| 1 | chrisfen | 1287 | /*************************************************************************** | 
| 2 |  |  | ************************************************************************** | 
| 3 |  |  |  | 
| 4 |  |  | S2kit 1.0 | 
| 5 |  |  |  | 
| 6 |  |  | A lite version of Spherical Harmonic Transform Kit | 
| 7 |  |  |  | 
| 8 |  |  | Peter Kostelec, Dan Rockmore | 
| 9 |  |  | {geelong,rockmore}@cs.dartmouth.edu | 
| 10 |  |  |  | 
| 11 |  |  | Contact: Peter Kostelec | 
| 12 |  |  | geelong@cs.dartmouth.edu | 
| 13 |  |  |  | 
| 14 |  |  | Copyright 2004 Peter Kostelec, Dan Rockmore | 
| 15 |  |  |  | 
| 16 |  |  | This file is part of S2kit. | 
| 17 |  |  |  | 
| 18 |  |  | S2kit is free software; you can redistribute it and/or modify | 
| 19 |  |  | it under the terms of the GNU General Public License as published by | 
| 20 |  |  | the Free Software Foundation; either version 2 of the License, or | 
| 21 |  |  | (at your option) any later version. | 
| 22 |  |  |  | 
| 23 |  |  | S2kit is distributed in the hope that it will be useful, | 
| 24 |  |  | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
| 25 |  |  | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
| 26 |  |  | GNU General Public License for more details. | 
| 27 |  |  |  | 
| 28 |  |  | You should have received a copy of the GNU General Public License | 
| 29 |  |  | along with S2kit; if not, write to the Free Software | 
| 30 |  |  | Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA | 
| 31 |  |  |  | 
| 32 |  |  | See the accompanying LICENSE file for details. | 
| 33 |  |  |  | 
| 34 |  |  | ************************************************************************ | 
| 35 |  |  | ************************************************************************/ | 
| 36 |  |  |  | 
| 37 |  |  |  | 
| 38 |  |  | /* source code for generating cosine transforms | 
| 39 |  |  | of Pml and Gml functions */ | 
| 40 |  |  |  | 
| 41 |  |  | #include <math.h> | 
| 42 |  |  | #include <string.h>   /* to declare memcpy */ | 
| 43 |  |  | #include <stdlib.h> | 
| 44 |  |  | #include <stdio.h> | 
| 45 |  |  |  | 
| 46 |  |  | #include "fftw3.h" | 
| 47 |  |  | #include "primitive.h" | 
| 48 |  |  | #include "pmls.h" | 
| 49 |  |  |  | 
| 50 |  |  |  | 
| 51 |  |  | /************************************************************************/ | 
| 52 |  |  | /* utility functions for table management */ | 
| 53 |  |  | /************************************************************************/ | 
| 54 |  |  | /* Computes the number of non-zero entries in a table containing | 
| 55 |  |  | cosine series coefficients of all the P(m,l) or G(m,l) functions | 
| 56 |  |  | necessary for computing the seminaive transform for a given | 
| 57 |  |  | bandwidth bw and order m.  Works specifically for tables | 
| 58 |  |  | generated by CosPmlTableGen() | 
| 59 |  |  | */ | 
| 60 |  |  |  | 
| 61 |  |  | int TableSize(int m, | 
| 62 |  |  | int bw) | 
| 63 |  |  | { | 
| 64 |  |  |  | 
| 65 |  |  | int k ; | 
| 66 |  |  | int fudge, fudge2 ; | 
| 67 |  |  | int a1, a2, a3 ; | 
| 68 |  |  |  | 
| 69 |  |  | if ( bw % 2 )  /* if the bandwidth is odd */ | 
| 70 |  |  | { | 
| 71 |  |  | k = bw/2 ; | 
| 72 |  |  | fudge = (m+1)%2 ; | 
| 73 |  |  |  | 
| 74 |  |  | a1 = k*(k+1); | 
| 75 |  |  | a2 = fudge*(k+1); | 
| 76 |  |  |  | 
| 77 |  |  | fudge2 = m/2; | 
| 78 |  |  | a3 = fudge2*(fudge2+1); | 
| 79 |  |  |  | 
| 80 |  |  | } | 
| 81 |  |  | else /* bandwidth is even */ | 
| 82 |  |  | { | 
| 83 |  |  | k = bw/2 ; | 
| 84 |  |  | fudge = m%2 ; | 
| 85 |  |  |  | 
| 86 |  |  | a1 = (k-fudge)*(k-fudge+1); | 
| 87 |  |  | a2 = fudge*k; | 
| 88 |  |  |  | 
| 89 |  |  | fudge2 = m/2; | 
| 90 |  |  | a3 = fudge2*(fudge2+1); | 
| 91 |  |  |  | 
| 92 |  |  | } | 
| 93 |  |  |  | 
| 94 |  |  | return(a1+a2-a3); | 
| 95 |  |  |  | 
| 96 |  |  | } | 
| 97 |  |  | /************************************************************************/ | 
| 98 |  |  | /* Spharmonic_TableSize(bw) returns an integer value for | 
| 99 |  |  | the amount of space necessary to fill out an entire spharmonic | 
| 100 |  |  | table.  Note that in the above TableSize() formula, | 
| 101 |  |  | you need to sum this formula over m as m ranges from 0 to | 
