| 1 |
chrisfen |
1287 |
/*************************************************************************** |
| 2 |
|
|
************************************************************************** |
| 3 |
|
|
|
| 4 |
|
|
S2kit 1.0 |
| 5 |
|
|
|
| 6 |
|
|
A lite version of Spherical Harmonic Transform Kit |
| 7 |
|
|
|
| 8 |
|
|
Peter Kostelec, Dan Rockmore |
| 9 |
|
|
{geelong,rockmore}@cs.dartmouth.edu |
| 10 |
|
|
|
| 11 |
|
|
Contact: Peter Kostelec |
| 12 |
|
|
geelong@cs.dartmouth.edu |
| 13 |
|
|
|
| 14 |
|
|
Copyright 2004 Peter Kostelec, Dan Rockmore |
| 15 |
|
|
|
| 16 |
|
|
This file is part of S2kit. |
| 17 |
|
|
|
| 18 |
|
|
S2kit is free software; you can redistribute it and/or modify |
| 19 |
|
|
it under the terms of the GNU General Public License as published by |
| 20 |
|
|
the Free Software Foundation; either version 2 of the License, or |
| 21 |
|
|
(at your option) any later version. |
| 22 |
|
|
|
| 23 |
|
|
S2kit is distributed in the hope that it will be useful, |
| 24 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 25 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 26 |
|
|
GNU General Public License for more details. |
| 27 |
|
|
|
| 28 |
|
|
You should have received a copy of the GNU General Public License |
| 29 |
|
|
along with S2kit; if not, write to the Free Software |
| 30 |
|
|
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| 31 |
|
|
|
| 32 |
|
|
See the accompanying LICENSE file for details. |
| 33 |
|
|
|
| 34 |
|
|
************************************************************************ |
| 35 |
|
|
************************************************************************/ |
| 36 |
|
|
|
| 37 |
|
|
|
| 38 |
|
|
/* source code for generating cosine transforms |
| 39 |
|
|
of Pml and Gml functions */ |
| 40 |
|
|
|
| 41 |
|
|
#include <math.h> |
| 42 |
|
|
#include <string.h> /* to declare memcpy */ |
| 43 |
|
|
#include <stdlib.h> |
| 44 |
|
|
#include <stdio.h> |
| 45 |
|
|
|
| 46 |
|
|
#include "fftw3.h" |
| 47 |
|
|
#include "primitive.h" |
| 48 |
|
|
#include "pmls.h" |
| 49 |
|
|
|
| 50 |
|
|
|
| 51 |
|
|
/************************************************************************/ |
| 52 |
|
|
/* utility functions for table management */ |
| 53 |
|
|
/************************************************************************/ |
| 54 |
|
|
/* Computes the number of non-zero entries in a table containing |
| 55 |
|
|
cosine series coefficients of all the P(m,l) or G(m,l) functions |
| 56 |
|
|
necessary for computing the seminaive transform for a given |
| 57 |
|
|
bandwidth bw and order m. Works specifically for tables |
| 58 |
|
|
generated by CosPmlTableGen() |
| 59 |
|
|
*/ |
| 60 |
|
|
|
| 61 |
|
|
int TableSize(int m, |
| 62 |
|
|
int bw) |
| 63 |
|
|
{ |
| 64 |
|
|
|
| 65 |
|
|
int k ; |
| 66 |
|
|
int fudge, fudge2 ; |
| 67 |
|
|
int a1, a2, a3 ; |
| 68 |
|
|
|
| 69 |
|
|
if ( bw % 2 ) /* if the bandwidth is odd */ |
| 70 |
|
|
{ |
| 71 |
|
|
k = bw/2 ; |
| 72 |
|
|
fudge = (m+1)%2 ; |
| 73 |
|
|
|
| 74 |
|
|
a1 = k*(k+1); |
| 75 |
|
|
a2 = fudge*(k+1); |
| 76 |
|
|
|
| 77 |
|
|
fudge2 = m/2; |
| 78 |
|
|
a3 = fudge2*(fudge2+1); |
| 79 |
|
|
|
| 80 |
|
|
} |
| 81 |
|
|
else /* bandwidth is even */ |
| 82 |
|
|
{ |
| 83 |
|
|
k = bw/2 ; |
| 84 |
|
|
fudge = m%2 ; |
| 85 |
|
|
|
| 86 |
|
|
a1 = (k-fudge)*(k-fudge+1); |
| 87 |
|
|
a2 = fudge*k; |
| 88 |
|
|
|
| 89 |
|
|
fudge2 = m/2; |
| 90 |
|
|
a3 = fudge2*(fudge2+1); |
| 91 |
|
|
|
| 92 |
|
|
} |
| 93 |
|
|
|
| 94 |
|
|
return(a1+a2-a3); |
| 95 |
|
|
|
| 96 |
|
|
} |
| 97 |
|
|
/************************************************************************/ |
| 98 |
|
|
/* Spharmonic_TableSize(bw) returns an integer value for |
| 99 |
|
|
the amount of space necessary to fill out an entire spharmonic |
| 100 |
|
|
table. Note that in the above TableSize() formula, |
| 101 |
|
|
you need to sum this formula over m as m ranges from 0 to |
| 102 |
|
|
