| 1 | chrisfen | 1287 | /*************************************************************************** | 
| 2 |  |  | ************************************************************************** | 
| 3 |  |  |  | 
| 4 |  |  | S2kit 1.0 | 
| 5 |  |  |  | 
| 6 |  |  | A lite version of Spherical Harmonic Transform Kit | 
| 7 |  |  |  | 
| 8 |  |  | Peter Kostelec, Dan Rockmore | 
| 9 |  |  | {geelong,rockmore}@cs.dartmouth.edu | 
| 10 |  |  |  | 
| 11 |  |  | Contact: Peter Kostelec | 
| 12 |  |  | geelong@cs.dartmouth.edu | 
| 13 |  |  |  | 
| 14 |  |  | Copyright 2004 Peter Kostelec, Dan Rockmore | 
| 15 |  |  |  | 
| 16 |  |  | This file is part of S2kit. | 
| 17 |  |  |  | 
| 18 |  |  | S2kit is free software; you can redistribute it and/or modify | 
| 19 |  |  | it under the terms of the GNU General Public License as published by | 
| 20 |  |  | the Free Software Foundation; either version 2 of the License, or | 
| 21 |  |  | (at your option) any later version. | 
| 22 |  |  |  | 
| 23 |  |  | S2kit is distributed in the hope that it will be useful, | 
| 24 |  |  | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
| 25 |  |  | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
| 26 |  |  | GNU General Public License for more details. | 
| 27 |  |  |  | 
| 28 |  |  | You should have received a copy of the GNU General Public License | 
| 29 |  |  | along with S2kit; if not, write to the Free Software | 
| 30 |  |  | Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA | 
| 31 |  |  |  | 
| 32 |  |  | See the accompanying LICENSE file for details. | 
| 33 |  |  |  | 
| 34 |  |  | ************************************************************************ | 
| 35 |  |  | ************************************************************************/ | 
| 36 |  |  |  | 
| 37 |  |  |  | 
| 38 |  |  | /* Source code for computing the Legendre transform where | 
| 39 |  |  | projections are carried out in cosine space, i.e., the | 
| 40 |  |  | "seminaive" algorithm. | 
| 41 |  |  |  | 
| 42 |  |  | For a description, see the related paper or Sean's thesis. | 
| 43 |  |  |  | 
| 44 |  |  | */ | 
| 45 |  |  |  | 
| 46 |  |  | #include <math.h> | 
| 47 |  |  | #include <stdio.h> | 
| 48 |  |  | #include <string.h>   /** for memcpy **/ | 
| 49 |  |  | #include "fftw3.h" | 
| 50 |  |  |  | 
| 51 |  |  | #include "cospmls.h" | 
| 52 |  |  |  | 
| 53 |  |  |  | 
| 54 |  |  | /************************************************************************/ | 
| 55 |  |  | /* InvSemiNaiveReduced computes the inverse Legendre transform | 
| 56 |  |  | using the transposed seminaive algorithm.  Note that because | 
| 57 |  |  | the Legendre transform is orthogonal, the inverse can be | 
| 58 |  |  | computed by transposing the matrix formulation of the | 
| 59 |  |  | problem. | 
| 60 |  |  |  | 
| 61 |  |  | The forward transform looks like | 
| 62 |  |  |  | 
| 63 |  |  | l = PCWf | 
| 64 |  |  |  | 
| 65 |  |  | where f is the data vector, W is a quadrature matrix, | 
| 66 |  |  | C is a cosine transform matrix, P is a matrix | 
| 67 |  |  | full of coefficients of the cosine series representation | 