| 102 |  |  | (bw-1).  The critical closed form that you need is that | 
| 103 |  |  |  | 
| 104 |  |  | \sum_{k=0}^n = \frac{(n(n+1)(2n+1)}{6} | 
| 105 |  |  |  | 
| 106 |  |  | You also need to account for integer division. | 
| 107 |  |  | From this you should derive an upper bound on the | 
| 108 |  |  | amount of space. | 
| 109 |  |  |  | 
| 110 |  |  | Some notes - because of integer division, you need to account for | 
| 111 |  |  | a fudge factor - this is the additional " + bw" at the | 
| 112 |  |  | end.  This gaurantees that you will always have slightly more | 
| 113 |  |  | space than you need, which is clearly better than underestimating! | 
| 114 |  |  | Also, if bw > 512, the closed form | 
| 115 |  |  | fails because of the bw*bw*bw term (at least on Sun Sparcstations) | 
| 116 |  |  | so the loop computation is used instead. | 
| 117 |  |  |  | 
| 118 |  |  | Also, the transpose is exactly the same size, obviously. | 
| 119 |  |  |  | 
| 120 |  |  | */ | 
| 121 |  |  |  | 
| 122 |  |  | int Spharmonic_TableSize(int bw) | 
| 123 |  |  | { | 
| 124 |  |  | int m, sum; | 
| 125 |  |  |  | 
| 126 |  |  | if (bw > 512) | 
| 127 |  |  | { | 
| 128 |  |  | sum = 0; | 
| 129 |  |  |  | 
| 130 |  |  | for (m=0; m<bw; m++) | 
| 131 |  |  | sum += TableSize(m,bw); | 
| 132 |  |  |  | 
| 133 |  |  | return sum; | 
| 134 |  |  | } | 
| 135 |  |  | else | 
| 136 |  |  | { | 
| 137 |  |  | return ( | 
| 138 |  |  | (((4*(bw*bw*bw)) + (6*(bw*bw)) - (8*bw))/24) | 
| 139 |  |  | + bw | 
| 140 |  |  | ); | 
| 141 |  |  | } | 
| 142 |  |  | } | 
| 143 |  |  |  | 
| 144 |  |  | /************************************************************************/ | 
| 145 |  |  | /* Reduced_Spharmonic_TableSize(bw,m) returns an integer value for | 
| 146 |  |  | the amount of space necessary to fill out a spharmonic table | 
| 147 |  |  | if interesting in using it only for orders up to (but NOT | 
| 148 |  |  | including) order m. | 
| 149 |  |  | This will be used in the hybrid algorithm's call of the | 
| 150 |  |  | semi-naive algorithm (which won't need the full table ... hopefully | 
| 151 |  |  | this'll cut down on the memory usage). | 
| 152 |  |  |  | 
| 153 |  |  | Also, the transpose is exactly the same size, obviously. | 
| 154 |  |  |  | 
| 155 |  |  | This is a "reduced" version of Spharmonic_TableSize(m). | 
| 156 |  |  |  | 
| 157 |  |  | */ | 
| 158 |  |  |  | 
| 159 |  |  | int Reduced_SpharmonicTableSize(int bw, | 
| 160 |  |  | int m) | 
| 161 |  |  | { | 
| 162 |  |  |  | 
| 163 |  |  | int i, sum; | 
| 164 |  |  |  | 
| 165 |  |  | sum = 0; | 
| 166 |  |  |  | 
| 167 |  |  | for (i=0; i<m; i++) | 
| 168 |  |  | sum += TableSize(i,bw); | 
| 169 |  |  |  | 
| 170 |  |  | return sum; | 
| 171 |  |  | } | 
| 172 |  |  |  | 
| 173 |  |  |  | 
| 174 |  |  | /************************************************************************/ | 
| 175 |  |  | /* For an array containing cosine series coefficients of Pml or Gml | 
| 176 |  |  | functions, computes the location of the first coefficient of Pml. | 
| 177 |  |  | This supersedes the TableOffset() function. | 
| 178 |  |  | Assumes table is generated by CosPmlTableGen() | 
| 179 |  |  | */ | 
| 180 |  |  |  | 
| 181 |  |  | int NewTableOffset(int m, | 
| 182 |  |  | int l) | 
| 183 |  |  | { | 
| 184 |  |  | int offset; | 
| 185 |  |  | int tm, tl; | 
| 186 |  |  |  | 
| 187 |  |  | if ( m % 2 ) | 
| 188 |  |  | { | 
| 189 |  |  | tl = l-1; | 
| 190 |  |  | tm = m-1; | 
| 191 |  |  | } | 
| 192 |  |  | else | 
| 193 |  |  | { | 
| 194 |  |  | tl = l; | 
| 195 |  |  | tm = m; | 
| 196 |  |  | } | 
| 197 |  |  |  | 
| 198 |  |  | offset = ((tl/2)*((tl/2)+1)) - ((tm/2)*((tm/2)+1)); | 
| 199 |  |  | if (tl % 2) | 
| 200 |  |  | offset += (tl/2)+1; | 
| 201 |  |  |  | 
| 202 |  |  | return offset; | 
| 203 |  |  | } | 
| 204 |  |  |  | 
| 205 |  |  | /************************************************************************/ | 
| 206 |  |  | /* | 
| 207 |  |  | generate all of the cosine series for L2-normalized Pmls or Gmls for | 
| 208 |  |  | a specified value of m. Note especially that since series are | 
| 209 |  |  | zero-striped, all zeroes have been removed. | 
| 210 |  |  |  | 
| 211 |  |  | tablespace points to a double array of size TableSize(m,bw); | 
| 212 |  |  |  | 