(bw-1). The critical closed form that you need is that |
| 103 |
|
|
|
| 104 |
|
|
\sum_{k=0}^n = \frac{(n(n+1)(2n+1)}{6} |
| 105 |
|
|
|
| 106 |
|
|
You also need to account for integer division. |
| 107 |
|
|
From this you should derive an upper bound on the |
| 108 |
|
|
amount of space. |
| 109 |
|
|
|
| 110 |
|
|
Some notes - because of integer division, you need to account for |
| 111 |
|
|
a fudge factor - this is the additional " + bw" at the |
| 112 |
|
|
end. This gaurantees that you will always have slightly more |
| 113 |
|
|
space than you need, which is clearly better than underestimating! |
| 114 |
|
|
Also, if bw > 512, the closed form |
| 115 |
|
|
fails because of the bw*bw*bw term (at least on Sun Sparcstations) |
| 116 |
|
|
so the loop computation is used instead. |
| 117 |
|
|
|
| 118 |
|
|
Also, the transpose is exactly the same size, obviously. |
| 119 |
|
|
|
| 120 |
|
|
*/ |
| 121 |
|
|
|
| 122 |
|
|
int Spharmonic_TableSize(int bw) |
| 123 |
|
|
{ |
| 124 |
|
|
int m, sum; |
| 125 |
|
|
|
| 126 |
|
|
if (bw > 512) |
| 127 |
|
|
{ |
| 128 |
|
|
sum = 0; |
| 129 |
|
|
|
| 130 |
|
|
for (m=0; m<bw; m++) |
| 131 |
|
|
sum += TableSize(m,bw); |
| 132 |
|
|
|
| 133 |
|
|
return sum; |
| 134 |
|
|
} |
| 135 |
|
|
else |
| 136 |
|
|
{ |
| 137 |
|
|
return ( |
| 138 |
|
|
(((4*(bw*bw*bw)) + (6*(bw*bw)) - (8*bw))/24) |
| 139 |
|
|
+ bw |
| 140 |
|
|
); |
| 141 |
|
|
} |
| 142 |
|
|
} |
| 143 |
|
|
|
| 144 |
|
|
/************************************************************************/ |
| 145 |
|
|
/* Reduced_Spharmonic_TableSize(bw,m) returns an integer value for |
| 146 |
|
|
the amount of space necessary to fill out a spharmonic table |
| 147 |
|
|
if interesting in using it only for orders up to (but NOT |
| 148 |
|
|
including) order m. |
| 149 |
|
|
This will be used in the hybrid algorithm's call of the |
| 150 |
|
|
semi-naive algorithm (which won't need the full table ... hopefully |
| 151 |
|
|
this'll cut down on the memory usage). |
| 152 |
|
|
|
| 153 |
|
|
Also, the transpose is exactly the same size, obviously. |
| 154 |
|
|
|
| 155 |
|
|
This is a "reduced" version of Spharmonic_TableSize(m). |
| 156 |
|
|
|
| 157 |
|
|
*/ |
| 158 |
|
|
|
| 159 |
|
|
int Reduced_SpharmonicTableSize(int bw, |
| 160 |
|
|
int m) |
| 161 |
|
|
{ |
| 162 |
|
|
|
| 163 |
|
|
int i, sum; |
| 164 |
|
|
|
| 165 |
|
|
sum = 0; |
| 166 |
|
|
|
| 167 |
|
|
for (i=0; i<m; i++) |
| 168 |
|
|
sum += TableSize(i,bw); |
| 169 |
|
|
|
| 170 |
|
|
return sum; |
| 171 |
|
|
} |
| 172 |
|
|
|
| 173 |
|
|
|
| 174 |
|
|
/************************************************************************/ |
| 175 |
|
|
/* For an array containing cosine series coefficients of Pml or Gml |
| 176 |
|
|
functions, computes the location of the first coefficient of Pml. |
| 177 |
|
|
This supersedes the TableOffset() function. |
| 178 |
|
|
Assumes table is generated by CosPmlTableGen() |
| 179 |
|
|
*/ |
| 180 |
|
|
|
| 181 |
|
|
int NewTableOffset(int m, |
| 182 |
|
|
int l) |
| 183 |
|
|
{ |
| 184 |
|
|
int offset; |
| 185 |
|
|
int tm, tl; |
| 186 |
|
|
|
| 187 |
|
|
if ( m % 2 ) |
| 188 |
|
|
{ |
| 189 |
|
|
tl = l-1; |
| 190 |
|
|
tm = m-1; |
| 191 |
|
|
} |
| 192 |
|
|
else |
| 193 |
|
|
{ |
| 194 |
|
|
tl = l; |
| 195 |
|
|
tm = m; |
| 196 |
|
|
} |
| 197 |
|
|
|
| 198 |
|
|
offset = ((tl/2)*((tl/2)+1)) - ((tm/2)*((tm/2)+1)); |
| 199 |
|
|
if (tl % 2) |
| 200 |
|
|
offset += (tl/2)+1; |
| 201 |
|
|
|
| 202 |
|
|
return offset; |
| 203 |
|
|
} |
| 204 |
|
|
|
| 205 |
|
|
/************************************************************************/ |
| 206 |
|
|
/* |
| 207 |
|
|
generate all of the cosine series for L2-normalized Pmls or Gmls for |
| 208 |
|
|
a specified value of m. Note especially that since series are |
| 209 |
|
|
zero-striped, all zeroes have been removed. |
| 210 |
|
|
|
| 211 |
|
|
tablespace points to a double array of size TableSize(m,bw); |
| 212 |
|
|
|
