| 1 |
/*************************************************************************** |
| 2 |
************************************************************************** |
| 3 |
|
| 4 |
S2kit 1.0 |
| 5 |
|
| 6 |
A lite version of Spherical Harmonic Transform Kit |
| 7 |
|
| 8 |
Peter Kostelec, Dan Rockmore |
| 9 |
{geelong,rockmore}@cs.dartmouth.edu |
| 10 |
|
| 11 |
Contact: Peter Kostelec |
| 12 |
geelong@cs.dartmouth.edu |
| 13 |
|
| 14 |
Copyright 2004 Peter Kostelec, Dan Rockmore |
| 15 |
|
| 16 |
This file is part of S2kit. |
| 17 |
|
| 18 |
S2kit is free software; you can redistribute it and/or modify |
| 19 |
it under the terms of the GNU General Public License as published by |
| 20 |
the Free Software Foundation; either version 2 of the License, or |
| 21 |
(at your option) any later version. |
| 22 |
|
| 23 |
S2kit is distributed in the hope that it will be useful, |
| 24 |
but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 25 |
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 26 |
GNU General Public License for more details. |
| 27 |
|
| 28 |
You should have received a copy of the GNU General Public License |
| 29 |
along with S2kit; if not, write to the Free Software |
| 30 |
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| 31 |
|
| 32 |
See the accompanying LICENSE file for details. |
| 33 |
|
| 34 |
************************************************************************ |
| 35 |
************************************************************************/ |
| 36 |
|
| 37 |
|
| 38 |
|
| 39 |
/* |
| 40 |
|
| 41 |
some "primitive" functions that are used in cospmls.c |
| 42 |
and newmathx.c |
| 43 |
|
| 44 |
*/ |
| 45 |
|
| 46 |
#include <math.h> |
| 47 |
#include <string.h> /* to declare memcpy */ |
| 48 |
|
| 49 |
#ifndef PI |
| 50 |
#define PI 3.14159265358979 |
| 51 |
#endif |
| 52 |
|
| 53 |
/************************************************************************/ |
| 54 |
/* Recurrence coefficients */ |
| 55 |
/************************************************************************/ |
| 56 |
/* Recurrence coefficents for L2-normed associated Legendre |
| 57 |
recurrence. When using these coeffs, make sure that |
| 58 |
inital Pmm function is also L2-normed */ |
| 59 |
/* l represents degree, m is the order */ |
| 60 |
|
| 61 |
double L2_an(int m, |
| 62 |
int l) |
| 63 |
{ |
| 64 |
return (sqrt((((double) (2*l+3))/((double) (2*l+1))) * |
| 65 |
(((double) (l-m+1))/((double) (l+m+1)))) * |
| 66 |
(((double) (2*l+1))/((double) (l-m+1)))); |
| 67 |
|
| 68 |
} |
| 69 |
|
| 70 |
/* note - if input l is zero, need to return 0 */ |
| 71 |
double L2_cn(int m, |
| 72 |
int l) |
| 73 |
{ |
| 74 |
if (l != 0) { |
| 75 |
return (-1.0 * |
| 76 |
sqrt((((double) (2*l+3))/((double) (2*l-1))) * |
| 77 |
(((double) (l-m+1))/((double) (l+m+1))) * |
| 78 |
(((double) (l-m))/((double) (l+m)))) * |
| 79 |
(((double) (l+m))/((double) (l-m+1)))); |
| 80 |
} |
| 81 |
else |
| 82 |
return 0.0; |
| 83 |
|
| 84 |
} |
| 85 |
|
| 86 |
/* when using the reverse recurrence, instead of calling |
| 87 |
1/L2_cn_tr(m,l), let me just define the function ... |
| 88 |
it might be more stable */ |
| 89 |
|
| 90 |
double L2_cn_inv(int m, |
| 91 |
int l) |
| 92 |
{ |
| 93 |
double dl, dm; |
| 94 |
|
| 95 |
dl = (double) l; |
| 96 |
dm = (double) m; |
| 97 |
|
| 98 |
return ( -(1.0 + (1. - 2. * dm)/(dm + dl)) * |
| 99 |
sqrt( ((-1. + 2.*dl)/(3. + 2.*dl)) * |
| 100 |
((dl + dl*dl + dm + 2.*dl*dm + dm*dm)/ |
| 101 |
(dl + dl*dl - dm - 2.*dl*dm + dm*dm)) ) |
| 102 |
); |
| 103 |
|
| 104 |
} |
| 105 |
|
| 106 |
/* when using the reverse recurrence, instead of calling |
| 107 |