| 213 |  |  | Workspace needs to be | 
| 214 |  |  | 9 * bw | 
| 215 |  |  |  | 
| 216 |  |  | Let P(m,l,j) represent the jth coefficient of the | 
| 217 |  |  | cosine series representation of Pml.  The array | 
| 218 |  |  | stuffed into tablespace is organized as follows: | 
| 219 |  |  |  | 
| 220 |  |  | P(m,m,0)    P(m,m,2)  ...  P(m,m,m) | 
| 221 |  |  | P(m,m+1,1)  P(m,m+1,3)...  P(m,m+1,m+1) | 
| 222 |  |  | P(m,m+2,0)  P(m,m+2,2) ... P(m,m+2,m+2) | 
| 223 |  |  |  | 
| 224 |  |  | etc.  Appropriate modifications are made for m odd (Gml functions). | 
| 225 |  |  |  | 
| 226 |  |  |  | 
| 227 |  |  | NOTE that the Pmls or Gmls are being sampled at bw-many points, | 
| 228 |  |  | and not 2*bw-many points. I can get away with this. HOWEVER, I | 
| 229 |  |  | need to multiply the coefficients by sqrt(2), because the expected | 
| 230 |  |  | input of the seminaive transform of bandwidth bw will be sampled | 
| 231 |  |  | at 2-bw many points. So the sqrt(2) is a scaling factor. | 
| 232 |  |  |  | 
| 233 |  |  |  | 
| 234 |  |  | */ | 
| 235 |  |  |  | 
| 236 |  |  | void CosPmlTableGen(int bw, | 
| 237 |  |  | int m, | 
| 238 |  |  | double *tablespace, | 
| 239 |  |  | double *workspace) | 
| 240 |  |  | { | 
| 241 |  |  | double *prev, *prevprev, *temp1, *temp2, *temp3, *temp4; | 
| 242 |  |  | double *x_i, *eval_args; | 
| 243 |  |  | double *tableptr, *cosres ; | 
| 244 |  |  | int i, j, k; | 
| 245 |  |  |  | 
| 246 |  |  | /* fftw stuff now */ | 
| 247 |  |  | double fudge ; | 
| 248 |  |  | fftw_plan p ; | 
| 249 |  |  |  | 
| 250 |  |  | prevprev = workspace; | 
| 251 |  |  | prev = prevprev + bw; | 
| 252 |  |  | temp1 = prev + bw; | 
| 253 |  |  | temp2 = temp1 + bw; | 
| 254 |  |  | temp3 = temp2 + bw; | 
| 255 |  |  | temp4 = temp3 + bw; | 
| 256 |  |  | x_i = temp4 + bw; | 
| 257 |  |  | eval_args = x_i + bw; | 
| 258 |  |  | cosres = eval_args + bw; | 
| 259 |  |  |  | 
| 260 |  |  | tableptr = tablespace; | 
| 261 |  |  |  | 
| 262 |  |  | /* make fftw plan */ | 
| 263 |  |  | p = fftw_plan_r2r_1d( bw, temp4, cosres, | 
| 264 |  |  | FFTW_REDFT10, FFTW_ESTIMATE ) ; | 
| 265 |  |  |  | 
| 266 |  |  | /* main loop */ | 
| 267 |  |  |  | 
| 268 |  |  | /* Set the initial number of evaluation points to appropriate | 
| 269 |  |  | amount */ | 
| 270 |  |  |  | 
| 271 |  |  | /* now get the evaluation nodes */ | 
| 272 |  |  | EvalPts(bw,x_i); | 
| 273 |  |  | ArcCosEvalPts(bw,eval_args); | 
| 274 |  |  |  | 
| 275 |  |  | /* set initial values of first two Pmls */ | 
| 276 |  |  | for (i=0; i<bw; i++) | 
| 277 |  |  | prevprev[i] = 0.0; | 
| 278 |  |  |  | 
| 279 |  |  | if (m == 0) | 
| 280 |  |  | for (i=0; i<bw; i++) | 
| 281 |  |  | prev[i] = 0.707106781186547; /* sqrt(1/2) */ | 
| 282 |  |  | else | 
| 283 |  |  | Pmm_L2(m, eval_args, bw, prev); | 
| 284 |  |  |  | 
| 285 |  |  |  | 
| 286 |  |  | if ( m % 2 ) /* need to divide out sin x */ | 
| 287 |  |  | for (i=0; i<bw; i++) | 
| 288 |  |  | prev[i] /= sin(eval_args[i]); | 
| 289 |  |  |  | 
| 290 |  |  |  | 
| 291 |  |  | /* set k to highest degree coefficient */ | 
| 292 |  |  | if ((m % 2) == 0) | 
| 293 |  |  | k = m; | 
| 294 |  |  | else | 
| 295 |  |  | k = m-1; | 
| 296 |  |  |  | 
| 297 |  |  | /* now compute cosine transform */ | 
| 298 |  |  | memcpy( temp4, prev, sizeof(double) * bw ); | 
| 299 |  |  | fftw_execute( p ); | 
| 300 |  |  | cosres[0] *= 0.707106781186547 ; | 
| 301 |  |  | fudge = 1. / sqrt(((double) bw ) ); | 
| 302 |  |  | for ( i = 0 ; i < bw ; i ++ ) | 
| 303 |  |  | cosres[i] *= fudge ; | 
| 304 |  |  |  | 
| 305 |  |  | /* store what I've got so far */ | 
| 306 |  |  | for (i=0; i<=k; i+=2) | 
| 307 |  |  | tableptr[i/2] = cosres[i]; | 
| 308 |  |  |  | 
| 309 |  |  | /* update tableptr */ | 
| 310 |  |  | tableptr += k/2+1; | 
| 311 |  |  |  | 
| 312 |  |  | /* now generate remaining pmls  */ | 
| 313 |  |  | for (i=0; i<bw-m-1; i++) | 
| 314 |  |  | { | 
| 315 |  |  | vec_mul(L2_cn(m,m+i),prevprev,temp1,bw); | 
| 316 |  |  | vec_pt_mul(prev, x_i, temp2, bw); | 
| 317 |  |  | vec_mul(L2_an(m,m+i), temp2, temp3, bw); | 
| 318 |  |  | vec_add(temp3, temp1, temp4, bw); /* temp4 now contains P(m,m+i+1) */ | 
| 319 |  |  |  | 
| 320 |  |  | /* compute cosine transform */ | 