| 213 |
|
|
Workspace needs to be |
| 214 |
|
|
9 * bw |
| 215 |
|
|
|
| 216 |
|
|
Let P(m,l,j) represent the jth coefficient of the |
| 217 |
|
|
cosine series representation of Pml. The array |
| 218 |
|
|
stuffed into tablespace is organized as follows: |
| 219 |
|
|
|
| 220 |
|
|
P(m,m,0) P(m,m,2) ... P(m,m,m) |
| 221 |
|
|
P(m,m+1,1) P(m,m+1,3)... P(m,m+1,m+1) |
| 222 |
|
|
P(m,m+2,0) P(m,m+2,2) ... P(m,m+2,m+2) |
| 223 |
|
|
|
| 224 |
|
|
etc. Appropriate modifications are made for m odd (Gml functions). |
| 225 |
|
|
|
| 226 |
|
|
|
| 227 |
|
|
NOTE that the Pmls or Gmls are being sampled at bw-many points, |
| 228 |
|
|
and not 2*bw-many points. I can get away with this. HOWEVER, I |
| 229 |
|
|
need to multiply the coefficients by sqrt(2), because the expected |
| 230 |
|
|
input of the seminaive transform of bandwidth bw will be sampled |
| 231 |
|
|
at 2-bw many points. So the sqrt(2) is a scaling factor. |
| 232 |
|
|
|
| 233 |
|
|
|
| 234 |
|
|
*/ |
| 235 |
|
|
|
| 236 |
|
|
void CosPmlTableGen(int bw, |
| 237 |
|
|
int m, |
| 238 |
|
|
double *tablespace, |
| 239 |
|
|
double *workspace) |
| 240 |
|
|
{ |
| 241 |
|
|
double *prev, *prevprev, *temp1, *temp2, *temp3, *temp4; |
| 242 |
|
|
double *x_i, *eval_args; |
| 243 |
|
|
double *tableptr, *cosres ; |
| 244 |
|
|
int i, j, k; |
| 245 |
|
|
|
| 246 |
|
|
/* fftw stuff now */ |
| 247 |
|
|
double fudge ; |
| 248 |
|
|
fftw_plan p ; |
| 249 |
|
|
|
| 250 |
|
|
prevprev = workspace; |
| 251 |
|
|
prev = prevprev + bw; |
| 252 |
|
|
temp1 = prev + bw; |
| 253 |
|
|
temp2 = temp1 + bw; |
| 254 |
|
|
temp3 = temp2 + bw; |
| 255 |
|
|
temp4 = temp3 + bw; |
| 256 |
|
|
x_i = temp4 + bw; |
| 257 |
|
|
eval_args = x_i + bw; |
| 258 |
|
|
cosres = eval_args + bw; |
| 259 |
|
|
|
| 260 |
|
|
tableptr = tablespace; |
| 261 |
|
|
|
| 262 |
|
|
/* make fftw plan */ |
| 263 |
|
|
p = fftw_plan_r2r_1d( bw, temp4, cosres, |
| 264 |
|
|
FFTW_REDFT10, FFTW_ESTIMATE ) ; |
| 265 |
|
|
|
| 266 |
|
|
/* main loop */ |
| 267 |
|
|
|
| 268 |
|
|
/* Set the initial number of evaluation points to appropriate |
| 269 |
|
|
amount */ |
| 270 |
|
|
|
| 271 |
|
|
/* now get the evaluation nodes */ |
| 272 |
|
|
EvalPts(bw,x_i); |
| 273 |
|
|
ArcCosEvalPts(bw,eval_args); |
| 274 |
|
|
|
| 275 |
|
|
/* set initial values of first two Pmls */ |
| 276 |
|
|
for (i=0; i<bw; i++) |
| 277 |
|
|
prevprev[i] = 0.0; |
| 278 |
|
|
|
| 279 |
|
|
if (m == 0) |
| 280 |
|
|
for (i=0; i<bw; i++) |
| 281 |
|
|
prev[i] = 0.707106781186547; /* sqrt(1/2) */ |
| 282 |
|
|
else |
| 283 |
|
|
Pmm_L2(m, eval_args, bw, prev); |
| 284 |
|
|
|
| 285 |
|
|
|
| 286 |
|
|
if ( m % 2 ) /* need to divide out sin x */ |
| 287 |
|
|
for (i=0; i<bw; i++) |
| 288 |
|
|
prev[i] /= sin(eval_args[i]); |
| 289 |
|
|
|
| 290 |
|
|
|
| 291 |
|
|
/* set k to highest degree coefficient */ |
| 292 |
|
|
if ((m % 2) == 0) |
| 293 |
|
|
k = m; |
| 294 |
|
|
else |
| 295 |
|
|
k = m-1; |
| 296 |
|
|
|
| 297 |
|
|
/* now compute cosine transform */ |
| 298 |
|
|
memcpy( temp4, prev, sizeof(double) * bw ); |
| 299 |
|
|
fftw_execute( p ); |
| 300 |
|
|
cosres[0] *= 0.707106781186547 ; |
| 301 |
|
|
fudge = 1. / sqrt(((double) bw ) ); |
| 302 |
|
|
for ( i = 0 ; i < bw ; i ++ ) |
| 303 |
|
|
cosres[i] *= fudge ; |
| 304 |
|
|
|
| 305 |
|
|
/* store what I've got so far */ |
| 306 |
|
|
for (i=0; i<=k; i+=2) |
| 307 |
|
|
tableptr[i/2] = cosres[i]; |
| 308 |
|
|
|
| 309 |
|
|
/* update tableptr */ |
| 310 |
|
|
tableptr += k/2+1; |
| 311 |
|
|
|
| 312 |
|
|
/* now generate remaining pmls */ |
| 313 |
|
|
for (i=0; i<bw-m-1; i++) |
| 314 |
|
|
{ |
| 315 |
|
|
vec_mul(L2_cn(m,m+i),prevprev,temp1,bw); |
| 316 |
|
|
vec_pt_mul(prev, x_i, temp2, bw); |
| 317 |
|
|
vec_mul(L2_an(m,m+i), temp2, temp3, bw); |
| 318 |
|
|
vec_add(temp3, temp1, temp4, bw); /* temp4 now contains P(m,m+i+1) */ |
| 319 |
|
|
|
| 320 |
|
|
/* compute cosine transform */ |
| 321 |
|
|
fftw_execute( p ); |
