD particles with an average hydrodynamic radius (RH) of 2 and 25 rim in water solution. The systems were investigated by UV-vis, quasi-elastic light scattering, and FTIR-ATR techniques. The concentration of amphiphiles was kept above the concentration of gold colloids to afford complete covering. In the case of SC6NH2, basic conditions (Et3N, pH 11) yield promptly the decoration of Au, which can be stabilized by linkage of CD amino and/or thioether groups. The critical aggregation concentration of SC6NH2 was measured (similar to 4 mu M) by surface tension measurements, pointing out that about 50\% of CDs are present in nonaggregated form. Whereas Au/SC6NH2 colloids were stable in size and morphology for at least one month, the size of the Au/SC6OH system increases remarkably, forming nanoaggregates of 20 and 80 rim in two hours. Under physiological conditions, the gold/amino amphiphiles system can internalize in HeLa cells, as shown by extinction spectra registered on the immobilized cells. The gold delivered by cyclodextrins can induce photothermal damage upon irradiation, doubling the cell mortality with respect to uncovered gold colloids. These findings can open useful perspectives to the application of these self-assembled systems in cancer photothermal therapy.},
806     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
807     Author = {Mazzaglia, Antonino and Trapani, Mariachiara and Villari, Valentina and Micali, Norberto and Merlo, Francesca Marino and Zaccaria, Daniela and Sciortino, Maria Teresa and Previti, Francesco and Patane, Salvatore and Scolaro, Luigi Monsu},
808     Date = {MAY 1 2008},
809     Date-Added = {2012-12-17 16:52:15 +0000},
810     Date-Modified = {2012-12-17 16:52:15 +0000},
811     Doi = {DOI 10.1021/jp7120033},
812     Journal = jpcc,
813     Pages = {6764-6769},
814     Publisher = {AMER CHEMICAL SOC},
815     Timescited = {0},
816 kstocke1 3861 Title = {Amphiphilic Cyclodextrins as Capping Agents for Gold Colloids: A Spectroscopic Investigation with Perspectives in Photothermal Therapy},
817 gezelter 3819 Volume = {112},
818     Year = {2008},
819     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp7120033}}
820    
821     @article{Gnyawali:2008lp,
822     Abstract = {Tissue surface temperature distribution on the treatment site can serve as an indicator for the effectiveness of a photothermal therapy. In this study, both infrared thermography and theoretical simulation were used to determine the surface temperature distribution during laser irradiation of both gel phantom and animal tumors. Selective photothermal interaction was attempted by using intratumoral indocyanine green enhancement and irradiation via a near-infrared laser. An immunoadjuvant was also used to enhance immunological responses during tumor treatment. Monte Carlo method for tissue absorption of light and finite difference method for heat diffusion in tissue were used to simulate the temperature distribution during the selective laser photothermal interaction. An infrared camera was used to capture the thermal images during the laser treatment and the surface temperature was determined. Our findings show that the theoretical and experimental results are in good agreement and that the surface temperature of irradiated tissue can be controlled with appropriate dye and adjuvant enhancement. These results can be used to control the laser tumor treatment parameters and to optimize the treatment outcome. More importantly, when used with immunotherapy as a precursor of immunological responses, the selective photothermal treatment can be guided by the tissue temperature profiles both in the tumor and on the surface.},
823     Address = {TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY},
824     Author = {Gnyawali, Surya C. and Chen, Yicho and Wu, Feng and Bartels, Kenneth E. and Wicksted, James P. and Liu, Hong and Sen, Chandan K. and Chen, Wei R.},
825     Date = {FEB 2008},
826     Date-Added = {2012-12-17 16:52:08 +0000},
827 kstocke1 3861 Date-Modified = {2013-02-18 17:32:43 +0000},
828 gezelter 3819 Doi = {DOI 10.1007/s11517-007-0251-5},
829 kstocke1 3861 Journal = {Med. Biol. Eng. Comput.},
830 gezelter 3819 Keywords = {infrared thermography; indocyanine green; glycated chitosan; surface temperature; Monte Carlo simulation},
831     Pages = {159-168},
832     Publisher = {SPRINGER HEIDELBERG},
833     Timescited = {0},
834 kstocke1 3861 Title = {Temperature Measurement on Tissue Surface During Laser Irradiation},
835 gezelter 3819 Volume = {46},
836     Year = {2008},
837     Bdsk-Url-1 = {http://dx.doi.org/10.1007/s11517-007-0251-5}}
838    
839     @article{Petrova:2007ad,
840     Abstract = {This paper describes our recent time-resolved spectroscopy studies of the properties of gold particles at high laser excitation levels. In these experiments, an intense pump laser pulse rapidly heats the particle, creating very high lattice temperatures - up to the melting point of bulk gold. These high temperatures can have dramatic effects on the particle and the surroundings. The lattice temperature created is determined by observing the coherently excited the vibrational modes of the particles. The periods of these modes depend on temperature, thus, they act as an internal thermometer. We have used these experiments to provide values for the threshold temperatures for explosive boiling of the solvent surrounding the particles, and laser induced structural transformations in non-spherical particles. The results of these experiments are relevant to the use of metal nanoparticles in photothermal therapy, where laser induced heating is used to selectively kill cells.},