| 321 |  |  | fftw_execute( p ); | 
| 322 |  |  | cosres[0] *= 0.707106781186547 ; | 
| 323 |  |  | for ( j = 0 ; j < bw ; j ++ ) | 
| 324 |  |  | cosres[j] *= fudge ; | 
| 325 |  |  |  | 
| 326 |  |  | /* update degree counter */ | 
| 327 |  |  | k++; | 
| 328 |  |  |  | 
| 329 |  |  | /* now put decimated result into table */ | 
| 330 |  |  | if ( i % 2 ) | 
| 331 |  |  | for (j=0; j<=k; j+=2) | 
| 332 |  |  | tableptr[j/2] = cosres[j]; | 
| 333 |  |  | else | 
| 334 |  |  | for (j=1; j<=k; j+=2) | 
| 335 |  |  | tableptr[j/2] = cosres[j]; | 
| 336 |  |  |  | 
| 337 |  |  | /* update tableptr */ | 
| 338 |  |  | tableptr += k/2+1; | 
| 339 |  |  |  | 
| 340 |  |  | /* now update Pi and P(i+1) */ | 
| 341 |  |  | memcpy(prevprev, prev, sizeof(double) * bw); | 
| 342 |  |  | memcpy(prev, temp4, sizeof(double) * bw); | 
| 343 |  |  | } | 
| 344 |  |  |  | 
| 345 |  |  | fftw_destroy_plan( p ); | 
| 346 |  |  |  | 
| 347 |  |  | } | 
| 348 |  |  |  | 
| 349 |  |  |  | 
| 350 |  |  | /************************************************************************/ | 
| 351 |  |  | /* RowSize returns the number of non-zero coefficients in a row of the | 
| 352 |  |  | cospmltable if were really in matrix form.  Helpful in transpose | 
| 353 |  |  | computations.  It is helpful to think of the parameter l as | 
| 354 |  |  | the row of the corresponding matrix. | 
| 355 |  |  | */ | 
| 356 |  |  |  | 
| 357 |  |  | int RowSize(int m, | 
| 358 |  |  | int l) | 
| 359 |  |  | { | 
| 360 |  |  | if (l < m) | 
| 361 |  |  | return 0; | 
| 362 |  |  | else | 
| 363 |  |  | { | 
| 364 |  |  | if ((m % 2) == 0) | 
| 365 |  |  | return ((l/2)+1); | 
| 366 |  |  | else | 
| 367 |  |  | return (((l-1)/2)+1); | 
| 368 |  |  | } | 
| 369 |  |  | } | 
| 370 |  |  | /************************************************************************/ | 
| 371 |  |  | /* Transposed row size returns the number of non-zero coefficients | 
| 372 |  |  | in the transposition of the matrix representing a cospmltable. | 
| 373 |  |  | Used for generating arrays for inverse seminaive transform. | 
| 374 |  |  | Unlike RowSize, need to know the bandwidth bw.  Also, in | 
| 375 |  |  | the cospml array, the first m+1 rows are empty, but in | 
| 376 |  |  | the transpose, all rows have non-zero entries, and the first | 
| 377 |  |  | m+1 columns are empty.  So the input parameters are a bit different | 
| 378 |  |  | in the you need to specify the row you want. | 
| 379 |  |  |  | 
| 380 |  |  | */ | 
| 381 |  |  |  | 
| 382 |  |  | int Transpose_RowSize(int row, | 
| 383 |  |  | int m, | 
| 384 |  |  | int bw) | 
| 385 |  |  | { | 
| 386 |  |  | /* my version might be longer, but at least I understand | 
| 387 |  |  | it better, and it's only minimally recursive */ | 
| 388 |  |  |  | 
| 389 |  |  | if ( bw % 2 ) | 
| 390 |  |  | { | 
| 391 |  |  | if ( m % 2 ) | 
| 392 |  |  | { | 
| 393 |  |  | if ( m == 1 ) | 
| 394 |  |  | return( (bw-row)/2 ); | 
| 395 |  |  | else if ( row < m - 1 ) | 
| 396 |  |  | return ( (bw-m+1)/2 ); | 
| 397 |  |  | else | 
| 398 |  |  | return ( Transpose_RowSize(row, 1, bw) ) ; | 
| 399 |  |  | } | 
| 400 |  |  | else | 
| 401 |  |  | { | 
| 402 |  |  | if ( m == 0 ) | 
| 403 |  |  | return( (bw-row)/2 + ((row+1)%2) ); | 
| 404 |  |  | else if ( row < m ) | 
| 405 |  |  | return ( (bw-m)/2 + ((row+1)%2) ); | 
| 406 |  |  | else | 
| 407 |  |  | return ( Transpose_RowSize(row, 0, bw) ) ; | 
| 408 |  |  | } | 
| 409 |  |  | } | 
| 410 |  |  | else | 
| 411 |  |  | { | 
| 412 |  |  | if ( m % 2 ) | 
| 413 |  |  | { | 
| 414 |  |  | if ( m == 1 ) | 
| 415 |  |  | return( (bw-row)/2 ); | 
| 416 |  |  | else if ( row < m - 1 ) | 
| 417 |  |  | return ( (bw-m+1)/2 - (row%2) ); | 
| 418 |  |  | else | 
| 419 |  |  | return ( Transpose_RowSize(row, 1, bw) ) ; | 
| 420 |  |  | } | 
| 421 |  |  | else | 
| 422 |  |  | { | 
| 423 |  |  | if ( m == 0 ) | 
| 424 |  |  | return( (bw-row)/2 + (row%2) ); | 
| 425 |  |  | else if ( row < m ) | 
| 426 |  |  | return ( (bw-m)/2 ); | 
| 427 |  |  | else | 
| 428 |  |  | return ( Transpose_RowSize(row, 0, bw) ) ; | 
| 429 |  |  | } | 
| 430 |  |  | } | 
| 431 |  |  |  | 
| 432 |  |  |  | 
| 433 |  |  |  | 
| 434 |  |  | /*** original version | 
| 435 |  |  |  | 
| 436 |  |  | if (row >= bw) | 