| 322 |
|
|
cosres[0] *= 0.707106781186547 ; |
| 323 |
|
|
for ( j = 0 ; j < bw ; j ++ ) |
| 324 |
|
|
cosres[j] *= fudge ; |
| 325 |
|
|
|
| 326 |
|
|
/* update degree counter */ |
| 327 |
|
|
k++; |
| 328 |
|
|
|
| 329 |
|
|
/* now put decimated result into table */ |
| 330 |
|
|
if ( i % 2 ) |
| 331 |
|
|
for (j=0; j<=k; j+=2) |
| 332 |
|
|
tableptr[j/2] = cosres[j]; |
| 333 |
|
|
else |
| 334 |
|
|
for (j=1; j<=k; j+=2) |
| 335 |
|
|
tableptr[j/2] = cosres[j]; |
| 336 |
|
|
|
| 337 |
|
|
/* update tableptr */ |
| 338 |
|
|
tableptr += k/2+1; |
| 339 |
|
|
|
| 340 |
|
|
/* now update Pi and P(i+1) */ |
| 341 |
|
|
memcpy(prevprev, prev, sizeof(double) * bw); |
| 342 |
|
|
memcpy(prev, temp4, sizeof(double) * bw); |
| 343 |
|
|
} |
| 344 |
|
|
|
| 345 |
|
|
fftw_destroy_plan( p ); |
| 346 |
|
|
|
| 347 |
|
|
} |
| 348 |
|
|
|
| 349 |
|
|
|
| 350 |
|
|
/************************************************************************/ |
| 351 |
|
|
/* RowSize returns the number of non-zero coefficients in a row of the |
| 352 |
|
|
cospmltable if were really in matrix form. Helpful in transpose |
| 353 |
|
|
computations. It is helpful to think of the parameter l as |
| 354 |
|
|
the row of the corresponding matrix. |
| 355 |
|
|
*/ |
| 356 |
|
|
|
| 357 |
|
|
int RowSize(int m, |
| 358 |
|
|
int l) |
| 359 |
|
|
{ |
| 360 |
|
|
if (l < m) |
| 361 |
|
|
return 0; |
| 362 |
|
|
else |
| 363 |
|
|
{ |
| 364 |
|
|
if ((m % 2) == 0) |
| 365 |
|
|
return ((l/2)+1); |
| 366 |
|
|
else |
| 367 |
|
|
return (((l-1)/2)+1); |
| 368 |
|
|
} |
| 369 |
|
|
} |
| 370 |
|
|
/************************************************************************/ |
| 371 |
|
|
/* Transposed row size returns the number of non-zero coefficients |
| 372 |
|
|
in the transposition of the matrix representing a cospmltable. |
| 373 |
|
|
Used for generating arrays for inverse seminaive transform. |
| 374 |
|
|
Unlike RowSize, need to know the bandwidth bw. Also, in |
| 375 |
|
|
the cospml array, the first m+1 rows are empty, but in |
| 376 |
|
|
the transpose, all rows have non-zero entries, and the first |
| 377 |
|
|
m+1 columns are empty. So the input parameters are a bit different |
| 378 |
|
|
in the you need to specify the row you want. |
| 379 |
|
|
|
| 380 |
|
|
*/ |
| 381 |
|
|
|
| 382 |
|
|
int Transpose_RowSize(int row, |
| 383 |
|
|
int m, |
| 384 |
|
|
int bw) |
| 385 |
|
|
{ |
| 386 |
|
|
/* my version might be longer, but at least I understand |
| 387 |
|
|
it better, and it's only minimally recursive */ |
| 388 |
|
|
|
| 389 |
|
|
if ( bw % 2 ) |
| 390 |
|
|
{ |
| 391 |
|
|
if ( m % 2 ) |
| 392 |
|
|
{ |
| 393 |
|
|
if ( m == 1 ) |
| 394 |
|
|
return( (bw-row)/2 ); |
| 395 |
|
|
else if ( row < m - 1 ) |
| 396 |
|
|
return ( (bw-m+1)/2 ); |
| 397 |
|
|
else |
| 398 |
|
|
return ( Transpose_RowSize(row, 1, bw) ) ; |
| 399 |
|
|
} |
| 400 |
|
|
else |
| 401 |
|
|
{ |
| 402 |
|
|
if ( m == 0 ) |
| 403 |
|
|
return( (bw-row)/2 + ((row+1)%2) ); |
| 404 |
|
|
else if ( row < m ) |
| 405 |
|
|
return ( (bw-m)/2 + ((row+1)%2) ); |
| 406 |
|
|
else |
| 407 |
|
|
return ( Transpose_RowSize(row, 0, bw) ) ; |
| 408 |
|
|
} |
| 409 |
|
|
} |
| 410 |
|
|
else |
| 411 |
|
|
{ |
| 412 |
|
|
if ( m % 2 ) |
| 413 |
|
|
{ |
| 414 |
|
|
if ( m == 1 ) |
| 415 |
|
|
return( (bw-row)/2 ); |
| 416 |
|
|
else if ( row < m - 1 ) |
| 417 |
|
|
return ( (bw-m+1)/2 - (row%2) ); |
| 418 |
|
|
else |
| 419 |
|
|
return ( Transpose_RowSize(row, 1, bw) ) ; |
| 420 |
|
|
} |
| 421 |
|
|
else |
| 422 |
|
|
{ |
| 423 |
|
|
if ( m == 0 ) |
| 424 |
|
|
return( (bw-row)/2 + (row%2) ); |
| 425 |
|
|
else if ( row < m ) |
| 426 |
|
|
return ( (bw-m)/2 ); |
| 427 |
|
|
else |
| 428 |
|
|
return ( Transpose_RowSize(row, 0, bw) ) ; |
| 429 |
|
|
} |
| 430 |
|
|
} |
| 431 |
|
|
|
| 432 |
|
|
|
| 433 |
|
|
|
| 434 |
|
|
/*** original version |
| 435 |
|
|
|
| 436 |
|
|
if (row >= bw) |
| 437 |
|
|
return 0; |
| 438 |
|