841     Address = {LEKTORAT MINT, POSTFACH 80 13 60, D-81613 MUNICH, GERMANY},
842     Author = {Petrova, Hristina and Hu, Min and Hartland, Gregory V.},
843     Date = {2007},
844     Date-Added = {2012-12-17 16:52:01 +0000},
845 kstocke1 3861 Date-Modified = {2013-02-18 17:32:23 +0000},
846 gezelter 3819 Doi = {DOI 10.1524/zpch.2007.221.3.361},
847 kstocke1 3861 Journal = {Z Phys. Chem.},
848 gezelter 3819 Keywords = {metal nanoparticles; phonon modes; photothermal properties; laser-induced heating},
849     Pages = {361-376},
850     Publisher = {OLDENBOURG VERLAG},
851     Timescited = {2},
852 kstocke1 3861 Title = {Photothermal Properties of Gold Nanoparticles},
853 gezelter 3819 Volume = {221},
854     Year = {2007},
855     Bdsk-Url-1 = {http://dx.doi.org/10.1524/zpch.2007.221.3.361}}
856    
857     @article{Jain:2007ux,
858     Abstract = {Noble metal, especially gold (Au) and silver (Ag) nanoparticles exhibit unique and tunable optical properties on account of their surface plasmon resonance (SPR). In this review, we discuss the SPR-enhanced optical properties of noble metal nanoparticles, with an emphasis on the recent advances in the utility of these plasmonic properties in molecular-specific imaging and sensing, photo-diagnostics, and selective photothermal therapy. The strongly enhanced SPR scattering from Au nanoparticles makes them useful as bright optical tags for molecular-specific biological imaging and detection using simple dark-field optical microscopy. On the other hand, the SPR absorption of the nanoparticles has allowed their use in the selective laser photothermal therapy of cancer. We also discuss the sensitivity of the nanoparticle SPR frequency to the local medium dielectric constant, which has been successfully exploited for the optical sensing of chemical and biological analytes. Plasmon coupling between metal nanoparticle pairs is also discussed, which forms the basis for nanoparticle assembly-based biodiagnostics and the plasmon ruler for dynamic measurement of nanoscale distances in biological systems.},
859     Address = {233 SPRING STREET, NEW YORK, NY 10013 USA},
860     Author = {Jain, Prashant K. and Huang, Xiaohua and El-Sayed, Ivan H. and El-Sayad, Mostafa A.},
861     Date = {SEP 2007},
862     Date-Added = {2012-12-17 16:51:52 +0000},
863 kstocke1 3861 Date-Modified = {2013-02-18 17:25:37 +0000},
864 gezelter 3819 Doi = {DOI 10.1007/s11468-007-9031-1},
865     Journal = {Plasmonics},
866     Keywords = {surface plasmon resonance (SPR); SPR sensing; Mie scattering; metal nanocrystals for biodiagnostics; photothermal therapy; plasmon coupling},
867     Number = {3},
868     Pages = {107-118},
869     Publisher = {SPRINGER},
870     Timescited = {2},
871 kstocke1 3861 Title = {Review of Some Interesting Surface Plasmon Resonance-Enhanced Properties of Noble Metal Nanoparticles and Their Applications to Biosystems},
872 gezelter 3819 Volume = {2},
873     Year = {2007},
874     Bdsk-Url-1 = {http://dx.doi.org/10.1007/s11468-007-9031-1}}
875    
876 kstocke1 3801 @techreport{Goddard1998,
877     Author = {Kimura, Y. and Cagin, T. and Goddard III, W.A.},
878 kstocke1 3804 Date-Added = {2012-12-05 22:18:01 +0000},
879     Date-Modified = {2012-12-05 22:18:01 +0000},
880 kstocke1 3801 Institution = {California Institute of Technology},
881     Lastchecked = {January 19, 2011},
882     Number = {003},
883     Title = {The Quantum Sutton-Chen Many Body Potential for Properties of fcc Metals},
884     Url = {http://csdrm.caltech.edu/publications/cit-asci-tr/cit-asci-tr003.pdf},
885     Year = {1998},
886     Bdsk-Url-1 = {http://csdrm.caltech.edu/publications/cit-asci-tr/cit-asci-tr003.pdf}}
887    
888     @article{Kuang2010,
889     Author = {Shenyu Kuang and J. Daniel Gezelter},
890 kstocke1 3804 Date-Added = {2012-12-05 22:18:01 +0000},
891     Date-Modified = {2012-12-05 22:18:01 +0000},
892 kstocke1 3801 Journal = {J. Chem. Phys.},
893     Keywords = {NIVS, RNEMD, NIVS-RNEMD},
894     Month = {October},
895     Pages = {164101-1 - 164101-9},
896 kstocke1 3861 Title = {A Gentler Approach to RNEMD: Nonisotropic Velocity Scaling for Computing Thermal Conductivity and Shear Viscosity},
897 kstocke1 3801 Volume = {133},
898     Year = {2010}}
899    
900     @article{Kuang2012,
901     Author = {Shenyu Kuang and J. Daniel Gezelter},
902 kstocke1 3804 Date-Added = {2012-12-05 22:18:01 +0000},
903     Date-Modified = {2012-12-05 22:18:01 +0000},
904 kstocke1 3801 Journal = {Mol. Phys.},
905     Keywords = {VSS, RNEMD, VSS-RNEMD},
906     Month = {May},
907     Number = {9-10},
908     Pages = {691-701},
909 kstocke1 3861 Title = {Velocity Shearing and Scaling RNEMD: A Minimally Perturbing Method for Simulating Temperature and Momentum Gradients},
910 kstocke1 3801 Volume = {110},
911     Year = {2012}}
912 kstocke1 3804
913     @article{doi:10.1080/0026897031000068578,
914     Abstract = { Using equilibrium and non-equilibrium molecular dynamics simulations, we determine the Kapitza resistance (or thermal contact resistance) at a model liquid-solid interface. The Kapitza resistance (or the associated Kapitza length) can reach appreciable values when the liquid does not wet the solid. The analogy with the hydrodynamic slip length is discussed. },
915     Author = {Barrat, Jean-Louis and Chiaruttini, Fran{\c c}ois},
916     Date-Added = {2011-12-13 17:17:05 -0500},
917     Date-Modified = {2011-12-13 17:17:05 -0500},
918     Doi = {10.1080/0026897031000068578},
919     Eprint = {http://tandfprod.literatumonline.com/doi/pdf/10.1080/0026897031000068578},