| 437 |  |  | return 0; | 
| 438 |  |  | else if ((m % 2) == 0) | 
| 439 |  |  | { | 
| 440 |  |  | if (row <= m) | 
| 441 |  |  | return ( ((bw-m)/2) ); | 
| 442 |  |  | else | 
| 443 |  |  | return ( ((bw-row-1)/2) + 1); | 
| 444 |  |  | } | 
| 445 |  |  | else | 
| 446 |  |  | { | 
| 447 |  |  | if (row == (bw-1)) | 
| 448 |  |  | return 0; | 
| 449 |  |  | else if (row >= m) | 
| 450 |  |  | return (Transpose_RowSize(row+1,m-1,bw)); | 
| 451 |  |  | else | 
| 452 |  |  | return (Transpose_RowSize(row+1,m-1,bw) - (row % 2)); | 
| 453 |  |  | } | 
| 454 |  |  |  | 
| 455 |  |  | ***/ | 
| 456 |  |  |  | 
| 457 |  |  | } | 
| 458 |  |  |  | 
| 459 |  |  | /************************************************************************/ | 
| 460 |  |  | /* Inverse transform is transposition of forward transform. | 
| 461 |  |  | Thus, need to provide transposed version of table | 
| 462 |  |  | returned by CosPmlTableGen.  This function does that | 
| 463 |  |  | by taking as input a cos_pml_table for a particular value | 
| 464 |  |  | of bw and m, and loads the result as a | 
| 465 |  |  | transposed, decimated version of it for use by an inverse | 
| 466 |  |  | seminaive transform computation. | 
| 467 |  |  |  | 
| 468 |  |  | result needs to be of size TableSize(m,bw) | 
| 469 |  |  |  | 
| 470 |  |  | */ | 
| 471 |  |  |  | 
| 472 |  |  | void Transpose_CosPmlTableGen(int bw, | 
| 473 |  |  | int m, | 
| 474 |  |  | double *cos_pml_table, | 
| 475 |  |  | double *result) | 
| 476 |  |  | { | 
| 477 |  |  | /* recall that cospml_table has had all the zeroes | 
| 478 |  |  | stripped out, and that if m is odd, then it is | 
| 479 |  |  | really a Gml function, which affects indexing a bit. | 
| 480 |  |  | */ | 
| 481 |  |  |  | 
| 482 |  |  | double *trans_tableptr, *tableptr; | 
| 483 |  |  | int i, row, rowsize, stride, offset, costable_offset; | 
| 484 |  |  |  | 
| 485 |  |  | /* note that the number of non-zero entries is the same | 
| 486 |  |  | as in the non-transposed case */ | 
| 487 |  |  |  | 
| 488 |  |  | trans_tableptr = result; | 
| 489 |  |  |  | 
| 490 |  |  | /* now traverse the cos_pml_table , loading appropriate values | 
| 491 |  |  | into the rows of transposed array */ | 
| 492 |  |  |  | 
| 493 |  |  | if ( m == bw - 1 ) | 
| 494 |  |  | memcpy( result, cos_pml_table, sizeof(double)*TableSize(m,bw)); | 
| 495 |  |  | else | 
| 496 |  |  | { | 
| 497 |  |  |  | 
| 498 |  |  | for (row = 0; row < bw; row++) | 
| 499 |  |  | { | 
| 500 |  |  | /* if m odd, no need to do last row - all zeroes */ | 
| 501 |  |  | if (row == (bw-1)) | 
| 502 |  |  | { | 
| 503 |  |  | if ( m % 2 ) | 
| 504 |  |  | return; | 
| 505 |  |  | } | 
| 506 |  |  |  | 
| 507 |  |  | /* get the rowsize for the transposed array */ | 
| 508 |  |  | rowsize = Transpose_RowSize(row, m, bw); | 
| 509 |  |  |  | 
| 510 |  |  | /* compute the starting point for values in cos_pml_table */ | 
| 511 |  |  | if (row <= m) | 
| 512 |  |  | { | 
| 513 |  |  | if ((row % 2) == 0) | 
| 514 |  |  | tableptr = cos_pml_table + (row/2); | 
| 515 |  |  | else | 
| 516 |  |  | tableptr = cos_pml_table + (m/2) + 1 + (row/2); | 
| 517 |  |  | } | 
| 518 |  |  | else | 
| 519 |  |  | { | 
| 520 |  |  | /* if row > m, then the highest degree coefficient | 
| 521 |  |  | of P(m,row) should be the first coefficient loaded | 
| 522 |  |  | into the transposed array, so figure out where | 
| 523 |  |  | this point is. | 
| 524 |  |  | */ | 
| 525 |  |  | offset = 0; | 
| 526 |  |  | if ( (m%2) == 0 ) | 
| 527 |  |  | { | 
| 528 |  |  | for (i=m; i<=row; i++) | 
| 529 |  |  | offset += RowSize(m, i); | 
| 530 |  |  | } | 
| 531 |  |  | else | 
| 532 |  |  | { | 
| 533 |  |  | for (i=m;i<=row+1;i++) | 
| 534 |  |  | offset += RowSize(m, i); | 
| 535 |  |  | } | 
| 536 |  |  | /* now we are pointing one element too far, so decrement */ | 
| 537 |  |  | offset--; | 
| 538 |  |  |  | 
| 539 |  |  | tableptr = cos_pml_table + offset; | 
| 540 |  |  | } | 
| 541 |  |  |  | 
| 542 |  |  | /* stride is how far we need to jump between | 
| 543 |  |  | values in cos_pml_table, i.e., to traverse the columns of the | 
| 544 |  |  | cos_pml_table.  Need to set initial value.  Stride always | 
| 545 |  |  | increases by 2 after that | 
| 546 |  |  | */ | 