|
else if ((m % 2) == 0) |
| 439 |
|
|
{ |
| 440 |
|
|
if (row <= m) |
| 441 |
|
|
return ( ((bw-m)/2) ); |
| 442 |
|
|
else |
| 443 |
|
|
return ( ((bw-row-1)/2) + 1); |
| 444 |
|
|
} |
| 445 |
|
|
else |
| 446 |
|
|
{ |
| 447 |
|
|
if (row == (bw-1)) |
| 448 |
|
|
return 0; |
| 449 |
|
|
else if (row >= m) |
| 450 |
|
|
return (Transpose_RowSize(row+1,m-1,bw)); |
| 451 |
|
|
else |
| 452 |
|
|
return (Transpose_RowSize(row+1,m-1,bw) - (row % 2)); |
| 453 |
|
|
} |
| 454 |
|
|
|
| 455 |
|
|
***/ |
| 456 |
|
|
|
| 457 |
|
|
} |
| 458 |
|
|
|
| 459 |
|
|
/************************************************************************/ |
| 460 |
|
|
/* Inverse transform is transposition of forward transform. |
| 461 |
|
|
Thus, need to provide transposed version of table |
| 462 |
|
|
returned by CosPmlTableGen. This function does that |
| 463 |
|
|
by taking as input a cos_pml_table for a particular value |
| 464 |
|
|
of bw and m, and loads the result as a |
| 465 |
|
|
transposed, decimated version of it for use by an inverse |
| 466 |
|
|
seminaive transform computation. |
| 467 |
|
|
|
| 468 |
|
|
result needs to be of size TableSize(m,bw) |
| 469 |
|
|
|
| 470 |
|
|
*/ |
| 471 |
|
|
|
| 472 |
|
|
void Transpose_CosPmlTableGen(int bw, |
| 473 |
|
|
int m, |
| 474 |
|
|
double *cos_pml_table, |
| 475 |
|
|
double *result) |
| 476 |
|
|
{ |
| 477 |
|
|
/* recall that cospml_table has had all the zeroes |
| 478 |
|
|
stripped out, and that if m is odd, then it is |
| 479 |
|
|
really a Gml function, which affects indexing a bit. |
| 480 |
|
|
*/ |
| 481 |
|
|
|
| 482 |
|
|
double *trans_tableptr, *tableptr; |
| 483 |
|
|
int i, row, rowsize, stride, offset, costable_offset; |
| 484 |
|
|
|
| 485 |
|
|
/* note that the number of non-zero entries is the same |
| 486 |
|
|
as in the non-transposed case */ |
| 487 |
|
|
|
| 488 |
|
|
trans_tableptr = result; |
| 489 |
|
|
|
| 490 |
|
|
/* now traverse the cos_pml_table , loading appropriate values |
| 491 |
|
|
into the rows of transposed array */ |
| 492 |
|
|
|
| 493 |
|
|
if ( m == bw - 1 ) |
| 494 |
|
|
memcpy( result, cos_pml_table, sizeof(double)*TableSize(m,bw)); |
| 495 |
|
|
else |
| 496 |
|
|
{ |
| 497 |
|
|
|
| 498 |
|
|
for (row = 0; row < bw; row++) |
| 499 |
|
|
{ |
| 500 |
|
|
/* if m odd, no need to do last row - all zeroes */ |
| 501 |
|
|
if (row == (bw-1)) |
| 502 |
|
|
{ |
| 503 |
|
|
if ( m % 2 ) |
| 504 |
|
|
return; |
| 505 |
|
|
} |
| 506 |
|
|
|
| 507 |
|
|
/* get the rowsize for the transposed array */ |
| 508 |
|
|
rowsize = Transpose_RowSize(row, m, bw); |
| 509 |
|
|
|
| 510 |
|
|
/* compute the starting point for values in cos_pml_table */ |
| 511 |
|
|
if (row <= m) |
| 512 |
|
|
{ |
| 513 |
|
|
if ((row % 2) == 0) |
| 514 |
|
|
tableptr = cos_pml_table + (row/2); |
| 515 |
|
|
else |
| 516 |
|
|
tableptr = cos_pml_table + (m/2) + 1 + (row/2); |
| 517 |
|
|
} |
| 518 |
|
|
else |
| 519 |
|
|
{ |
| 520 |
|
|
/* if row > m, then the highest degree coefficient |
| 521 |
|
|
of P(m,row) should be the first coefficient loaded |
| 522 |
|
|
into the transposed array, so figure out where |
| 523 |
|
|
this point is. |
| 524 |
|
|
*/ |
| 525 |
|
|
offset = 0; |
| 526 |
|
|
if ( (m%2) == 0 ) |
| 527 |
|
|
{ |
| 528 |
|
|
for (i=m; i<=row; i++) |
| 529 |
|
|
offset += RowSize(m, i); |
| 530 |
|
|
} |
| 531 |
|
|
else |
| 532 |
|
|
{ |
| 533 |
|
|
for (i=m;i<=row+1;i++) |
| 534 |
|
|
offset += RowSize(m, i); |
| 535 |
|
|
} |
| 536 |
|
|
/* now we are pointing one element too far, so decrement */ |
| 537 |
|
|
offset--; |
| 538 |
|
|
|
| 539 |
|
|
tableptr = cos_pml_table + offset; |
| 540 |
|
|
} |
| 541 |
|
|
|
| 542 |
|
|
/* stride is how far we need to jump between |
| 543 |
|
|
values in cos_pml_table, i.e., to traverse the columns of the |
| 544 |
|
|
cos_pml_table. Need to set initial value. Stride always |
| 545 |
|
|
increases by 2 after that |
| 546 |
|
|
*/ |
| 547 |
|
|
if (row <= m) |