920     Journal = {Mol. Phys.},
921     Number = {11},
922     Pages = {1605-1610},
923 kstocke1 3861 Title = {Kapitza Resistance at the Liquid--Solid Interface},
924 kstocke1 3804 Url = {http://tandfprod.literatumonline.com/doi/abs/10.1080/0026897031000068578},
925     Volume = {101},
926     Year = {2003},
927     Bdsk-Url-1 = {http://tandfprod.literatumonline.com/doi/abs/10.1080/0026897031000068578},
928     Bdsk-Url-2 = {http://dx.doi.org/10.1080/0026897031000068578}}
929    
930     @article{Medina2011,
931     Abstract = {Molecular dynamics (MD) simulations are carried out on a system of rigid or flexible water molecules at a series of temperatures between 273 and 368&#xa0;K. Collective transport coefficients, such as shear and bulk viscosities are calculated, and their behavior is systematically investigated as a function of flexibility and temperature. It is found that by including the intramolecular terms in the potential the calculated viscosity values are in overall much better agreement, compared to earlier and recent available experimental data, than those obtained with the rigid SPC/E model. The effect of the intramolecular degrees of freedom on transport properties of liquid water is analyzed and the incorporation of polarizability is discussed for further improvements. To our knowledge the present study constitutes the first compendium of results on viscosities for pure liquid water, including flexible models, that has been assembled.},
932     Author = {J.S. Medina and R. Prosmiti and P. Villarreal and G. Delgado-Barrio and G. Winter and B. Gonz{\'a}lez and J.V. Alem{\'a}n and C. Collado},
933     Date-Added = {2011-12-13 17:08:34 -0500},
934     Date-Modified = {2011-12-13 17:08:49 -0500},
935     Doi = {10.1016/j.chemphys.2011.07.001},
936     Issn = {0301-0104},
937     Journal = {Chemical Physics},
938     Keywords = {Viscosity calculations},
939     Number = {1-3},
940     Pages = {9 - 18},
941 kstocke1 3861 Title = {Molecular Dynamics Simulations of Rigid and Flexible Water Models: Temperature Dependence of Viscosity},
942 kstocke1 3804 Url = {http://www.sciencedirect.com/science/article/pii/S0301010411002813},
943     Volume = {388},
944     Year = {2011},
945     Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S0301010411002813},
946     Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.chemphys.2011.07.001}}
947    
948     @book{WagnerKruse,
949     Address = {Berlin},
950     Author = {W. Wagner and A. Kruse},
951     Date-Added = {2011-12-13 14:57:08 -0500},
952     Date-Modified = {2011-12-13 14:57:08 -0500},
953     Publisher = {Springer-Verlag},
954     Title = {Properties of Water and Steam, the Industrial Standard IAPWS-IF97 for the Thermodynamic Properties and Supplementary Equations for Other Properties},
955     Year = {1998}}
956    
957     @article{garde:PhysRevLett2009,
958     Author = {Shenogina, Natalia and Godawat, Rahul and Keblinski, Pawel and Garde, Shekhar},
959     Date-Added = {2011-12-13 12:48:51 -0500},
960     Date-Modified = {2011-12-13 12:48:51 -0500},
961     Doi = {10.1103/PhysRevLett.102.156101},
962     Journal = {Phys. Rev. Lett.},
963     Month = {Apr},
964     Number = {15},
965     Numpages = {4},
966     Pages = {156101},
967     Publisher = {American Physical Society},
968     Title = {How Wetting and Adhesion Affect Thermal Conductance of a Range of Hydrophobic to Hydrophilic Aqueous Interfaces},
969     Volume = {102},
970     Year = {2009},
971     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevLett.102.156101}}
972    
973     @article{garde:nl2005,
974     Abstract = { Systems with nanoscopic features contain a high density of interfaces. Thermal transport in such systems can be governed by the resistance to heat transfer, the Kapitza resistance (RK), at the interface. Although soft interfaces, such as those between immiscible liquids or between a biomolecule and solvent, are ubiquitous, few studies of thermal transport at such interfaces have been reported. Here we characterize the interfacial conductance, 1/RK, of soft interfaces as a function of molecular architecture, chemistry, and the strength of cross-interfacial intermolecular interactions through detailed molecular dynamics simulations. The conductance of various interfaces studied here, for example, water−organic liquid, water−surfactant, surfactant−organic liquid, is relatively high (in the range of 65−370 MW/m2 K) compared to that for solid−liquid interfaces (∼10 MW/m2 K). Interestingly, the dependence of interfacial conductance on the chemistry and molecular architecture cannot be explained solely in terms of either bulk property mismatch or the strength of intermolecular attraction between the two phases. The observed trends can be attributed to a combination of strong cross-interface intermolecular interactions and good thermal coupling via soft vibration modes present at liquid−liquid interfaces. },
975 kstocke1 3861 Annote = {PMID: 16277458},
976 kstocke1 3804 Author = {Patel, Harshit A. and Garde, Shekhar and Keblinski, Pawel},
977     Date-Added = {2011-12-13 12:48:51 -0500},
978 kstocke1 3861 Date-Modified = {2013-02-18 18:00:24 +0000},
979 kstocke1 3804 Doi = {10.1021/nl051526q},
980     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/nl051526q},
981     Journal = {Nano Lett.},
982     Number = {11},
983     Pages = {2225-2231},
984     Title = {Thermal Resistance of Nanoscopic Liquid−Liquid Interfaces:  Dependence on Chemistry and Molecular Architecture},
985     Url = {http://pubs.acs.org/doi/abs/10.1021/nl051526q},
986     Volume = {5},
987     Year = {2005},