| 547 |  |  | if (row <= m) | 
| 548 |  |  | stride = m + 2 - (m % 2) + (row % 2); | 
| 549 |  |  | else | 
| 550 |  |  | stride = row + 2; | 
| 551 |  |  |  | 
| 552 |  |  | /* now load up this row of the transposed table */ | 
| 553 |  |  | costable_offset = 0; | 
| 554 |  |  | for (i=0; i < rowsize; i++) | 
| 555 |  |  | { | 
| 556 |  |  | trans_tableptr[i] = tableptr[costable_offset]; | 
| 557 |  |  | costable_offset += stride; | 
| 558 |  |  | stride += 2; | 
| 559 |  |  |  | 
| 560 |  |  | } /* closes i loop */ | 
| 561 |  |  |  | 
| 562 |  |  | trans_tableptr += rowsize; | 
| 563 |  |  |  | 
| 564 |  |  | } /* closes row loop */ | 
| 565 |  |  | } | 
| 566 |  |  |  | 
| 567 |  |  | } | 
| 568 |  |  | /************************************************************************/ | 
| 569 |  |  | /* This is a function that returns all of the (cosine transforms of) | 
| 570 |  |  | Pmls and Gmls necessary | 
| 571 |  |  | to do a full spherical harmonic transform, i.e., it calls | 
| 572 |  |  | CosPmlTableGen for each value of m less than bw, returning a | 
| 573 |  |  | table of tables ( a pointer of type (double **), which points | 
| 574 |  |  | to an array of size m, each containing a (double *) pointer | 
| 575 |  |  | to a set of cospml or cosgml values, which are the (decimated) | 
| 576 |  |  | cosine series representations of Pml (even m) or Gml (odd m) | 
| 577 |  |  | functions.  See CosPmlTableGen for further clarification. | 
| 578 |  |  |  | 
| 579 |  |  | Inputs - the bandwidth bw of the problem | 
| 580 |  |  | resultspace - need to allocate Spharmonic_TableSize(bw) for storing results | 
| 581 |  |  | workspace - needs to be (16 * bw) | 
| 582 |  |  |  | 
| 583 |  |  | Note that resultspace is necessary and contains the results/values | 
| 584 |  |  | so one should be careful about when it is OK to re-use this space. | 
| 585 |  |  | workspace, though, does not have any meaning after this function is | 
| 586 |  |  | finished executing | 
| 587 |  |  |  | 
| 588 |  |  | */ | 
| 589 |  |  |  | 
| 590 |  |  | double **Spharmonic_Pml_Table(int bw, | 
| 591 |  |  | double *resultspace, | 
| 592 |  |  | double *workspace) | 
| 593 |  |  | { | 
| 594 |  |  |  | 
| 595 |  |  | int i; | 
| 596 |  |  | double **spharmonic_pml_table; | 
| 597 |  |  |  | 
| 598 |  |  | /* allocate an array of double pointers */ | 
| 599 |  |  | spharmonic_pml_table = (double **) malloc(sizeof(double *) * bw); | 
| 600 |  |  |  | 
| 601 |  |  | /* traverse the array, assigning a location in the resultspace | 
| 602 |  |  | to each pointer */ | 
| 603 |  |  |  | 
| 604 |  |  | spharmonic_pml_table[0] = resultspace; | 
| 605 |  |  |  | 
| 606 |  |  | for (i=1; i<bw; i++) | 
| 607 |  |  | { | 
| 608 |  |  | spharmonic_pml_table[i] = spharmonic_pml_table[i-1] + | 
| 609 |  |  | TableSize(i-1,bw); | 
| 610 |  |  | } | 
| 611 |  |  |  | 
| 612 |  |  | /* now load up the array with CosPml and CosGml values */ | 
| 613 |  |  | for (i=0; i<bw; i++) | 
| 614 |  |  | { | 
| 615 |  |  | CosPmlTableGen(bw, i, spharmonic_pml_table[i], workspace); | 
| 616 |  |  | } | 
| 617 |  |  |  | 
| 618 |  |  | /* that's it */ | 
| 619 |  |  |  | 
| 620 |  |  | return spharmonic_pml_table; | 
| 621 |  |  | } | 
| 622 |  |  |  | 
| 623 |  |  |  | 
| 624 |  |  | /************************************************************************/ | 
| 625 |  |  | /* For the inverse semi-naive spharmonic transform, need the "transpose" | 
| 626 |  |  | of the spharmonic_pml_table.  Need to be careful because the | 
| 627 |  |  | entries in the spharmonic_pml_table have been decimated, i.e., | 
| 628 |  |  | the zeroes have been stripped out. | 
| 629 |  |  |  | 
| 630 |  |  | Inputs are a spharmonic_pml_table generated by Spharmonic_Pml_Table | 
| 631 |  |  | and the bandwidth bw | 
| 632 |  |  |  | 
| 633 |  |  | Allocates memory for the (double **) result | 
| 634 |  |  | also allocates memory | 
| 635 |  |  |  | 
| 636 |  |  | resultspace - need to allocate Spharmonic_TableSize(bw) for storing results | 
| 637 |  |  | workspace - not needed, but argument added to avoid | 
| 638 |  |  | confusion wth Spharmonic_Pml_Table | 
| 639 |  |  |  | 
| 640 |  |  | */ | 
| 641 |  |  |  | 
| 642 |  |  | double **Transpose_Spharmonic_Pml_Table(double **spharmonic_pml_table, | 