| 548 |
|
|
stride = m + 2 - (m % 2) + (row % 2); |
| 549 |
|
|
else |
| 550 |
|
|
stride = row + 2; |
| 551 |
|
|
|
| 552 |
|
|
/* now load up this row of the transposed table */ |
| 553 |
|
|
costable_offset = 0; |
| 554 |
|
|
for (i=0; i < rowsize; i++) |
| 555 |
|
|
{ |
| 556 |
|
|
trans_tableptr[i] = tableptr[costable_offset]; |
| 557 |
|
|
costable_offset += stride; |
| 558 |
|
|
stride += 2; |
| 559 |
|
|
|
| 560 |
|
|
} /* closes i loop */ |
| 561 |
|
|
|
| 562 |
|
|
trans_tableptr += rowsize; |
| 563 |
|
|
|
| 564 |
|
|
} /* closes row loop */ |
| 565 |
|
|
} |
| 566 |
|
|
|
| 567 |
|
|
} |
| 568 |
|
|
/************************************************************************/ |
| 569 |
|
|
/* This is a function that returns all of the (cosine transforms of) |
| 570 |
|
|
Pmls and Gmls necessary |
| 571 |
|
|
to do a full spherical harmonic transform, i.e., it calls |
| 572 |
|
|
CosPmlTableGen for each value of m less than bw, returning a |
| 573 |
|
|
table of tables ( a pointer of type (double **), which points |
| 574 |
|
|
to an array of size m, each containing a (double *) pointer |
| 575 |
|
|
to a set of cospml or cosgml values, which are the (decimated) |
| 576 |
|
|
cosine series representations of Pml (even m) or Gml (odd m) |
| 577 |
|
|
functions. See CosPmlTableGen for further clarification. |
| 578 |
|
|
|
| 579 |
|
|
Inputs - the bandwidth bw of the problem |
| 580 |
|
|
resultspace - need to allocate Spharmonic_TableSize(bw) for storing results |
| 581 |
|
|
workspace - needs to be (16 * bw) |
| 582 |
|
|
|
| 583 |
|
|
Note that resultspace is necessary and contains the results/values |
| 584 |
|
|
so one should be careful about when it is OK to re-use this space. |
| 585 |
|
|
workspace, though, does not have any meaning after this function is |
| 586 |
|
|
finished executing |
| 587 |
|
|
|
| 588 |
|
|
*/ |
| 589 |
|
|
|
| 590 |
|
|
double **Spharmonic_Pml_Table(int bw, |
| 591 |
|
|
double *resultspace, |
| 592 |
|
|
double *workspace) |
| 593 |
|
|
{ |
| 594 |
|
|
|
| 595 |
|
|
int i; |
| 596 |
|
|
double **spharmonic_pml_table; |
| 597 |
|
|
|
| 598 |
|
|
/* allocate an array of double pointers */ |
| 599 |
|
|
spharmonic_pml_table = (double **) malloc(sizeof(double *) * bw); |
| 600 |
|
|
|
| 601 |
|
|
/* traverse the array, assigning a location in the resultspace |
| 602 |
|
|
to each pointer */ |
| 603 |
|
|
|
| 604 |
|
|
spharmonic_pml_table[0] = resultspace; |
| 605 |
|
|
|
| 606 |
|
|
for (i=1; i<bw; i++) |
| 607 |
|
|
{ |
| 608 |
|
|
spharmonic_pml_table[i] = spharmonic_pml_table[i-1] + |
| 609 |
|
|
TableSize(i-1,bw); |
| 610 |
|
|
} |
| 611 |
|
|
|
| 612 |
|
|
/* now load up the array with CosPml and CosGml values */ |
| 613 |
|
|
for (i=0; i<bw; i++) |
| 614 |
|
|
{ |
| 615 |
|
|
CosPmlTableGen(bw, i, spharmonic_pml_table[i], workspace); |
| 616 |
|
|
} |
| 617 |
|
|
|
| 618 |
|
|
/* that's it */ |
| 619 |
|
|
|
| 620 |
|
|
return spharmonic_pml_table; |
| 621 |
|
|
} |
| 622 |
|
|
|
| 623 |
|
|
|
| 624 |
|
|
/************************************************************************/ |
| 625 |
|
|
/* For the inverse semi-naive spharmonic transform, need the "transpose" |
| 626 |
|
|
of the spharmonic_pml_table. Need to be careful because the |
| 627 |
|
|
entries in the spharmonic_pml_table have been decimated, i.e., |
| 628 |
|
|
the zeroes have been stripped out. |
| 629 |
|
|
|
| 630 |
|
|
Inputs are a spharmonic_pml_table generated by Spharmonic_Pml_Table |
| 631 |
|
|
and the bandwidth bw |
| 632 |
|
|
|
| 633 |
|
|
Allocates memory for the (double **) result |
| 634 |
|
|
also allocates memory |
| 635 |
|
|
|
| 636 |
|
|
resultspace - need to allocate Spharmonic_TableSize(bw) for storing results |
| 637 |
|
|
workspace - not needed, but argument added to avoid |
| 638 |
|
|
confusion wth Spharmonic_Pml_Table |
| 639 |
|
|
|
| 640 |
|
|
*/ |
| 641 |
|
|
|
| 642 |
|
|