988     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/nl051526q},
989     Bdsk-Url-2 = {http://dx.doi.org/10.1021/nl051526q}}
990    
991     @article{melchionna93,
992     Author = {S. Melchionna and G. Ciccotti and B.~L. Holian},
993     Date-Added = {2011-12-12 17:52:15 -0500},
994     Date-Modified = {2011-12-12 17:52:15 -0500},
995     Journal = {Mol. Phys.},
996     Pages = {533-544},
997 kstocke1 3861 Title = {Hoover {\sc NPT} Dynamics for Systems Varying in Shape and Size},
998 kstocke1 3804 Volume = 78,
999     Year = 1993}
1000    
1001     @article{TraPPE-UA.thiols,
1002     Author = {Lubna, Nusrat and Kamath, Ganesh and Potoff, Jeffrey J. and Rai, Neeraj and Siepmann, J. Ilja},
1003     Date-Added = {2011-12-07 15:06:12 -0500},
1004     Date-Modified = {2011-12-07 15:06:12 -0500},
1005     Doi = {10.1021/jp0549125},
1006     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp0549125},
1007     Journal = {J. Phys. Chem. B},
1008     Number = {50},
1009     Pages = {24100-24107},
1010     Title = {Transferable Potentials for Phase Equilibria. 8. United-Atom Description for Thiols, Sulfides, Disulfides, and Thiophene},
1011     Url = {http://pubs.acs.org/doi/abs/10.1021/jp0549125},
1012     Volume = {109},
1013     Year = {2005},
1014     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp0549125},
1015     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp0549125}}
1016    
1017     @article{TraPPE-UA.alkylbenzenes,
1018     Author = {Wick, Collin D. and Martin, Marcus G. and Siepmann, J. Ilja},
1019     Date-Added = {2011-12-07 15:06:12 -0500},
1020     Date-Modified = {2011-12-07 15:06:12 -0500},
1021     Doi = {10.1021/jp001044x},
1022     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp001044x},
1023     Journal = {J. Phys. Chem. B},
1024     Number = {33},
1025     Pages = {8008-8016},
1026     Title = {Transferable Potentials for Phase Equilibria. 4. United-Atom Description of Linear and Branched Alkenes and Alkylbenzenes},
1027     Url = {http://pubs.acs.org/doi/abs/10.1021/jp001044x},
1028     Volume = {104},
1029     Year = {2000},
1030     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp001044x},
1031     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp001044x}}
1032    
1033     @article{TraPPE-UA.alkanes,
1034     Author = {Martin, Marcus G. and Siepmann, J. Ilja},
1035     Date-Added = {2011-12-07 15:06:12 -0500},
1036     Date-Modified = {2011-12-07 15:06:12 -0500},
1037     Doi = {10.1021/jp972543+},
1038     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp972543%2B},
1039     Journal = {J. Phys. Chem. B},
1040     Number = {14},
1041     Pages = {2569-2577},
1042     Title = {Transferable Potentials for Phase Equilibria. 1. United-Atom Description of n-Alkanes},
1043     Url = {http://pubs.acs.org/doi/abs/10.1021/jp972543%2B},
1044     Volume = {102},
1045     Year = {1998},
1046     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp972543+},
1047     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp972543+},
1048     Bdsk-Url-3 = {http://pubs.acs.org/doi/abs/10.1021/jp972543%2B}}
1049    
1050     @article{ISI:000167766600035,
1051     Abstract = {Molecular dynamics simulations are used to
1052     investigate the separation of water films adjacent
1053     to a hot metal surface. The simulations clearly show
1054     that the water layers nearest the surface overheat
1055     and undergo explosive boiling. For thick films, the
1056     expansion of the vaporized molecules near the
1057     surface forces the outer water layers to move away
1058     from the surface. These results are of interest for
1059     mass spectrometry of biological molecules, steam
1060     cleaning of surfaces, and medical procedures.},
1061     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
1062     Affiliation = {Garrison, BJ (Reprint Author), Penn State Univ, Dept Chem, University Pk, PA 16802 USA. Penn State Univ, Dept Chem, University Pk, PA 16802 USA. Penn State Univ, Inst Mat Res, University Pk, PA 16802 USA. Univ Virginia, Dept Mat Sci \& Engn, Charlottesville, VA 22903 USA.},
1063     Author = {Dou, YS and Zhigilei, LV and Winograd, N and Garrison, BJ},
1064     Date-Added = {2011-12-07 15:02:32 -0500},
1065     Date-Modified = {2011-12-07 15:02:32 -0500},
1066     Doc-Delivery-Number = {416ED},
1067     Issn = {1089-5639},
1068     Journal = {J. Phys. Chem. A},
1069     Journal-Iso = {J. Phys. Chem. A},
1070     Keywords-Plus = {MOLECULAR-DYNAMICS SIMULATIONS; ASSISTED LASER-DESORPTION; FROZEN AQUEOUS-SOLUTIONS; COMPUTER-SIMULATION; ORGANIC-SOLIDS; VELOCITY DISTRIBUTIONS; PARTICLE BOMBARDMENT; MASS-SPECTROMETRY; PHASE EXPLOSION; LIQUID WATER},
1071     Language = {English},
1072     Month = {MAR 29},
1073     Number = {12},
1074     Number-Of-Cited-References = {65},
1075     Pages = {2748-2755},
1076     Publisher = {AMER CHEMICAL SOC},
1077     Subject-Category = {Chemistry, Physical; Physics, Atomic, Molecular \& Chemical},
1078     Times-Cited = {66},
1079 kstocke1 3861 Title = {Explosive Boiling of Water Films Adjacent to Heated Surfaces: A Microscopic Description},
1080 kstocke1 3804 Type = {Article},
1081     Unique-Id = {ISI:000167766600035},
1082     Volume = {105},
1083     Year = {2001}}
1084    
1085     @article{Chen90,
1086     Author = {A.~P. Sutton and J. Chen},
1087     Date-Added = {2011-12-07 15:01:59 -0500},
1088 kstocke1 3861 Date-Modified = {2013-02-18 18:01:16 +0000},
1089     Journal = {Phil. Mag. Lett.},
1090 kstocke1 3804 Pages = {139-146},
1091     Title = {Long-Range Finnis Sinclair Potentials},
1092     Volume = 61,
1093     Year = {1990}}
1094    
