| 1 | 
/*************************************************************************** | 
| 2 | 
  ************************************************************************** | 
| 3 | 
   | 
| 4 | 
                           S2kit 1.0 | 
| 5 | 
 | 
| 6 | 
          A lite version of Spherical Harmonic Transform Kit | 
| 7 | 
 | 
| 8 | 
   Peter Kostelec, Dan Rockmore | 
| 9 | 
   {geelong,rockmore}@cs.dartmouth.edu | 
| 10 | 
   | 
| 11 | 
   Contact: Peter Kostelec | 
| 12 | 
            geelong@cs.dartmouth.edu | 
| 13 | 
   | 
| 14 | 
   Copyright 2004 Peter Kostelec, Dan Rockmore | 
| 15 | 
 | 
| 16 | 
   This file is part of S2kit. | 
| 17 | 
 | 
| 18 | 
   S2kit is free software; you can redistribute it and/or modify | 
| 19 | 
   it under the terms of the GNU General Public License as published by | 
| 20 | 
   the Free Software Foundation; either version 2 of the License, or | 
| 21 | 
   (at your option) any later version. | 
| 22 | 
 | 
| 23 | 
   S2kit is distributed in the hope that it will be useful, | 
| 24 | 
   but WITHOUT ANY WARRANTY; without even the implied warranty of | 
| 25 | 
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
| 26 | 
   GNU General Public License for more details. | 
| 27 | 
 | 
| 28 | 
   You should have received a copy of the GNU General Public License | 
| 29 | 
   along with S2kit; if not, write to the Free Software | 
| 30 | 
   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA | 
| 31 | 
 | 
| 32 | 
   See the accompanying LICENSE file for details. | 
| 33 | 
   | 
| 34 | 
  ************************************************************************ | 
| 35 | 
  ************************************************************************/ | 
| 36 | 
 | 
| 37 | 
 | 
| 38 | 
 | 
| 39 | 
/* | 
| 40 | 
 | 
| 41 | 
  some "primitive" functions that are used in cospmls.c | 
| 42 | 
  and newmathx.c | 
| 43 | 
 | 
| 44 | 
  */ | 
| 45 | 
 | 
| 46 | 
#include <math.h> | 
| 47 | 
#include <string.h>  /* to declare memcpy */ | 
| 48 | 
 | 
| 49 | 
#ifndef PI | 
| 50 | 
#define PI 3.14159265358979 | 
| 51 | 
#endif | 
| 52 | 
 | 
| 53 | 
/************************************************************************/ | 
| 54 | 
/* Recurrence coefficients */ | 
| 55 | 
/************************************************************************/ | 
| 56 | 
/* Recurrence coefficents for L2-normed associated Legendre | 
| 57 | 
   recurrence.  When using these coeffs, make sure that | 
| 58 | 
   inital Pmm function is also L2-normed */ | 
| 59 | 
/* l represents degree, m is the order */ | 
| 60 | 
 | 
| 61 | 
double L2_an(int m, | 
| 62 | 
             int l) | 
| 63 | 
{ | 
| 64 | 
  return (sqrt((((double) (2*l+3))/((double) (2*l+1))) * | 
| 65 | 
               (((double) (l-m+1))/((double) (l+m+1)))) * | 
| 66 | 
          (((double) (2*l+1))/((double) (l-m+1)))); | 
| 67 | 
 | 
| 68 | 
} | 
| 69 | 
 | 
| 70 | 
/* note - if input l is zero, need to return 0 */ | 
| 71 | 
double L2_cn(int m, | 
| 72 | 
             int l)  | 
| 73 | 
{ | 
| 74 | 
  if (l != 0) { | 
| 75 | 
    return (-1.0 * | 
| 76 | 
          sqrt((((double) (2*l+3))/((double) (2*l-1))) * | 
| 77 | 
               (((double) (l-m+1))/((double) (l+m+1))) * | 