-L2_an(m,l)/L2_cn(m,l), let me just define the |
| 108 |
function ... it might be more stable */ |
| 109 |
|
| 110 |
double L2_ancn(int m, |
| 111 |
int l) |
| 112 |
{ |
| 113 |
double dl, dm; |
| 114 |
|
| 115 |
dl = (double) l; |
| 116 |
dm = (double) m; |
| 117 |
|
| 118 |
return( sqrt( 4.0 + ( (4.0 * dm * dm - 1.0)/ |
| 119 |
(dl * dl - dm * dm) ) ) ); |
| 120 |
} |
| 121 |
|
| 122 |
/************************************************************************/ |
| 123 |
/* vector arithmetic operations */ |
| 124 |
/************************************************************************/ |
| 125 |
/* does result = data1 + data2 */ |
| 126 |
/* result and data are vectors of length n */ |
| 127 |
|
| 128 |
void vec_add(double *data1, |
| 129 |
double *data2, |
| 130 |
double *result, |
| 131 |
int n) |
| 132 |
{ |
| 133 |
int k; |
| 134 |
|
| 135 |
|
| 136 |
for (k = 0; k < n % 4; ++k) |
| 137 |
result[k] = data1[k] + data2[k]; |
| 138 |
|
| 139 |
for ( ; k < n ; k += 4) |
| 140 |
{ |
| 141 |
result[k] = data1[k] + data2[k]; |
| 142 |
result[k + 1] = data1[k + 1] + data2[k + 1]; |
| 143 |
result[k + 2] = data1[k + 2] + data2[k + 2]; |
| 144 |
result[k + 3] = data1[k + 3] + data2[k + 3]; |
| 145 |
} |
| 146 |
} |
| 147 |
/************************************************************************/ |
| 148 |
/************************************************************************/ |
| 149 |
/* |
| 150 |
vec_mul(scalar,data1,result,n) multiplies the vector 'data1' by |
| 151 |
'scalar' and returns in result |
| 152 |
*/ |
| 153 |
void vec_mul(double scalar, |
| 154 |
double *data1, |
| 155 |
double *result, |
| 156 |
int n) |
| 157 |
{ |
| 158 |
int k; |
| 159 |
|
| 160 |
|
| 161 |
for( k = 0; k < n % 4; ++k) |
| 162 |
result[k] = scalar * data1[k]; |
| 163 |
|
| 164 |
for( ; k < n; k +=4) |
| 165 |
{ |
| 166 |
result[k] = scalar * data1[k]; |
| 167 |
result[k + 1] = scalar * data1[k + 1]; |
| 168 |
result[k + 2] = scalar * data1[k + 2]; |
| 169 |
result[k + 3] = scalar * data1[k + 3]; |
| 170 |
} |
| 171 |
|
| 172 |
} |
| 173 |
/************************************************************************/ |
| 174 |
/* point-by-point multiplication of vectors */ |
| 175 |
|
| 176 |
void vec_pt_mul(double *data1, |
| 177 |
double *data2, |
| 178 |
double *result, |
| 179 |
int n) |
| 180 |
{ |
| 181 |
int k; |
| 182 |
|
| 183 |
|
| 184 |
for(k = 0; k < n % 4; ++k) |
| 185 |
result[k] = data1[k] * data2[k]; |
| 186 |
|
| 187 |
for( ; k < n; k +=4) |
| 188 |
{ |
| 189 |
result[k] = data1[k] * data2[k]; |
| 190 |
result[k + 1] = data1[k + 1] * data2[k + 1]; |
| 191 |
result[k + 2] = data1[k + 2] * data2[k + 2]; |
| 192 |
result[k + 3] = data1[k + 3] * data2[k + 3]; |
| 193 |
} |
| 194 |
|
| 195 |
} |
| 196 |
|
| 197 |
|
| 198 |
/************************************************************************/ |
| 199 |
/* returns an array of the angular arguments of n Chebyshev nodes */ |
| 200 |
/* eval_pts points to a double array of length n */ |
| 201 |
|
| 202 |
void ArcCosEvalPts(int n, |
| 203 |
double *eval_pts) |
| 204 |
{ |
| 205 |
int i; |
| 206 |
double twoN; |
| 207 |
|
| 208 |
twoN = (double) (2 * n); |
| 209 |
|
| 210 |
for (i=0; i<n; i++) |
| 211 |
eval_pts[i] = (( 2.0*((double)i)+1.0 ) * PI) / twoN; |
| 212 |
|
| 213 |
} |
| 214 |
/************************************************************************/ |
| 215 |
/* returns an array of n Chebyshev nodes */ |
| 216 |
|
| 217 |
void EvalPts( int n, |
| 218 |
double *eval_pts) |
| 219 |
{ |
| 220 |
int i; |
| 221 |
double twoN; |
| 222 |
|
| 223 |
twoN = (double) (2*n); |
| 224 |
|
| 225 |
for (i=0; i<n; i++) |
| 226 |