1095     @article{PhysRevB.59.3527,
1096     Author = {Qi, Yue and \c{C}a\v{g}in, Tahir and Kimura, Yoshitaka and {Goddard III}, William A.},
1097     Date-Added = {2011-12-07 15:01:36 -0500},
1098 kstocke1 3861 Date-Modified = {2013-02-18 18:00:57 +0000},
1099 kstocke1 3804 Doi = {10.1103/PhysRevB.59.3527},
1100     Journal = {Phys. Rev. B},
1101     Local-Url = {file://localhost/Users/charles/Documents/Papers/Qi/1999.pdf},
1102     Month = {Feb},
1103     Number = {5},
1104     Numpages = {6},
1105     Pages = {3527-3533},
1106     Publisher = {American Physical Society},
1107 kstocke1 3861 Title = {Molecular-Dynamics Simulations of Glass Formation and Crystallization in Binary Liquid Metals: {C}u-{A}g and {C}u-{N}i},
1108 kstocke1 3804 Volume = {59},
1109     Year = {1999},
1110     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevB.59.3527}}
1111    
1112     @article{Bedrov:2000,
1113     Abstract = {We have applied a new nonequilibrium molecular
1114     dynamics (NEMD) method {[}F. Muller-Plathe,
1115     J. Chem. Phys. 106, 6082 (1997)] previously applied
1116     to monatomic Lennard-Jones fluids in the
1117     determination of the thermal conductivity of
1118     molecular fluids. The method was modified in order
1119     to be applicable to systems with holonomic
1120     constraints. Because the method involves imposing a
1121     known heat flux it is particularly attractive for
1122     systems involving long-range and many-body
1123     interactions where calculation of the microscopic
1124     heat flux is difficult. The predicted thermal
1125     conductivities of liquid n-butane and water using
1126     the imposed-flux NEMD method were found to be in a
1127     good agreement with previous simulations and
1128     experiment. (C) 2000 American Institute of
1129     Physics. {[}S0021-9606(00)50841-1].},
1130     Address = {2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA},
1131     Affiliation = {Bedrov, D (Reprint Author), Univ Utah, Dept Chem \& Fuels Engn, 122 S Cent Campus Dr,Rm 304, Salt Lake City, UT 84112 USA. Univ Utah, Dept Chem \& Fuels Engn, Salt Lake City, UT 84112 USA. Univ Utah, Dept Mat Sci \& Engn, Salt Lake City, UT 84112 USA.},
1132     Author = {Bedrov, D and Smith, GD},
1133     Date-Added = {2011-12-07 15:00:27 -0500},
1134     Date-Modified = {2011-12-07 15:00:27 -0500},
1135     Doc-Delivery-Number = {369BF},
1136     Issn = {0021-9606},
1137     Journal = {J. Chem. Phys.},
1138     Journal-Iso = {J. Chem. Phys.},
1139     Keywords-Plus = {EFFECTIVE PAIR POTENTIALS; TRANSPORT-PROPERTIES; CANONICAL ENSEMBLE; NORMAL-BUTANE; ALGORITHMS; SHAKE; WATER},
1140     Language = {English},
1141     Month = {NOV 8},
1142     Number = {18},
1143     Number-Of-Cited-References = {26},
1144     Pages = {8080-8084},
1145     Publisher = {AMER INST PHYSICS},
1146     Read = {1},
1147     Subject-Category = {Physics, Atomic, Molecular \& Chemical},
1148     Times-Cited = {23},
1149 kstocke1 3861 Title = {Thermal Conductivity of Molecular Fluids from Molecular Dynamics Simulations: Application of a New Imposed-Flux Method},
1150 kstocke1 3804 Type = {Article},
1151     Unique-Id = {ISI:000090151400044},
1152     Volume = {113},
1153     Year = {2000}}
1154    
1155     @article{10.1063/1.3330544,
1156     Author = {Miguel Angel Gonz{\'a}lez and Jos{\'e} L. F. Abascal},
1157     Coden = {JCPSA6},
1158     Date-Added = {2011-12-07 14:59:20 -0500},
1159     Date-Modified = {2011-12-15 13:10:11 -0500},
1160     Doi = {DOI:10.1063/1.3330544},
1161     Eissn = {10897690},
1162     Issn = {00219606},
1163     Journal = {J. Chem. Phys.},
1164     Keywords = {shear strength; viscosity;},
1165     Number = {9},
1166     Pages = {096101},
1167     Publisher = {AIP},
1168 kstocke1 3861 Title = {The Shear Viscosity of Rigid Water Models},
1169 kstocke1 3804 Url = {http://dx.doi.org/doi/10.1063/1.3330544},
1170     Volume = {132},
1171     Year = {2010},
1172     Bdsk-Url-1 = {http://dx.doi.org/doi/10.1063/1.3330544},
1173     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.3330544}}
1174    
1175     @article{doi:10.1021/jp048434u,
1176     Abstract = { The different possible proton-ordered structures of ice Ih for an orthorombic unit cell with 8 water molecules were derived. The number of unique structures was found to be 16. The crystallographic coordinates of these are reported. The energetics of the different polymorphs were investigated by quantum-mechanical density-functional theory calculations and for comparison by molecular-mechanics analytical potential models. The polymorphs were found to be close in energy, i.e., within approximately 0.25 kcal/mol H2O, on the basis of the quantum-chemical DFT methods. At 277 K, the different energy levels are about evenly populated, but at a lower temperature, a transition to an ordered form is expected. This form was found to agree with the ice phase XI. The difference in lattice energies among the polymorphs was rationalized in terms of structural characteristics. The most important parameters to determine the lattice energies were found to be the distributions of water dimer H-bonded pair conformations, in an intricate manner. },
1177     Author = {Hirsch, Tomas K. and Ojam{\"a}e, Lars},
1178     Date-Added = {2011-12-07 14:38:30 -0500},
1179     Date-Modified = {2011-12-07 14:38:30 -0500},
1180     Doi = {10.1021/jp048434u},
1181     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp048434u},
1182     Journal = {J. Phys. Chem. B},
1183     Number = {40},
1184     Pages = {15856-15864},