| 78 | 
               (((double) (l-m))/((double) (l+m)))) * | 
| 79 | 
          (((double) (l+m))/((double) (l-m+1)))); | 
| 80 | 
  } | 
| 81 | 
  else | 
| 82 | 
    return 0.0; | 
| 83 | 
 | 
| 84 | 
} | 
| 85 | 
 | 
| 86 | 
/* when using the reverse recurrence, instead of calling | 
| 87 | 
   1/L2_cn_tr(m,l), let me just define the function ... | 
| 88 | 
   it might be more stable */ | 
| 89 | 
 | 
| 90 | 
double L2_cn_inv(int m, | 
| 91 | 
                 int l) | 
| 92 | 
{ | 
| 93 | 
  double dl, dm; | 
| 94 | 
 | 
| 95 | 
  dl = (double) l; | 
| 96 | 
  dm = (double) m; | 
| 97 | 
 | 
| 98 | 
  return ( -(1.0 + (1. - 2. * dm)/(dm + dl)) * | 
| 99 | 
           sqrt( ((-1. + 2.*dl)/(3. + 2.*dl)) * | 
| 100 | 
                 ((dl + dl*dl + dm + 2.*dl*dm + dm*dm)/ | 
| 101 | 
                  (dl + dl*dl - dm - 2.*dl*dm + dm*dm)) ) | 
| 102 | 
           ); | 
| 103 | 
 | 
| 104 | 
} | 
| 105 | 
 | 
| 106 | 
/* when using the reverse recurrence, instead of calling | 
| 107 | 
   -L2_an(m,l)/L2_cn(m,l), let me just define the | 
| 108 | 
   function ... it might be more stable */ | 
| 109 | 
 | 
| 110 | 
double L2_ancn(int m, | 
| 111 | 
               int l) | 
| 112 | 
{ | 
| 113 | 
  double dl, dm; | 
| 114 | 
 | 
| 115 | 
  dl = (double) l; | 
| 116 | 
  dm = (double) m; | 
| 117 | 
 | 
| 118 | 
  return( sqrt( 4.0 + ( (4.0 * dm * dm - 1.0)/ | 
| 119 | 
                        (dl * dl - dm * dm) ) ) ); | 
| 120 | 
} | 
| 121 | 
 | 
| 122 | 
/************************************************************************/ | 
| 123 | 
/* vector arithmetic operations */ | 
| 124 | 
/************************************************************************/ | 
| 125 | 
/* does result = data1 + data2 */ | 
| 126 | 
/* result and data are vectors of length n */ | 
| 127 | 
 | 
| 128 | 
void vec_add(double *data1, | 
| 129 | 
             double *data2, | 
| 130 | 
             double *result, | 
| 131 | 
             int n) | 
| 132 | 
{ | 
| 133 | 
  int k; | 
| 134 | 
 | 
| 135 | 
 | 
| 136 | 
  for (k = 0; k < n % 4; ++k) | 
| 137 | 
    result[k] = data1[k] + data2[k]; | 
| 138 | 
 | 
| 139 | 
  for ( ; k < n ; k += 4) | 
| 140 | 
    { | 
| 141 | 
      result[k] = data1[k] + data2[k]; | 
| 142 | 
      result[k + 1] = data1[k + 1] + data2[k + 1]; | 
| 143 | 
      result[k + 2] = data1[k + 2] + data2[k + 2]; | 
| 144 | 
      result[k + 3] = data1[k + 3] + data2[k + 3]; | 
| 145 | 
    } | 
| 146 | 
} | 
| 147 | 
/************************************************************************/ | 
| 148 | 
/************************************************************************/ | 
| 149 | 
/* | 
| 150 | 
   vec_mul(scalar,data1,result,n) multiplies the vector 'data1' by | 
| 151 | 
   'scalar' and returns in result  | 
| 152 | 
*/ | 
| 153 | 
void vec_mul(double scalar, | 
| 154 | 
             double *data1, | 
| 155 | 
             double *result, | 
| 156 | 
             int n) | 
| 157 | 
{ | 
| 158 | 
   int k; | 
| 159 | 
 | 
| 160 | 
 | 
| 161 | 
   for( k = 0; k < n % 4; ++k) | 
| 162 | 
     result[k] = scalar * data1[k]; | 
| 163 | 
 | 
| 164 | 
   for( ; k < n; k +=4) | 
| 165 | 
     { | 
| 166 | 
       result[k] = scalar * data1[k]; | 