eval_pts[i] = cos((( 2.0*((double)i)+1.0 ) * PI) / twoN); |
| 227 |
|
| 228 |
} |
| 229 |
|
| 230 |
/************************************************************************/ |
| 231 |
/* L2 normed Pmm. Expects input to be the order m, an array of |
| 232 |
evaluation points arguments of length n, and a result vector of length n */ |
| 233 |
/* The norming constant can be found in Sean's PhD thesis */ |
| 234 |
/* This has been tested and stably computes Pmm functions thru bw=512 */ |
| 235 |
|
| 236 |
void Pmm_L2( int m, |
| 237 |
double *eval_pts, |
| 238 |
int n, |
| 239 |
double *result) |
| 240 |
{ |
| 241 |
int i; |
| 242 |
double md, id, mcons; |
| 243 |
|
| 244 |
id = (double) 0.0; |
| 245 |
md = (double) m; |
| 246 |
mcons = sqrt(md + 0.5); |
| 247 |
|
| 248 |
for (i=0; i<m; i++) { |
| 249 |
mcons *= sqrt((md-(id/2.0))/(md-id)); |
| 250 |
id += 1.0; |
| 251 |
} |
| 252 |
if (m != 0 ) |
| 253 |
mcons *= pow(2.0,-md/2.0); |
| 254 |
if ((m % 2) != 0) mcons *= -1.0; |
| 255 |
|
| 256 |
for (i=0; i<n; i++) |
| 257 |
result[i] = mcons * pow(sin(eval_pts[i]),((double) m)); |
| 258 |
|
| 259 |
} |
| 260 |
|
| 261 |
/************************************************************************/ |
| 262 |
/************************************************************************/ |
| 263 |
/* |
| 264 |
This piece of code synthesizes a function which is the weighted sum of |
| 265 |
L2-normalized associated Legendre functions. |
| 266 |
|
| 267 |
The coeffs array should contain bw - m coefficients ordered from |
| 268 |
zeroth degree to bw-1, and eval_pts should be an array of the |
| 269 |
arguments (arccos) of the desired evaluation points of length 2*bw. |
| 270 |
|
| 271 |
Answer placed in result (and has length 2*bw). |
| 272 |
|
| 273 |
workspace needs to be of size 16 * bw |
| 274 |
|
| 275 |
*/ |
| 276 |
|
| 277 |
void P_eval(int m, |
| 278 |
double *coeffs, |
| 279 |
double *eval_args, |
| 280 |
double *result, |
| 281 |
double *workspace, |
| 282 |
int bw) |
| 283 |
{ |
| 284 |
double *prev, *prevprev, *temp1, *temp2, *temp3, *temp4, *x_i; |
| 285 |
int i, j, n; |
| 286 |
double splat; |
| 287 |
|
| 288 |
prevprev = workspace; |
| 289 |
prev = prevprev + (2*bw); |
| 290 |
temp1 = prev + (2*bw); |
| 291 |
temp2 = temp1 + (2*bw); |
| 292 |
temp3 = temp2 + (2*bw); |
| 293 |
temp4 = temp3 + (2*bw); |
| 294 |
x_i = temp4 + (2*bw); |
| 295 |
|
| 296 |
n = 2*bw; |
| 297 |
|
| 298 |
/* now get the evaluation nodes */ |
| 299 |
EvalPts(n,x_i); |
| 300 |
|
| 301 |
/* for(i=0;i<n;i++) |
| 302 |
fprintf(stderr,"in P_eval evalpts[%d] = %lf\n", i, x_i[i]); |
| 303 |
*/ |
| 304 |
for (i=0; i<n; i++) |
| 305 |
prevprev[i] = 0.0; |
| 306 |
|
| 307 |
if (m == 0) { |
| 308 |
for (i=0; i<n; i++) { |
| 309 |
prev[i] = 0.707106781186547; /* sqrt(1/2) */ |
| 310 |
|
| 311 |
/* now mult by first coeff and add to result */ |
| 312 |
result[i] = coeffs[0] * prev[i]; |
| 313 |
} |
| 314 |
} |
| 315 |
else { |
| 316 |
Pmm_L2(m, eval_args, n, prev); |
| 317 |
splat = coeffs[0]; |
| 318 |
for (i=0; i<n; i++) |
| 319 |
result[i] = splat * prev[i]; |
| 320 |
} |
| 321 |
|
| 322 |
for (i=0; i<bw-m-1; i++) { |
| 323 |
vec_mul(L2_cn(m,m+i),prevprev,temp1,n); |
| 324 |
vec_pt_mul(prev, x_i, temp2, n); |
| 325 |
vec_mul(L2_an(m,m+i), temp2, temp3, n); |
| 326 |
vec_add(temp3, temp1, temp4, n); /* temp4 now contains P(m,m+i+1) */ |
| 327 |
/* now add weighted P(m,m+i+1) to the result */ |
| 328 |
splat = coeffs[i+1]; |
| 329 |
for (j=0; j<n; j++) |
| 330 |
result[j] += splat * temp4[j]; |
| 331 |
memcpy(prevprev, prev, sizeof(double) * n); |
| 332 |
memcpy(prev, temp4, sizeof(double) * n); |
| 333 |
} |
| 334 |
|
| 335 |
} |
| 336 |
|