1185     Title = {Quantum-Chemical and Force-Field Investigations of Ice Ih:  Computation of Proton-Ordered Structures and Prediction of Their Lattice Energies},
1186     Url = {http://pubs.acs.org/doi/abs/10.1021/jp048434u},
1187     Volume = {108},
1188     Year = {2004},
1189     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp048434u},
1190     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp048434u}}
1191    
1192     @article{Meineke:2005gd,
1193     Abstract = {OOPSE is a new molecular dynamics simulation program
1194     that is capable of efficiently integrating equations
1195     of motion for atom types with orientational degrees
1196     of freedom (e.g. #sticky# atoms and point
1197     dipoles). Transition metals can also be simulated
1198     using the embedded atom method (EAM) potential
1199     included in the code. Parallel simulations are
1200     carried out using the force-based decomposition
1201     method. Simulations are specified using a very
1202     simple C-based meta-data language. A number of
1203     advanced integrators are included, and the basic
1204     integrator for orientational dynamics provides
1205     substantial improvements over older quaternion-based
1206     schemes.},
1207     Address = {111 RIVER ST, HOBOKEN, NJ 07030 USA},
1208     Author = {Meineke, M. A. and Vardeman, C. F. and Lin, T and Fennell, CJ and Gezelter, J. D.},
1209     Date-Added = {2011-12-07 13:33:04 -0500},
1210     Date-Modified = {2011-12-07 13:33:04 -0500},
1211     Doi = {DOI 10.1002/jcc.20161},
1212     Isi = {000226558200006},
1213     Isi-Recid = {142688207},
1214     Isi-Ref-Recids = {67885400 50663994 64190493 93668415 46699855 89992422 57614458 49016001 61447131 111114169 68770425 52728075 102422498 66381878 32391149 134477335 53221357 9929643 59492217 69681001 99223832 142688208 94600872 91658572 54857943 117365867 69323123 49588888 109970172 101670714 142688209 121603296 94652379 96449138 99938010 112825758 114905670 86802042 121339042 104794914 82674909 72096791 93668384 90513335 142688210 23060767 63731466 109033408 76303716 31384453 97861662 71842426 130707771 125809946 66381889 99676497},
1215     Journal = {J. Comput. Chem.},
1216     Keywords = {OOPSE; molecular dynamics},
1217     Month = feb,
1218     Number = {3},
1219     Pages = {252-271},
1220     Publisher = {JOHN WILEY \& SONS INC},
1221     Times-Cited = {9},
1222 kstocke1 3861 Title = {OOPSE: An Object-Oriented Parallel Simulation Engine for Molecular Dynamics},
1223 kstocke1 3804 Volume = {26},
1224     Year = {2005},
1225     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000226558200006},
1226     Bdsk-Url-2 = {http://dx.doi.org/10.1002/jcc.20161}}
1227    
1228     @article{hoover85,
1229     Author = {W.~G. Hoover},
1230     Date-Added = {2011-12-06 14:23:41 -0500},
1231     Date-Modified = {2011-12-06 14:23:41 -0500},
1232     Journal = {Phys. Rev. A},
1233     Pages = 1695,
1234 kstocke1 3861 Title = {Canonical Dynamics: Equilibrium Phase-Space Distributions},
1235 kstocke1 3804 Volume = 31,
1236     Year = 1985}
1237    
1238     @article{Maginn:2010,
1239     Abstract = {The reverse nonequilibrium molecular dynamics
1240     (RNEMD) method calculates the shear viscosity of a
1241     fluid by imposing a nonphysical exchange of momentum
1242     and measuring the resulting shear velocity
1243     gradient. In this study we investigate the range of
1244     momentum flux values over which RNEMD yields usable
1245     (linear) velocity gradients. We find that nonlinear
1246     velocity profiles result primarily from gradients in
1247     fluid temperature and density. The temperature
1248     gradient results from conversion of heat into bulk
1249     kinetic energy, which is transformed back into heat
1250     elsewhere via viscous heating. An expression is
1251     derived to predict the temperature profile resulting
1252     from a specified momentum flux for a given fluid and
1253     simulation cell. Although primarily bounded above,
1254     we also describe milder low-flux limitations. RNEMD
1255     results for a Lennard-Jones fluid agree with
1256     equilibrium molecular dynamics and conventional
1257     nonequilibrium molecular dynamics calculations at
1258     low shear, but RNEMD underpredicts viscosity
1259     relative to conventional NEMD at high shear.},
1260     Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
1261     Affiliation = {Tenney, CM (Reprint Author), Univ Notre Dame, Dept Chem \& Biomol Engn, 182 Fitzpatrick Hall, Notre Dame, IN 46556 USA. {[}Tenney, Craig M.; Maginn, Edward J.] Univ Notre Dame, Dept Chem \& Biomol Engn, Notre Dame, IN 46556 USA.},
1262     Article-Number = {014103},
1263     Author = {Tenney, Craig M. and Maginn, Edward J.},
1264     Author-Email = {ed@nd.edu},
1265     Date-Added = {2011-12-05 18:29:08 -0500},
1266     Date-Modified = {2011-12-05 18:29:08 -0500},
1267     Doc-Delivery-Number = {542DQ},
1268     Doi = {10.1063/1.3276454},
1269     Funding-Acknowledgement = {U.S. Department of Energy {[}DE-FG36-08G088020]},
1270     Funding-Text = {Support for this work was provided by the U.S. Department of Energy (Grant No. DE-FG36-08G088020)},
1271     Issn = {0021-9606},
1272     Journal = {J. Chem. Phys.},
1273     Journal-Iso = {J. Chem. Phys.},
1274     Keywords = {Lennard-Jones potential; molecular dynamics method; Navier-Stokes equations; viscosity},
1275     Keywords-Plus = {CURRENT AUTOCORRELATION-FUNCTION; IONIC LIQUID; SIMULATIONS; TEMPERATURE},
1276     Language = {English},
1277     Month = {JAN 7},
1278     Number = {1},
1279     Number-Of-Cited-References = {20},
1280     Pages = {014103},