| 68 |  |  | of each Pml function P(m,m) P(m,m+1) ... P(m,bw-1), | 
| 69 |  |  | and l is the (associated) Legendre series representation | 
| 70 |  |  | of f. | 
| 71 |  |  |  | 
| 72 |  |  | So to do the inverse, you do | 
| 73 |  |  |  | 
| 74 |  |  | f = trans(C) trans(P) l | 
| 75 |  |  |  | 
| 76 |  |  | so you need to transpose the matrix P from the forward transform | 
| 77 |  |  | and then do a cosine series evaluation.  No quadrature matrix | 
| 78 |  |  | is necessary.  If order m is odd, then there is also a sin | 
| 79 |  |  | factor that needs to be accounted for. | 
| 80 |  |  |  | 
| 81 |  |  | Note that this function was written to be part of a full | 
| 82 |  |  | spherical harmonic transform, so a lot of precomputation | 
| 83 |  |  | has been assumed. | 
| 84 |  |  |  | 
| 85 |  |  | Input argument description | 
| 86 |  |  |  | 
| 87 |  |  | coeffs - a double pointer to an array of length | 
| 88 |  |  | (bw-m) containing associated | 
| 89 |  |  | Legendre series coefficients.  Assumed | 
| 90 |  |  | that first entry contains the P(m,m) | 
| 91 |  |  | coefficient. | 
| 92 |  |  |  | 
| 93 |  |  | bw - problem bandwidth | 
| 94 |  |  |  | 
| 95 |  |  | m - order of the associated Legendre functions | 
| 96 |  |  |  | 
| 97 |  |  | result - a double pointer to an array of (2*bw) samples | 
| 98 |  |  | representing the evaluation of the Legendre | 
| 99 |  |  | series at (2*bw) Chebyshev nodes. | 
| 100 |  |  |  | 
| 101 |  |  | trans_cos_pml_table - double pointer to array representing | 
| 102 |  |  | the linearized form of trans(P) above. | 
| 103 |  |  | See cospmls.{h,c} for a description | 
| 104 |  |  | of the function Transpose_CosPmlTableGen() | 
| 105 |  |  | which generates this array. | 
| 106 |  |  |  | 
| 107 |  |  | sin_values - when m is odd, need to factor in the sin(x) that | 
| 108 |  |  | is factored out of the generation of the values | 
| 109 |  |  | in trans(P). | 
| 110 |  |  |  | 
| 111 |  |  | workspace - a double array of size 2*bw -> temp space involving | 
| 112 |  |  | intermediate array | 
| 113 |  |  |  | 
| 114 |  |  | fplan - pointer to fftw plan with input array being fcos | 
| 115 |  |  | and output being result; I'll probably be using the | 
| 116 |  |  | guru interface to execute - that way I can apply the | 
| 117 |  |  | same plan to different arrays; the plan should be | 
| 118 |  |  |  | 
| 119 |  |  | fftw_plan_r2r_1d( 2*bw, fcos, result, | 
| 120 |  |  | FFTW_REDFT01, FFTW_ESTIMATE ); | 
| 121 |  |  |  | 
| 122 |  |  | */ | 
| 123 |  |  |  | 
| 124 |  |  | void InvSemiNaiveReduced(double *coeffs, | 
| 125 |  |  | int bw, | 
| 126 |  |  | int m, | 
| 127 |  |  | double *result, | 
| 128 |  |  | double *trans_cos_pml_table, | 
| 129 |  |  | double *sin_values, | 
| 130 |  |  | double *workspace, | 
| 131 |  |  | fftw_plan *fplan ) | 
| 132 |  |  | { | 
| 133 |  |  | double *trans_tableptr; | 
| 134 |  |  | double *assoc_offset; | 
| 135 |  |  | int i, j, rowsize; | 
| 136 |  |  | double *p; | 
| 137 |  |  | double *fcos, fcos0, fcos1, fcos2, fcos3; | 
| 138 |  |  | double fudge ; | 
| 139 |  |  |  | 
| 140 |  |  | fcos = workspace ; | 
| 141 |  |  |  | 