| 167 | 
       result[k + 1] = scalar * data1[k + 1]; | 
| 168 | 
       result[k + 2] = scalar * data1[k + 2]; | 
| 169 | 
       result[k + 3] = scalar * data1[k + 3]; | 
| 170 | 
     } | 
| 171 | 
 | 
| 172 | 
} | 
| 173 | 
/************************************************************************/ | 
| 174 | 
/* point-by-point multiplication of vectors */ | 
| 175 | 
 | 
| 176 | 
void vec_pt_mul(double *data1, | 
| 177 | 
                double *data2, | 
| 178 | 
                double *result, | 
| 179 | 
                int n) | 
| 180 | 
{ | 
| 181 | 
   int k; | 
| 182 | 
 | 
| 183 | 
   | 
| 184 | 
  for(k = 0; k < n % 4; ++k) | 
| 185 | 
    result[k] = data1[k] * data2[k]; | 
| 186 | 
   | 
| 187 | 
  for( ; k < n; k +=4) | 
| 188 | 
    { | 
| 189 | 
      result[k] = data1[k] * data2[k]; | 
| 190 | 
      result[k + 1] = data1[k + 1] * data2[k + 1]; | 
| 191 | 
      result[k + 2] = data1[k + 2] * data2[k + 2]; | 
| 192 | 
      result[k + 3] = data1[k + 3] * data2[k + 3]; | 
| 193 | 
    } | 
| 194 | 
  | 
| 195 | 
} | 
| 196 | 
 | 
| 197 | 
 | 
| 198 | 
/************************************************************************/ | 
| 199 | 
/* returns an array of the angular arguments of n Chebyshev nodes */ | 
| 200 | 
/* eval_pts points to a double array of length n */ | 
| 201 | 
 | 
| 202 | 
void ArcCosEvalPts(int n, | 
| 203 | 
                   double *eval_pts) | 
| 204 | 
{ | 
| 205 | 
    int i; | 
| 206 | 
    double twoN; | 
| 207 | 
 | 
| 208 | 
    twoN = (double) (2 * n); | 
| 209 | 
 | 
| 210 | 
   for (i=0; i<n; i++) | 
| 211 | 
     eval_pts[i] = (( 2.0*((double)i)+1.0 ) * PI) / twoN; | 
| 212 | 
 | 
| 213 | 
} | 
| 214 | 
/************************************************************************/ | 
| 215 | 
/* returns an array of n Chebyshev nodes */ | 
| 216 | 
 | 
| 217 | 
void EvalPts( int n, | 
| 218 | 
              double *eval_pts) | 
| 219 | 
{ | 
| 220 | 
    int i; | 
| 221 | 
    double twoN; | 
| 222 | 
 | 
| 223 | 
    twoN = (double) (2*n); | 
| 224 | 
 | 
| 225 | 
   for (i=0; i<n; i++) | 
| 226 | 
     eval_pts[i] = cos((( 2.0*((double)i)+1.0 ) * PI) / twoN); | 
| 227 | 
 | 
| 228 | 
} | 
| 229 | 
 | 
| 230 | 
/************************************************************************/ | 
| 231 | 
/* L2 normed Pmm.  Expects input to be the order m, an array of | 
| 232 | 
 evaluation points arguments of length n, and a result vector of length n */ | 
| 233 | 
/* The norming constant can be found in Sean's PhD thesis */ | 
| 234 | 
/* This has been tested and stably computes Pmm functions thru bw=512 */ | 
| 235 | 
 | 
| 236 | 
void Pmm_L2( int m, | 
| 237 | 
             double *eval_pts, | 
| 238 | 
             int n, | 
| 239 | 
             double *result) | 
| 240 | 
{ | 
| 241 | 
  int i; | 
| 242 | 
  double md, id, mcons; | 
| 243 | 
 | 
| 244 | 
  id = (double) 0.0; | 
| 245 | 
  md = (double) m; | 
| 246 | 
  mcons = sqrt(md + 0.5); | 
| 247 | 
 | 
| 248 | 
  for (i=0; i<m; i++) { | 
| 249 | 
    mcons *= sqrt((md-(id/2.0))/(md-id)); | 
| 250 | 
    id += 1.0; | 
| 251 | 
  } | 
| 252 | 
  if (m != 0 ) | 
| 253 | 
    mcons *= pow(2.0,-md/2.0); | 
| 254 | 
  if ((m % 2) != 0) mcons *= -1.0; | 