1281     Publisher = {AMER INST PHYSICS},
1282     Subject-Category = {Physics, Atomic, Molecular \& Chemical},
1283     Times-Cited = {0},
1284 kstocke1 3861 Title = {Limitations and Recommendations for the Calculation of Shear Viscosity using Reverse Nonequilibrium Molecular Dynamics},
1285 kstocke1 3804 Type = {Article},
1286     Unique-Id = {ISI:000273472300004},
1287     Volume = {132},
1288     Year = {2010},
1289     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.3276454}}
1290    
1291     @article{ISI:000080382700030,
1292     Abstract = {A nonequilibrium method for calculating the shear
1293     viscosity is presented. It reverses the
1294     cause-and-effect picture customarily used in
1295     nonequilibrium molecular dynamics: the effect, the
1296     momentum flux or stress, is imposed, whereas the
1297     cause, the velocity gradient or shear rate, is
1298     obtained from the simulation. It differs from other
1299     Norton-ensemble methods by the way in which the
1300     steady-state momentum flux is maintained. This
1301     method involves a simple exchange of particle
1302     momenta, which is easy to implement. Moreover, it
1303     can be made to conserve the total energy as well as
1304     the total linear momentum, so no coupling to an
1305     external temperature bath is needed. The resulting
1306     raw data, the velocity profile, is a robust and
1307     rapidly converging property. The method is tested on
1308     the Lennard-Jones fluid near its triple point. It
1309     yields a viscosity of 3.2-3.3, in Lennard-Jones
1310     reduced units, in agreement with literature
1311     results. {[}S1063-651X(99)03105-0].},
1312     Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA},
1313     Affiliation = {Muller-Plathe, F (Reprint Author), Max Planck Inst Polymerforsch, Ackermannweg 10, D-55128 Mainz, Germany. Max Planck Inst Polymerforsch, D-55128 Mainz, Germany.},
1314     Author = {M\"{u}ller-Plathe, F},
1315     Date-Added = {2011-12-05 18:18:37 -0500},
1316     Date-Modified = {2011-12-05 18:18:37 -0500},
1317     Doc-Delivery-Number = {197TX},
1318     Issn = {1063-651X},
1319     Journal = {Phys. Rev. E},
1320     Journal-Iso = {Phys. Rev. E},
1321     Language = {English},
1322     Month = {MAY},
1323     Number = {5, Part A},
1324     Number-Of-Cited-References = {17},
1325     Pages = {4894-4898},
1326     Publisher = {AMERICAN PHYSICAL SOC},
1327     Subject-Category = {Physics, Fluids \& Plasmas; Physics, Mathematical},
1328     Times-Cited = {57},
1329 kstocke1 3861 Title = {Reversing the Perturbation in Nonequilibrium Molecular Dynamics: An Easy Way to Calculate the Shear Viscosity of Fluids},
1330 kstocke1 3804 Type = {Article},
1331     Unique-Id = {ISI:000080382700030},
1332     Volume = {59},
1333     Year = {1999}}
1334    
1335     @article{MullerPlathe:1997xw,
1336     Abstract = {A nonequilibrium molecular dynamics method for
1337     calculating the thermal conductivity is
1338     presented. It reverses the usual cause and effect
1339     picture. The ''effect,'' the heat flux, is imposed
1340     on the system and the ''cause,'' the temperature
1341     gradient is obtained from the simulation. Besides
1342     being very simple to implement, the scheme offers
1343     several advantages such as compatibility with
1344     periodic boundary conditions, conservation of total
1345     energy and total linear momentum, and the sampling
1346     of a rapidly converging quantity (temperature
1347     gradient) rather than a slowly converging one (heat
1348     flux). The scheme is tested on the Lennard-Jones
1349     fluid. (C) 1997 American Institute of Physics.},
1350     Address = {WOODBURY},
1351     Author = {M\"{u}ller-Plathe, F.},
1352     Cited-Reference-Count = {13},
1353     Date = {APR 8},
1354     Date-Added = {2011-12-05 18:18:37 -0500},
1355     Date-Modified = {2011-12-05 18:18:37 -0500},
1356     Document-Type = {Article},
1357     Isi = {ISI:A1997WR62000032},
1358     Isi-Document-Delivery-Number = {WR620},
1359     Iso-Source-Abbreviation = {J. Chem. Phys.},
1360     Issn = {0021-9606},
1361     Journal = {J. Chem. Phys.},
1362     Language = {English},
1363     Month = {Apr},
1364     Number = {14},
1365     Page-Count = {4},
1366     Pages = {6082--6085},
1367     Publication-Type = {J},
1368     Publisher = {AMER INST PHYSICS},
1369     Publisher-Address = {CIRCULATION FULFILLMENT DIV, 500 SUNNYSIDE BLVD, WOODBURY, NY 11797-2999},
1370     Reprint-Address = {MullerPlathe, F, MAX PLANCK INST POLYMER RES, D-55128 MAINZ, GERMANY.},
1371     Source = {J CHEM PHYS},
1372     Subject-Category = {Physics, Atomic, Molecular & Chemical},
1373     Times-Cited = {106},
1374 kstocke1 3861 Title = {A Simple Nonequilibrium Molecular Dynamics Method for Calculating the Thermal Conductivity},
1375 kstocke1 3804 Volume = {106},
1376     Year = {1997}}
1377    
1378     @article{priezjev:204704,
1379     Author = {Nikolai V. Priezjev},
1380     Date-Added = {2011-11-28 14:39:18 -0500},
1381     Date-Modified = {2011-11-28 14:39:18 -0500},
1382     Doi = {10.1063/1.3663384},
1383     Eid = {204704},
1384     Journal = {J. Chem. Phys.},
1385     Keywords = {channel flow; diffusion; flow simulation; hydrodynamics; molecular dynamics method; pattern formation; random processes; shear flow; slip flow; wetting},
1386     Number = {20},
1387     Numpages = {9},
1388     Pages = {204704},
1389     Publisher = {AIP},
1390 kstocke1 3861 Title = {Molecular Diffusion and Slip Boundary Conditions at Smooth Surfaces with Periodic and Random Nanoscale Textures},
1391 kstocke1 3804 Url = {http://link.aip.org/link/?JCP/135/204704/1},