| 142 |  |  | /* for paranoia, zero out arrays */ | 
| 143 |  |  | memset( fcos, 0, sizeof(double) * 2 * bw ); | 
| 144 |  |  | memset( result, 0, sizeof(double) * 2 * bw ); | 
| 145 |  |  |  | 
| 146 |  |  | trans_tableptr = trans_cos_pml_table; | 
| 147 |  |  | p = trans_cos_pml_table; | 
| 148 |  |  |  | 
| 149 |  |  | /* main loop - compute each value of fcos | 
| 150 |  |  |  | 
| 151 |  |  | Note that all zeroes have been stripped out of the | 
| 152 |  |  | trans_cos_pml_table, so indexing is somewhat complicated. | 
| 153 |  |  | */ | 
| 154 |  |  |  | 
| 155 |  |  | for (i=0; i<bw; i++) | 
| 156 |  |  | { | 
| 157 |  |  | if (i == (bw-1)) | 
| 158 |  |  | { | 
| 159 |  |  | if ( m % 2 ) | 
| 160 |  |  | { | 
| 161 |  |  | fcos[bw-1] = 0.0; | 
| 162 |  |  | break; | 
| 163 |  |  | } | 
| 164 |  |  | } | 
| 165 |  |  |  | 
| 166 |  |  | rowsize = Transpose_RowSize(i, m, bw); | 
| 167 |  |  | if (i > m) | 
| 168 |  |  | assoc_offset = coeffs + (i - m) + (m % 2); | 
| 169 |  |  | else | 
| 170 |  |  | assoc_offset = coeffs + (i % 2); | 
| 171 |  |  |  | 
| 172 |  |  | fcos0 = 0.0 ; fcos1 = 0.0; fcos2 = 0.0; fcos3 = 0.0; | 
| 173 |  |  |  | 
| 174 |  |  | for (j = 0; j < rowsize % 4; ++j) | 
| 175 |  |  | fcos0 += assoc_offset[2*j] * trans_tableptr[j]; | 
| 176 |  |  |  | 
| 177 |  |  | for ( ; j < rowsize; j += 4){ | 
| 178 |  |  | fcos0 += assoc_offset[2*j] * trans_tableptr[j]; | 
| 179 |  |  | fcos1 += assoc_offset[2*(j+1)] * trans_tableptr[j+1]; | 
| 180 |  |  | fcos2 += assoc_offset[2*(j+2)] * trans_tableptr[j+2]; | 
| 181 |  |  | fcos3 += assoc_offset[2*(j+3)] * trans_tableptr[j+3]; | 
| 182 |  |  | } | 
| 183 |  |  | fcos[i] = fcos0 + fcos1 + fcos2 + fcos3 ; | 
| 184 |  |  |  | 
| 185 |  |  | trans_tableptr += rowsize; | 
| 186 |  |  | } | 
| 187 |  |  |  | 
| 188 |  |  |  | 
| 189 |  |  | /* | 
| 190 |  |  | now we have the cosine series for the result, | 
| 191 |  |  | so now evaluate the cosine series at 2*bw Chebyshev nodes | 
| 192 |  |  | */ | 
| 193 |  |  |  | 
| 194 |  |  | /* scale coefficients prior to taking inverse DCT */ | 
| 195 |  |  | fudge = 0.5 / sqrt((double) bw) ; | 
| 196 |  |  | for ( j = 1 ; j < 2*bw ; j ++ ) | 
| 197 |  |  | fcos[j] *= fudge ; | 
| 198 |  |  | fcos[0] /= sqrt(2. * ((double) bw)); | 
| 199 |  |  |  | 
| 200 |  |  | /* now take the inverse dct */ | 
| 201 |  |  | /* NOTE that I am using the guru interface */ | 
| 202 |  |  | fftw_execute_r2r( *fplan, | 
| 203 |  |  | fcos, result ); | 
| 204 |  |  |  | 
| 205 |  |  | /* if m is odd, then need to multiply by sin(x) at Chebyshev nodes */ | 
| 206 |  |  | if ( m % 2 ) | 
| 207 |  |  | { | 
| 208 |  |  | for (j=0; j<(2*bw); j++) | 
| 209 |  |  | result[j] *= sin_values[j]; | 
| 210 |  |  | } | 
| 211 |  |  |  | 
| 212 |  |  | trans_tableptr = p; | 
| 213 |  |  |  | 
| 214 |  |  | /* amscray */ | 
| 215 |  |  |  | 
| 216 |  |  | } | 
| 217 |  |  |  | 
| 218 |  |  | /************************************************************************/ | 
| 219 |  |  |  | 
| 220 |  |  | /* SemiNaiveReduced computes the Legendre transform of data. | 
| 221 |  |  | This function has been designed to be a component in | 