| 643 |  |  | int bw, | 
| 644 |  |  | double *resultspace, | 
| 645 |  |  | double *workspace) | 
| 646 |  |  | { | 
| 647 |  |  |  | 
| 648 |  |  | int i; | 
| 649 |  |  | double **transpose_spharmonic_pml_table; | 
| 650 |  |  |  | 
| 651 |  |  | /* allocate an array of double pointers */ | 
| 652 |  |  | transpose_spharmonic_pml_table = (double **) malloc(sizeof(double *) * bw); | 
| 653 |  |  |  | 
| 654 |  |  | /* now need to load up the transpose_spharmonic_pml_table by transposing | 
| 655 |  |  | the tables in the spharmonic_pml_table */ | 
| 656 |  |  |  | 
| 657 |  |  | transpose_spharmonic_pml_table[0] = resultspace; | 
| 658 |  |  |  | 
| 659 |  |  | for (i=0; i<bw; i++) | 
| 660 |  |  | { | 
| 661 |  |  | Transpose_CosPmlTableGen(bw, | 
| 662 |  |  | i, | 
| 663 |  |  | spharmonic_pml_table[i], | 
| 664 |  |  | transpose_spharmonic_pml_table[i]); | 
| 665 |  |  |  | 
| 666 |  |  | if (i != (bw-1)) | 
| 667 |  |  | { | 
| 668 |  |  | transpose_spharmonic_pml_table[i+1] = | 
| 669 |  |  | transpose_spharmonic_pml_table[i] + TableSize(i, bw); | 
| 670 |  |  | } | 
| 671 |  |  | } | 
| 672 |  |  |  | 
| 673 |  |  | return transpose_spharmonic_pml_table; | 
| 674 |  |  | } | 
| 675 |  |  |  | 
| 676 |  |  |  | 
| 677 |  |  | /************************************************************************/ | 
| 678 |  |  | /* Reduced_Naive_TableSize(bw,m) returns an integer value for | 
| 679 |  |  | the amount of space necessary to fill out a reduced naive table | 
| 680 |  |  | of pmls if interested in using it only for orders m through bw - 1. | 
| 681 |  |  |  | 
| 682 |  |  | */ | 
| 683 |  |  |  | 
| 684 |  |  | int Reduced_Naive_TableSize(int bw, | 
| 685 |  |  | int m) | 
| 686 |  |  | { | 
| 687 |  |  |  | 
| 688 |  |  | int i, sum; | 
| 689 |  |  |  | 
| 690 |  |  | sum = 0; | 
| 691 |  |  |  | 
| 692 |  |  | for (i=m; i<bw; i++) | 
| 693 |  |  | sum += ( 2 * bw * (bw - i)); | 
| 694 |  |  |  | 
| 695 |  |  | return sum; | 
| 696 |  |  |  | 
| 697 |  |  | } | 
| 698 |  |  |  | 
| 699 |  |  | /************************************************************* | 
| 700 |  |  |  | 
| 701 |  |  | just like Spharmonic_Pml_Table(), except generates a | 
| 702 |  |  | table for use with the semi-naive and naive algorithms. | 
| 703 |  |  |  | 
| 704 |  |  | m is the cutoff order, where to switch from semi-naive to | 
| 705 |  |  | naive algorithms | 
| 706 |  |  |  | 
| 707 |  |  | bw = bandwidth of problem | 
| 708 |  |  | m  = where to switch algorithms (order where naive is FIRST done) | 
| 709 |  |  | resultspace = where to store results, must be of | 
| 710 |  |  | size Reduced_Naive_TableSize(bw, m) + | 
| 711 |  |  | Reduced_SpharmonicTableSize(bw, m); | 
| 712 |  |  |  | 
| 713 |  |  | ***********************************************************/ | 
| 714 |  |  |  | 
| 715 |  |  | double **SemiNaive_Naive_Pml_Table(int bw, | 
| 716 |  |  | int m, | 
| 717 |  |  | double *resultspace, | 
| 718 |  |  | double *workspace) | 
| 719 |  |  | { | 
| 720 |  |  | int i; | 
| 721 |  |  | double **seminaive_naive_table; | 
| 722 |  |  | int  lastspace; | 
| 723 |  |  |  | 
| 724 |  |  | seminaive_naive_table = (double **) malloc(sizeof(double) * (bw+1)); | 
| 725 |  |  |  | 
| 726 |  |  | seminaive_naive_table[0] = resultspace; | 
| 727 |  |  |  | 
| 728 |  |  |  | 
| 729 |  |  | for (i=1; i<m; i++) | 
| 730 |  |  | { | 
| 731 |  |  | seminaive_naive_table[i] = seminaive_naive_table[i - 1] + | 
| 732 |  |  | TableSize(i-1,bw); | 
| 733 |  |  | } | 
| 734 |  |  |  | 
| 735 |  |  | if( m == 0) | 
| 736 |  |  | { | 
| 737 |  |  | lastspace = 0; | 
| 738 |  |  | for (i=m+1; i<bw; i++) | 
| 739 |  |  | { | 
| 740 |  |  | seminaive_naive_table[i] = seminaive_naive_table[i - 1] + | 
| 741 |  |  | (2 * bw * (bw - (i - 1))); | 
| 742 |  |  | } | 
| 743 |  |  | } | 
| 744 |  |  | else | 
| 745 |  |  | { | 
| 746 |  |  | lastspace = TableSize(m-1,bw); | 
| 747 |  |  | seminaive_naive_table[m] = seminaive_naive_table[m-1] + | 
| 748 |  |  | lastspace; | 
| 749 |  |  | for (i=m+1; i<bw; i++) | 
| 750 |  |  | { | 
| 751 |  |  | seminaive_naive_table[i] = seminaive_naive_table[i - 1] + | 
| 752 |  |  | (2 * bw * (bw - (i - 1))); | 
| 753 |  |  | } | 
| 754 |  |  | } | 
| 755 |  |  |  | 