double **Transpose_Spharmonic_Pml_Table(double **spharmonic_pml_table, |
| 643 |
|
|
int bw, |
| 644 |
|
|
double *resultspace, |
| 645 |
|
|
double *workspace) |
| 646 |
|
|
{ |
| 647 |
|
|
|
| 648 |
|
|
int i; |
| 649 |
|
|
double **transpose_spharmonic_pml_table; |
| 650 |
|
|
|
| 651 |
|
|
/* allocate an array of double pointers */ |
| 652 |
|
|
transpose_spharmonic_pml_table = (double **) malloc(sizeof(double *) * bw); |
| 653 |
|
|
|
| 654 |
|
|
/* now need to load up the transpose_spharmonic_pml_table by transposing |
| 655 |
|
|
the tables in the spharmonic_pml_table */ |
| 656 |
|
|
|
| 657 |
|
|
transpose_spharmonic_pml_table[0] = resultspace; |
| 658 |
|
|
|
| 659 |
|
|
for (i=0; i<bw; i++) |
| 660 |
|
|
{ |
| 661 |
|
|
Transpose_CosPmlTableGen(bw, |
| 662 |
|
|
i, |
| 663 |
|
|
spharmonic_pml_table[i], |
| 664 |
|
|
transpose_spharmonic_pml_table[i]); |
| 665 |
|
|
|
| 666 |
|
|
if (i != (bw-1)) |
| 667 |
|
|
{ |
| 668 |
|
|
transpose_spharmonic_pml_table[i+1] = |
| 669 |
|
|
transpose_spharmonic_pml_table[i] + TableSize(i, bw); |
| 670 |
|
|
} |
| 671 |
|
|
} |
| 672 |
|
|
|
| 673 |
|
|
return transpose_spharmonic_pml_table; |
| 674 |
|
|
} |
| 675 |
|
|
|
| 676 |
|
|
|
| 677 |
|
|
/************************************************************************/ |
| 678 |
|
|
/* Reduced_Naive_TableSize(bw,m) returns an integer value for |
| 679 |
|
|
the amount of space necessary to fill out a reduced naive table |
| 680 |
|
|
of pmls if interested in using it only for orders m through bw - 1. |
| 681 |
|
|
|
| 682 |
|
|
*/ |
| 683 |
|
|
|
| 684 |
|
|
int Reduced_Naive_TableSize(int bw, |
| 685 |
|
|
int m) |
| 686 |
|
|
{ |
| 687 |
|
|
|
| 688 |
|
|
int i, sum; |
| 689 |
|
|
|
| 690 |
|
|
sum = 0; |
| 691 |
|
|
|
| 692 |
|
|
for (i=m; i<bw; i++) |
| 693 |
|
|
sum += ( 2 * bw * (bw - i)); |
| 694 |
|
|
|
| 695 |
|
|
return sum; |
| 696 |
|
|
|
| 697 |
|
|
} |
| 698 |
|
|
|
| 699 |
|
|
/************************************************************* |
| 700 |
|
|
|
| 701 |
|
|
just like Spharmonic_Pml_Table(), except generates a |
| 702 |
|
|
table for use with the semi-naive and naive algorithms. |
| 703 |
|
|
|
| 704 |
|
|
m is the cutoff order, where to switch from semi-naive to |
| 705 |
|
|
naive algorithms |
| 706 |
|
|
|
| 707 |
|
|
bw = bandwidth of problem |
| 708 |
|
|
m = where to switch algorithms (order where naive is FIRST done) |
| 709 |
|
|
resultspace = where to store results, must be of |
| 710 |
|
|
size Reduced_Naive_TableSize(bw, m) + |
| 711 |
|
|
Reduced_SpharmonicTableSize(bw, m); |
| 712 |
|
|
|
| 713 |
|
|
***********************************************************/ |
| 714 |
|
|
|
| 715 |
|
|
double **SemiNaive_Naive_Pml_Table(int bw, |
| 716 |
|
|
int m, |
| 717 |
|
|
double *resultspace, |
| 718 |
|
|
double *workspace) |
| 719 |
|
|
{ |
| 720 |
|
|
int i; |
| 721 |
|
|
double **seminaive_naive_table; |
| 722 |
|
|
int lastspace; |
| 723 |
|
|
|
| 724 |
|
|
seminaive_naive_table = (double **) malloc(sizeof(double) * (bw+1)); |
| 725 |
|
|
|
| 726 |
|
|
seminaive_naive_table[0] = resultspace; |
| 727 |
|
|
|
| 728 |
|
|
|
| 729 |
|
|
for (i=1; i<m; i++) |
| 730 |
|
|
{ |
| 731 |
|
|
seminaive_naive_table[i] = seminaive_naive_table[i - 1] + |
| 732 |
|
|
TableSize(i-1,bw); |
| 733 |
|
|
} |
| 734 |
|
|
|
| 735 |
|
|
if( m == 0) |
| 736 |
|
|
{ |
| 737 |
|
|
lastspace = 0; |
| 738 |
|
|
for (i=m+1; i<bw; i++) |
| 739 |
|
|
{ |
| 740 |
|
|
seminaive_naive_table[i] = seminaive_naive_table[i - 1] + |
| 741 |
|
|
(2 * bw * (bw - (i - 1))); |
| 742 |
|
|
} |
| 743 |
|
|
} |
| 744 |
|
|
else |
| 745 |
|
|
{ |
| 746 |
|
|
lastspace = TableSize(m-1,bw); |
| 747 |
|
|
seminaive_naive_table[m] = seminaive_naive_table[m-1] + |
| 748 |
|
|
lastspace; |
| 749 |
|
|
for (i=m+1; i<bw; i++) |
| 750 |
|
|
{ |
| 751 |
|
|
seminaive_naive_table[i] = seminaive_naive_table[i - 1] + |
| 752 |
|
|
(2 * bw * (bw - (i - 1))); |
| 753 |
|
|
} |
| 754 |
|
|
} |
| 755 |
|
|
|
| 756 |
|