| 255 | 
 | 
| 256 | 
  for (i=0; i<n; i++)  | 
| 257 | 
    result[i] = mcons * pow(sin(eval_pts[i]),((double) m)); | 
| 258 | 
 | 
| 259 | 
} | 
| 260 | 
 | 
| 261 | 
/************************************************************************/ | 
| 262 | 
/************************************************************************/ | 
| 263 | 
/* | 
| 264 | 
  This piece of code synthesizes a function which is the weighted sum of  | 
| 265 | 
  L2-normalized associated Legendre functions. | 
| 266 | 
 | 
| 267 | 
  The coeffs array should contain bw - m coefficients ordered from | 
| 268 | 
  zeroth degree to bw-1, and eval_pts should be an array of the | 
| 269 | 
  arguments (arccos) of the desired evaluation points of length 2*bw.  | 
| 270 | 
 | 
| 271 | 
  Answer placed in result (and has length 2*bw). | 
| 272 | 
   | 
| 273 | 
  workspace needs to be of size 16 * bw | 
| 274 | 
   | 
| 275 | 
*/ | 
| 276 | 
 | 
| 277 | 
void P_eval(int m, | 
| 278 | 
            double *coeffs, | 
| 279 | 
            double *eval_args, | 
| 280 | 
            double *result, | 
| 281 | 
            double *workspace, | 
| 282 | 
            int bw) | 
| 283 | 
{ | 
| 284 | 
    double *prev, *prevprev, *temp1, *temp2, *temp3, *temp4, *x_i; | 
| 285 | 
    int i, j, n; | 
| 286 | 
    double splat; | 
| 287 | 
 | 
| 288 | 
    prevprev = workspace; | 
| 289 | 
    prev = prevprev + (2*bw); | 
| 290 | 
    temp1 = prev + (2*bw); | 
| 291 | 
    temp2 = temp1 + (2*bw); | 
| 292 | 
    temp3 = temp2 + (2*bw); | 
| 293 | 
    temp4 = temp3 + (2*bw); | 
| 294 | 
    x_i = temp4 + (2*bw); | 
| 295 | 
 | 
| 296 | 
    n = 2*bw; | 
| 297 | 
 | 
| 298 | 
    /* now get the evaluation nodes */ | 
| 299 | 
    EvalPts(n,x_i); | 
| 300 | 
 | 
| 301 | 
    /*   for(i=0;i<n;i++) | 
| 302 | 
      fprintf(stderr,"in P_eval evalpts[%d] = %lf\n", i, x_i[i]); | 
| 303 | 
      */    | 
| 304 | 
    for (i=0; i<n; i++)  | 
| 305 | 
      prevprev[i] = 0.0; | 
| 306 | 
 | 
| 307 | 
    if (m == 0) { | 
| 308 | 
        for (i=0; i<n; i++) { | 
| 309 | 
          prev[i] = 0.707106781186547; /* sqrt(1/2) */ | 
| 310 | 
 | 
| 311 | 
          /* now mult by first coeff and add to result */ | 
| 312 | 
          result[i] = coeffs[0] * prev[i]; | 
| 313 | 
        } | 
| 314 | 
    } | 
| 315 | 
    else { | 
| 316 | 
        Pmm_L2(m, eval_args, n, prev); | 
| 317 | 
        splat = coeffs[0]; | 
| 318 | 
        for (i=0; i<n; i++) | 
| 319 | 
          result[i] = splat * prev[i]; | 
| 320 | 
    } | 
| 321 | 
 | 
| 322 | 
    for (i=0; i<bw-m-1; i++) { | 
| 323 | 
        vec_mul(L2_cn(m,m+i),prevprev,temp1,n); | 
| 324 | 
        vec_pt_mul(prev, x_i, temp2, n); | 
| 325 | 
        vec_mul(L2_an(m,m+i), temp2, temp3, n); | 
| 326 | 
        vec_add(temp3, temp1, temp4, n); /* temp4 now contains P(m,m+i+1) */ | 
| 327 | 
        /* now add weighted P(m,m+i+1) to the result */ | 
| 328 | 
        splat = coeffs[i+1]; | 
| 329 | 
        for (j=0; j<n; j++) | 
| 330 | 
          result[j] += splat * temp4[j]; | 
| 331 | 
        memcpy(prevprev, prev, sizeof(double) * n); | 
| 332 | 
        memcpy(prev, temp4, sizeof(double) * n); | 
| 333 | 
    } | 
| 334 | 
 | 
| 335 | 
} | 
| 336 | 
 |