| 756 |  |  | /* now load up the array with CosPml and CosGml values */ | 
| 757 |  |  | for (i=0; i<m; i++) | 
| 758 |  |  | { | 
| 759 |  |  | CosPmlTableGen(bw, i, seminaive_naive_table[i], workspace); | 
| 760 |  |  | } | 
| 761 |  |  |  | 
| 762 |  |  | /* now load up pml values */ | 
| 763 |  |  | for(i=m; i<bw; i++) | 
| 764 |  |  | { | 
| 765 |  |  | PmlTableGen(bw, i, seminaive_naive_table[i], workspace); | 
| 766 |  |  | } | 
| 767 |  |  |  | 
| 768 |  |  | /* that's it */ | 
| 769 |  |  |  | 
| 770 |  |  | return seminaive_naive_table; | 
| 771 |  |  |  | 
| 772 |  |  | } | 
| 773 |  |  |  | 
| 774 |  |  |  | 
| 775 |  |  | /************************************************************************/ | 
| 776 |  |  | /* For the inverse seminaive_naive transform, need the "transpose" | 
| 777 |  |  | of the seminaive_naive_pml_table.  Need to be careful because the | 
| 778 |  |  | entries in the seminaive portion have been decimated, i.e., | 
| 779 |  |  | the zeroes have been stripped out. | 
| 780 |  |  |  | 
| 781 |  |  | Inputs are a seminaive_naive_pml_table generated by SemiNaive_Naive_Pml_Table | 
| 782 |  |  | and the bandwidth bw and cutoff order m | 
| 783 |  |  |  | 
| 784 |  |  | Allocates memory for the (double **) result | 
| 785 |  |  | also allocates memory | 
| 786 |  |  |  | 
| 787 |  |  | resultspace - need to allocate Reduced_Naive_TableSize(bw, m) + | 
| 788 |  |  | Reduced_SpharmonicTableSize(bw, m) for storing results | 
| 789 |  |  | workspace - size 16 * bw | 
| 790 |  |  |  | 
| 791 |  |  | */ | 
| 792 |  |  |  | 
| 793 |  |  | double **Transpose_SemiNaive_Naive_Pml_Table(double **seminaive_naive_pml_table, | 
| 794 |  |  | int bw, | 
| 795 |  |  | int m, | 
| 796 |  |  | double *resultspace, | 
| 797 |  |  | double *workspace) | 
| 798 |  |  | { | 
| 799 |  |  |  | 
| 800 |  |  | int i, lastspace; | 
| 801 |  |  | double **trans_seminaive_naive_pml_table; | 
| 802 |  |  |  | 
| 803 |  |  | /* allocate an array of double pointers */ | 
| 804 |  |  | trans_seminaive_naive_pml_table = (double **) malloc(sizeof(double *) * (bw+1)); | 
| 805 |  |  |  | 
| 806 |  |  | /* now need to load up the transpose_seminaive_naive_pml_table by transposing | 
| 807 |  |  | the tables in the seminiave portion of seminaive_naive_pml_table */ | 
| 808 |  |  |  | 
| 809 |  |  | trans_seminaive_naive_pml_table[0] = resultspace; | 
| 810 |  |  |  | 
| 811 |  |  |  | 
| 812 |  |  | for (i=1; i<m; i++) | 
| 813 |  |  | { | 
| 814 |  |  | trans_seminaive_naive_pml_table[i] = | 
| 815 |  |  | trans_seminaive_naive_pml_table[i - 1] + | 
| 816 |  |  | TableSize(i-1,bw); | 
| 817 |  |  | } | 
| 818 |  |  |  | 
| 819 |  |  | if( m == 0 ) | 
| 820 |  |  | { | 
| 821 |  |  | lastspace = 0; | 
| 822 |  |  | for (i=m+1; i<bw; i++) | 
| 823 |  |  | { | 
| 824 |  |  | trans_seminaive_naive_pml_table[i] = | 
| 825 |  |  | trans_seminaive_naive_pml_table[i - 1] + | 
| 826 |  |  | (2 * bw * (bw - (i - 1))); | 
| 827 |  |  | } | 
| 828 |  |  | } | 
| 829 |  |  | else | 
| 830 |  |  | { | 
| 831 |  |  | lastspace = TableSize(m-1,bw); | 
| 832 |  |  | trans_seminaive_naive_pml_table[m] = | 
| 833 |  |  | trans_seminaive_naive_pml_table[m-1] + | 
| 834 |  |  | lastspace; | 
| 835 |  |  |  | 
| 836 |  |  | for (i=m+1; i<bw; i++) | 
| 837 |  |  | { | 
| 838 |  |  | trans_seminaive_naive_pml_table[i] = | 
| 839 |  |  | trans_seminaive_naive_pml_table[i - 1] + | 
| 840 |  |  | (2 * bw * (bw - (i - 1))); | 
| 841 |  |  | } | 
| 842 |  |  | } | 
| 843 |  |  |  | 
| 844 |  |  | for (i=0; i<m; i++) | 
| 845 |  |  | { | 
| 846 |  |  | Transpose_CosPmlTableGen(bw, | 
| 847 |  |  | i, | 
| 848 |  |  | seminaive_naive_pml_table[i], | 
| 849 |  |  | trans_seminaive_naive_pml_table[i]); | 
| 850 |  |  |  | 
| 851 |  |  | if (i != (bw-1)) | 
| 852 |  |  | { | 
| 853 |  |  | trans_seminaive_naive_pml_table[i+1] = | 
| 854 |  |  | trans_seminaive_naive_pml_table[i] + TableSize(i, bw); | 
| 855 |  |  | } | 
| 856 |  |  | } | 
| 857 |  |  |  | 
| 858 |  |  | /* now load up pml values */ | 
| 859 |  |  | for(i=m; i<bw; i++) | 
| 860 |  |  | { | 
| 861 |  |  | PmlTableGen(bw, i, trans_seminaive_naive_pml_table[i], workspace); | 
| 862 |  |  | } | 
| 863 |  |  |  | 
| 864 |  |  | return trans_seminaive_naive_pml_table; | 
| 865 |  |  | } |