1392     Volume = {135},
1393     Year = {2011},
1394     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/135/204704/1},
1395     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.3663384}}
1396    
1397     @article{bryk:10258,
1398     Author = {Taras Bryk and A. D. J. Haymet},
1399     Date-Added = {2011-11-22 17:06:35 -0500},
1400     Date-Modified = {2011-11-22 17:06:35 -0500},
1401     Doi = {10.1063/1.1519538},
1402     Journal = {J. Chem. Phys.},
1403     Keywords = {liquid structure; molecular dynamics method; water; ice; interface structure},
1404     Number = {22},
1405     Pages = {10258-10268},
1406     Publisher = {AIP},
1407 kstocke1 3861 Title = {Ice 1h/Water Interface of the SPC/E Model: Molecular Dynamics Simulations of the Equilibrium Basal and Prism Interfaces},
1408 kstocke1 3804 Url = {http://link.aip.org/link/?JCP/117/10258/1},
1409     Volume = {117},
1410     Year = {2002},
1411     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/117/10258/1},
1412     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.1519538}}
1413    
1414     @misc{openmd,
1415     Author = {J. Daniel Gezelter and Shenyu Kuang and James Marr and Kelsey Stocker and Chunlei Li and Charles F. Vardeman and Teng Lin and Christopher J. Fennell and Xiuquan Sun and Kyle Daily and Yang Zheng and Matthew A. Meineke},
1416     Date-Added = {2011-11-18 15:32:23 -0500},
1417     Date-Modified = {2011-11-18 15:32:23 -0500},
1418     Howpublished = {Available at {\tt http://openmd.net}},
1419 kstocke1 3861 Title = {{OpenMD, an Open Source Engine for Molecular Dynamics}}}
1420 kstocke1 3804
1421     @article{kuang:AuThl,
1422     Author = {Kuang, Shenyu and Gezelter, J. Daniel},
1423     Date-Added = {2011-11-18 13:03:06 -0500},
1424     Date-Modified = {2011-12-05 17:58:01 -0500},
1425     Doi = {10.1021/jp2073478},
1426     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp2073478},
1427     Journal = {J. Phys. Chem. C},
1428     Number = {45},
1429     Pages = {22475-22483},
1430     Title = {Simulating Interfacial Thermal Conductance at Metal-Solvent Interfaces: The Role of Chemical Capping Agents},
1431     Url = {http://pubs.acs.org/doi/abs/10.1021/jp2073478},
1432     Volume = {115},
1433     Year = {2011},
1434     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp2073478},
1435     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp2073478}}
1436    
1437     @article{10.1063/1.2772547,
1438     Author = {Hideo Kaburaki and Ju Li and Sidney Yip and Hajime Kimizuka},
1439     Coden = {JAPIAU},
1440     Date-Added = {2011-11-01 16:46:32 -0400},
1441     Date-Modified = {2011-11-01 16:46:32 -0400},
1442     Doi = {DOI:10.1063/1.2772547},
1443     Eissn = {10897550},
1444     Issn = {00218979},
1445     Keywords = {argon; Lennard-Jones potential; phonons; thermal conductivity;},
1446     Number = {4},
1447     Pages = {043514},
1448     Publisher = {AIP},
1449 kstocke1 3861 Title = {Dynamical Thermal Conductivity of Argon Crystal},
1450 kstocke1 3804 Url = {http://dx.doi.org/10.1063/1.2772547},
1451     Volume = {102},
1452     Year = {2007},
1453     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.2772547}}
1454    
1455     @article{PhysRevLett.82.4671,
1456     Author = {Barrat, Jean-Louis and Bocquet, Lyd\'eric},
1457     Date-Added = {2011-11-01 16:44:29 -0400},
1458     Date-Modified = {2011-11-01 16:44:29 -0400},
1459     Doi = {10.1103/PhysRevLett.82.4671},
1460     Issue = {23},
1461     Journal = {Phys. Rev. Lett.},
1462     Month = {Jun},
1463     Pages = {4671--4674},
1464     Publisher = {American Physical Society},
1465     Title = {Large Slip Effect at a Nonwetting Fluid-Solid Interface},
1466     Url = {http://link.aps.org/doi/10.1103/PhysRevLett.82.4671},
1467     Volume = {82},
1468     Year = {1999},
1469     Bdsk-Url-1 = {http://link.aps.org/doi/10.1103/PhysRevLett.82.4671},
1470     Bdsk-Url-2 = {http://dx.doi.org/10.1103/PhysRevLett.82.4671}}
1471    
1472     @article{10.1063/1.1610442,
1473     Author = {J. R. Schmidt and J. L. Skinner},
1474     Coden = {JCPSA6},
1475     Date-Added = {2011-10-13 16:28:43 -0400},
1476     Date-Modified = {2011-12-15 13:11:53 -0500},
1477     Doi = {DOI:10.1063/1.1610442},
1478     Eissn = {10897690},
1479     Issn = {00219606},
1480     Journal = {J. Chem. Phys.},
1481     Keywords = {hydrodynamics; Brownian motion; molecular dynamics method; diffusion;},
1482     Number = {15},
1483     Pages = {8062-8068},
1484     Publisher = {AIP},
1485 kstocke1 3861 Title = {Hydrodynamic Boundary Conditions, the Stokes?Einstein Law, and Long-Time Tails in the Brownian Limit},
1486 kstocke1 3804 Url = {http://dx.doi.org/10.1063/1.1610442},
1487     Volume = {119},
1488     Year = {2003},
1489     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.1610442}}
1490    
1491     @article{10.1063/1.3274802,
1492     Author = {Ting Chen and Berend Smit and Alexis T. Bell},
1493     Coden = {JCPSA6},
1494     Doi = {DOI:10.1063/1.3274802},
1495     Eissn = {10897690},
1496     Issn = {00219606},
1497     Keywords = {fluctuations; molecular dynamics method; viscosity;},
1498     Number = {24},
1499     Pages = {246101},
1500     Publisher = {AIP},
1501 kstocke1 3861 Title = {Are Pressure Fluctuation-Based Equilibrium Methods Really Worse than Nonequilibrium Methods for Calculating Viscosities?},
1502 kstocke1 3804 Url = {http://dx.doi.org/doi/10.1063/1.3274802},
1503     Volume = {131},
1504     Year = {2009},
1505     Bdsk-Url-1 = {http://dx.doi.org/doi/10.1063/1.3274802},
1506     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.3274802}}