| 222 |  |  | a full spherical harmonic transform. | 
| 223 |  |  |  | 
| 224 |  |  | data - pointer to double array of size (2*bw) containing | 
| 225 |  |  | function to be transformed.  Assumes sampling at Chebyshev nodes | 
| 226 |  |  |  | 
| 227 |  |  | bw   - bandwidth of the problem | 
| 228 |  |  | m   - order of the problem.  0 <= m < bw | 
| 229 |  |  |  | 
| 230 |  |  | result - pointer to double array of length bw for returning computed | 
| 231 |  |  | Legendre coefficients.  Contains | 
| 232 |  |  | bw-m coeffs, with the <f,P(m,m)> coefficient | 
| 233 |  |  | located in result[0] | 
| 234 |  |  |  | 
| 235 |  |  | cos_pml_table - a pointer to an array containing the cosine | 
| 236 |  |  | series coefficients of the Pmls (or Gmls) | 
| 237 |  |  | for this problem.  This table can be computed | 
| 238 |  |  | using the CosPmlTableGen() function, and | 
| 239 |  |  | the offset for a particular Pml can be had | 
| 240 |  |  | by calling the function NewTableOffset(). | 
| 241 |  |  | The size of the table is computed using | 
| 242 |  |  | the TableSize() function.  Note that | 
| 243 |  |  | since the cosine series are always zero-striped, | 
| 244 |  |  | the zeroes have been removed. | 
| 245 |  |  |  | 
| 246 |  |  | weights -> ptr to double array of size 4*bw - this array holds | 
| 247 |  |  | the weights for both even (starting at weights[0]) | 
| 248 |  |  | and odd (weights[2*bw]) transforms | 
| 249 |  |  |  | 
| 250 |  |  |  | 
| 251 |  |  | workspace -> tmp space: ptr to double array of size 4*bw | 
| 252 |  |  |  | 
| 253 |  |  | fplan -> pointer to fftw plan with input array being weighted_data | 
| 254 |  |  | and output being cos_data; I'll probably be using the | 
| 255 |  |  | guru interface to execute; the plan should be | 
| 256 |  |  |  | 
| 257 |  |  | fftw_plan_r2r_1d( 2*bw, weighted_data, cos_data, | 
| 258 |  |  | FFTW_REDFT10, FFTW_ESTIMATE ) ; | 
| 259 |  |  |  | 
| 260 |  |  |  | 
| 261 |  |  | */ | 
| 262 |  |  |  | 
| 263 |  |  | void SemiNaiveReduced(double *data, | 
| 264 |  |  | int bw, | 
| 265 |  |  | int m, | 
| 266 |  |  | double *result, | 
| 267 |  |  | double *workspace, | 
| 268 |  |  | double *cos_pml_table, | 
| 269 |  |  | double *weights, | 
| 270 |  |  | fftw_plan *fplan ) | 
| 271 |  |  | { | 
| 272 |  |  | int i, j, n; | 
| 273 |  |  | double result0, result1, result2, result3; | 
| 274 |  |  | double fudge ; | 
| 275 |  |  | double d_bw; | 
| 276 |  |  | int toggle ; | 
| 277 |  |  | double *pml_ptr, *weighted_data, *cos_data ; | 
| 278 |  |  |  | 
| 279 |  |  | n = 2*bw; | 
| 280 |  |  | d_bw = (double) bw; | 
| 281 |  |  |  | 
| 282 |  |  | weighted_data = workspace ; | 
| 283 |  |  | cos_data = weighted_data + (2*bw) ; | 
| 284 |  |  |  | 
| 285 |  |  | /* for paranoia, zero out the result array */ | 
| 286 |  |  | memset( result, 0, sizeof(double)*(bw-m)); | 
| 287 |  |  |  | 
| 288 |  |  | /* | 
| 289 |  |  | need to apply quadrature weights to the data and compute | 
| 290 |  |  | the cosine transform | 
| 291 |  |  | */ | 
| 292 |  |  | if ( m % 2 ) | 
| 293 |  |  | for ( i = 0; i < n    ; ++i ) | 