|
/* now load up the array with CosPml and CosGml values */ |
| 757 |
|
|
for (i=0; i<m; i++) |
| 758 |
|
|
{ |
| 759 |
|
|
CosPmlTableGen(bw, i, seminaive_naive_table[i], workspace); |
| 760 |
|
|
} |
| 761 |
|
|
|
| 762 |
|
|
/* now load up pml values */ |
| 763 |
|
|
for(i=m; i<bw; i++) |
| 764 |
|
|
{ |
| 765 |
|
|
PmlTableGen(bw, i, seminaive_naive_table[i], workspace); |
| 766 |
|
|
} |
| 767 |
|
|
|
| 768 |
|
|
/* that's it */ |
| 769 |
|
|
|
| 770 |
|
|
return seminaive_naive_table; |
| 771 |
|
|
|
| 772 |
|
|
} |
| 773 |
|
|
|
| 774 |
|
|
|
| 775 |
|
|
/************************************************************************/ |
| 776 |
|
|
/* For the inverse seminaive_naive transform, need the "transpose" |
| 777 |
|
|
of the seminaive_naive_pml_table. Need to be careful because the |
| 778 |
|
|
entries in the seminaive portion have been decimated, i.e., |
| 779 |
|
|
the zeroes have been stripped out. |
| 780 |
|
|
|
| 781 |
|
|
Inputs are a seminaive_naive_pml_table generated by SemiNaive_Naive_Pml_Table |
| 782 |
|
|
and the bandwidth bw and cutoff order m |
| 783 |
|
|
|
| 784 |
|
|
Allocates memory for the (double **) result |
| 785 |
|
|
also allocates memory |
| 786 |
|
|
|
| 787 |
|
|
resultspace - need to allocate Reduced_Naive_TableSize(bw, m) + |
| 788 |
|
|
Reduced_SpharmonicTableSize(bw, m) for storing results |
| 789 |
|
|
workspace - size 16 * bw |
| 790 |
|
|
|
| 791 |
|
|
*/ |
| 792 |
|
|
|
| 793 |
|
|
double **Transpose_SemiNaive_Naive_Pml_Table(double **seminaive_naive_pml_table, |
| 794 |
|
|
int bw, |
| 795 |
|
|
int m, |
| 796 |
|
|
double *resultspace, |
| 797 |
|
|
double *workspace) |
| 798 |
|
|
{ |
| 799 |
|
|
|
| 800 |
|
|
int i, lastspace; |
| 801 |
|
|
double **trans_seminaive_naive_pml_table; |
| 802 |
|
|
|
| 803 |
|
|
/* allocate an array of double pointers */ |
| 804 |
|
|
trans_seminaive_naive_pml_table = (double **) malloc(sizeof(double *) * (bw+1)); |
| 805 |
|
|
|
| 806 |
|
|
/* now need to load up the transpose_seminaive_naive_pml_table by transposing |
| 807 |
|
|
the tables in the seminiave portion of seminaive_naive_pml_table */ |
| 808 |
|
|
|
| 809 |
|
|
trans_seminaive_naive_pml_table[0] = resultspace; |
| 810 |
|
|
|
| 811 |
|
|
|
| 812 |
|
|
for (i=1; i<m; i++) |
| 813 |
|
|
{ |
| 814 |
|
|
trans_seminaive_naive_pml_table[i] = |
| 815 |
|
|
trans_seminaive_naive_pml_table[i - 1] + |
| 816 |
|
|
TableSize(i-1,bw); |
| 817 |
|
|
} |
| 818 |
|
|
|
| 819 |
|
|
if( m == 0 ) |
| 820 |
|
|
{ |
| 821 |
|
|
lastspace = 0; |
| 822 |
|
|
for (i=m+1; i<bw; i++) |
| 823 |
|
|
{ |
| 824 |
|
|
trans_seminaive_naive_pml_table[i] = |
| 825 |
|
|
trans_seminaive_naive_pml_table[i - 1] + |
| 826 |
|
|
(2 * bw * (bw - (i - 1))); |
| 827 |
|
|
} |
| 828 |
|
|
} |
| 829 |
|
|
else |
| 830 |
|
|
{ |
| 831 |
|
|
lastspace = TableSize(m-1,bw); |
| 832 |
|
|
trans_seminaive_naive_pml_table[m] = |
| 833 |
|
|
trans_seminaive_naive_pml_table[m-1] + |
| 834 |
|
|
lastspace; |
| 835 |
|
|
|
| 836 |
|
|
for (i=m+1; i<bw; i++) |
| 837 |
|
|
{ |
| 838 |
|
|
trans_seminaive_naive_pml_table[i] = |
| 839 |
|
|
trans_seminaive_naive_pml_table[i - 1] + |
| 840 |
|
|
(2 * bw * (bw - (i - 1))); |
| 841 |
|
|
} |
| 842 |
|
|
} |
| 843 |
|
|
|
| 844 |
|
|
for (i=0; i<m; i++) |
| 845 |
|
|
{ |
| 846 |
|
|
Transpose_CosPmlTableGen(bw, |
| 847 |
|
|
i, |
| 848 |
|
|
seminaive_naive_pml_table[i], |
| 849 |
|
|
trans_seminaive_naive_pml_table[i]); |
| 850 |
|
|
|
| 851 |
|
|
if (i != (bw-1)) |
| 852 |
|
|
{ |
| 853 |
|
|
trans_seminaive_naive_pml_table[i+1] = |
| 854 |
|
|
trans_seminaive_naive_pml_table[i] + TableSize(i, bw); |
| 855 |
|
|
} |
| 856 |
|
|
} |
| 857 |
|
|
|
| 858 |
|
|
/* now load up pml values */ |
| 859 |
|
|
for(i=m; i<bw; i++) |
| 860 |
|
|
{ |
| 861 |
|
|
PmlTableGen(bw, i, trans_seminaive_naive_pml_table[i], workspace); |
| 862 |
|
|
} |
| 863 |
|
|
|
| 864 |
|
|
return trans_seminaive_naive_pml_table; |
| 865 |
|
|
} |