| 294 |  |  | weighted_data[i] = data[ i ] * weights[ 2*bw + i ]; | 
| 295 |  |  | else | 
| 296 |  |  | for ( i = 0; i < n    ; ++i ) | 
| 297 |  |  | weighted_data[i] = data[ i ] * weights[ i ]; | 
| 298 |  |  |  | 
| 299 |  |  | /* | 
| 300 |  |  | smooth the weighted signal | 
| 301 |  |  | */ | 
| 302 |  |  |  | 
| 303 |  |  | fftw_execute_r2r( *fplan, | 
| 304 |  |  | weighted_data, | 
| 305 |  |  | cos_data ); | 
| 306 |  |  |  | 
| 307 |  |  | /* need to normalize */ | 
| 308 |  |  | cos_data[0] *= 0.707106781186547 ; | 
| 309 |  |  | fudge = 1./sqrt(2. * ((double) n ) ); | 
| 310 |  |  | for ( j = 0 ; j < n ; j ++ ) | 
| 311 |  |  | cos_data[j] *= fudge ; | 
| 312 |  |  |  | 
| 313 |  |  | /* | 
| 314 |  |  | do the projections; Note that the cos_pml_table has | 
| 315 |  |  | had all the zeroes stripped out so the indexing is | 
| 316 |  |  | complicated somewhat | 
| 317 |  |  | */ | 
| 318 |  |  |  | 
| 319 |  |  |  | 
| 320 |  |  | /******** this is the original loop | 
| 321 |  |  |  | 
| 322 |  |  | toggle = 0 ; | 
| 323 |  |  | for (i=m; i<bw; i++) | 
| 324 |  |  | { | 
| 325 |  |  | pml_ptr = cos_pml_table + NewTableOffset(m,i); | 
| 326 |  |  |  | 
| 327 |  |  | if ((m % 2) == 0) | 
| 328 |  |  | { | 
| 329 |  |  | for (j=0; j<(i/2)+1; j++) | 
| 330 |  |  | result[i-m] += cos_data[(2*j)+toggle] * pml_ptr[j]; | 
| 331 |  |  | } | 
| 332 |  |  | else | 
| 333 |  |  | { | 
| 334 |  |  | if (((i-m) % 2) == 0) | 
| 335 |  |  | { | 
| 336 |  |  | for (j=0; j<(i/2)+1; j++) | 
| 337 |  |  | result[i-m] += cos_data[(2*j)+toggle] * pml_ptr[j]; | 
| 338 |  |  | } | 
| 339 |  |  | else | 
| 340 |  |  | { | 
| 341 |  |  | for (j=0; j<(i/2); j++) | 
| 342 |  |  | result[i-m] += cos_data[(2*j)+toggle] * pml_ptr[j]; | 
| 343 |  |  | } | 
| 344 |  |  | } | 
| 345 |  |  |  | 
| 346 |  |  | toggle = (toggle+1) % 2; | 
| 347 |  |  | } | 
| 348 |  |  |  | 
| 349 |  |  | *****/ | 
| 350 |  |  |  | 
| 351 |  |  | /******** this is the new loop *********/ | 
| 352 |  |  | toggle = 0 ; | 
| 353 |  |  | for ( i=m; i<bw; i++ ) | 
| 354 |  |  | { | 
| 355 |  |  | pml_ptr = cos_pml_table + NewTableOffset(m,i); | 
| 356 |  |  |  | 
| 357 |  |  | result0 = 0.0 ; result1 = 0.0 ; | 
| 358 |  |  | result2 = 0.0 ; result3 = 0.0 ; | 
| 359 |  |  |  | 
| 360 |  |  | for ( j = 0 ; j < ( (i/2) % 4 ) ; ++j ) | 
| 361 |  |  | result0 += cos_data[(2*j)+toggle] * pml_ptr[j]; | 
| 362 |  |  |  | 
| 363 |  |  | for ( ; j < (i/2) ; j += 4 ) | 
| 364 |  |  | { | 
| 365 |  |  | result0 += cos_data[(2*j)+toggle] * pml_ptr[j]; | 
| 366 |  |  | result1 += cos_data[(2*(j+1))+toggle] * pml_ptr[j+1]; | 
| 367 |  |  | result2 += cos_data[(2*(j+2))+toggle] * pml_ptr[j+2]; | 
| 368 |  |  | result3 += cos_data[(2*(j+3))+toggle] * pml_ptr[j+3]; | 
| 369 |  |  | } | 
| 370 |  |  |  | 
| 371 |  |  | if ((((i-m) % 2) == 0 ) || ( (m % 2) == 0 )) | 
| 372 |  |  | result0 += cos_data[(2*(i/2))+toggle] * pml_ptr[(i/2)]; | 
| 373 |  |  |  | 
| 374 |  |  | result[i-m] = result0 + result1 + result2 + result3 ; | 
| 375 |  |  |  | 
| 376 |  |  | toggle = (toggle + 1)%2 ; | 
| 377 |  |  |  | 
| 378 |  |  | } | 
| 379 |  |  | } | 
| 380 |  |  |  | 
| 381 |  |  |  |