| 1 | module shapes | 
| 2 |  | 
| 3 | use force_globals | 
| 4 | use definitions | 
| 5 | use atype_module | 
| 6 | use vector_class | 
| 7 | use simulation | 
| 8 | use status | 
| 9 | #ifdef IS_MPI | 
| 10 | use mpiSimulation | 
| 11 | #endif | 
| 12 | implicit none | 
| 13 |  | 
| 14 | PRIVATE | 
| 15 |  | 
| 16 | INTEGER, PARAMETER:: CHEBYSHEV_TN = 1 | 
| 17 | INTEGER, PARAMETER:: CHEBYSHEV_UN = 2 | 
| 18 | INTEGER, PARAMETER:: LAGUERRE     = 3 | 
| 19 | INTEGER, PARAMETER:: HERMITE      = 4 | 
| 20 | logical, save :: haveShapeMap = .false. | 
| 21 |  | 
| 22 | public :: do_shape_pair | 
| 23 |  | 
| 24 | type :: ShapeList | 
| 25 | integer :: nLMpairs = 0 | 
| 26 | integer :: bigL = 0 | 
| 27 | integer :: bigM = 0 | 
| 28 | integer, allocatable, dimension(:) :: lValue | 
| 29 | integer, allocatable, dimension(:) :: mValue | 
| 30 | real(kind=dp), allocatable, dimension(:) :: contactFuncSinCoeff | 
| 31 | real(kind=dp), allocatable, dimension(:) :: contactFuncCosCoeff | 
| 32 | real(kind=dp), allocatable, dimension(:) :: rangeFuncSinCoeff | 
| 33 | real(kind=dp), allocatable, dimension(:) :: rangeFuncCosCoeff | 
| 34 | real(kind=dp), allocatable, dimension(:) :: strengthFuncSinCoeff | 
| 35 | real(kind=dp), allocatable, dimension(:) :: strengthFuncCosCoeff | 
| 36 | integer, allocatable, dimension(:) :: mValue | 
| 37 | logical :: isLJ = .false. | 
| 38 | real ( kind = dp )  :: epsilon = 0.0_dp | 
| 39 | real ( kind = dp )  :: sigma = 0.0_dp | 
| 40 | end type ShapeList | 
| 41 |  | 
| 42 | type(ShapeList), dimension(:),allocatable :: ShapeMap | 
| 43 |  | 
| 44 |  | 
| 45 | contains | 
| 46 |  | 
| 47 | subroutine do_shape_pair(atom1, atom2, d, rij, r2, sw, vpair, fpair, & | 
| 48 | pot, A, f, t, do_pot) | 
| 49 |  | 
| 50 | !! We assume that the rotation matrices have already been calculated | 
| 51 | !! and placed in the A array. | 
| 52 |  | 
| 53 | r3 = r2*rij | 
| 54 | r5 = r3*r2 | 
| 55 |  | 
| 56 | drdx = d(1) / rij | 
| 57 | drdy = d(2) / rij | 
| 58 | drdz = d(3) / rij | 
| 59 |  | 
| 60 | #ifdef IS_MPI | 
| 61 | me1 = atid_Row(atom1) | 
| 62 | me2 = atid_Col(atom2) | 
| 63 | #else | 
| 64 | me1 = atid(atom1) | 
| 65 | me2 = atid(atom2) | 
| 66 | #endif | 
| 67 |  | 
| 68 | if (ShapeMap(me1)%isLJ) then | 
| 69 | sigma_i = ShapeMap(me1)%sigma | 
| 70 | s_i = ShapeMap(me1)%sigma | 
| 71 | eps_i = ShapeMap(me1)%epsilon | 
| 72 | dsigmaidx = 0.0d0 | 
| 73 | dsigmaidy = 0.0d0 | 
| 74 | dsigmaidz = 0.0d0 | 
| 75 | dsigmaidux = 0.0d0 | 
| 76 | dsigmaiduy = 0.0d0 | 
| 77 | dsigmaiduz = 0.0d0 | 
| 78 | dsidx = 0.0d0 | 
| 79 | dsidy = 0.0d0 | 
| 80 | dsidz = 0.0d0 | 
| 81 | dsidux = 0.0d0 | 
| 82 | dsiduy = 0.0d0 | 
| 83 | dsiduz = 0.0d0 | 
| 84 | depsidx = 0.0d0 | 
| 85 | depsidy = 0.0d0 | 
| 86 | depsidz = 0.0d0 | 
| 87 | depsidux = 0.0d0 | 
| 88 | depsiduy = 0.0d0 | 
| 89 | depsiduz = 0.0d0 | 
| 90 | else | 
| 91 |  | 
| 92 | #ifdef IS_MPI | 
| 93 | ! rotate the inter-particle separation into the two different | 
| 94 | ! body-fixed coordinate systems: | 
| 95 |  | 
| 96 | xi = A_row(1,atom1)*d(1) + A_row(2,atom1)*d(2) + A_row(3,atom1)*d(3) | 
| 97 | yi = A_row(4,atom1)*d(1) + A_row(5,atom1)*d(2) + A_row(6,atom1)*d(3) | 
| 98 | zi = A_row(7,atom1)*d(1) + A_row(8,atom1)*d(2) + A_row(9,atom1)*d(3) | 
| 99 |  | 
| 100 | #else | 
| 101 | ! rotate the inter-particle separation into the two different | 
| 102 | ! body-fixed coordinate systems: | 
| 103 |  | 
| 104 | xi = a(1,atom1)*d(1) + a(2,atom1)*d(2) + a(3,atom1)*d(3) | 
| 105 | yi = a(4,atom1)*d(1) + a(5,atom1)*d(2) + a(6,atom1)*d(3) | 
| 106 | zi = a(7,atom1)*d(1) + a(8,atom1)*d(2) + a(9,atom1)*d(3) | 
| 107 |  | 
| 108 | #endif | 
| 109 |  | 
| 110 | xi2 = xi*xi | 
| 111 | yi2 = yi*yi | 
| 112 | zi2 = zi*zi | 
| 113 |  | 
| 114 | proji = sqrt(xi2 + yi2) | 
| 115 | proji3 = proji*proji*proji | 
| 116 |  | 
| 117 | cti = zi / rij | 
| 118 | dctidx = - zi * xi / r3 | 
| 119 | dctidy = - zi * yi / r3 | 
| 120 | dctidz = 1.0d0 / rij - zi2 / r3 | 
| 121 | dctidux =  yi / rij | 
| 122 | dctiduy = -xi / rij | 
| 123 | dctiduz = 0.0d0 | 
| 124 |  | 
| 125 | cpi = xi / proji | 
| 126 | dcpidx = 1.0d0 / proji - xi2 / proji3 | 
| 127 | dcpidy = - xi * yi / proji3 | 
| 128 | dcpidz = 0.0d0 | 
| 129 | dcpidux = xi * yi * zi / proji3 | 
| 130 | dcpiduy = -zi * (1.0d0 / proji - xi2 / proji3) | 
| 131 | dcpiduz = -yi * (1.0d0 / proji - xi2 / proji3)  - (xi2 * yi / proji3) | 
| 132 |  | 
| 133 | spi = yi / proji | 
| 134 | dspidx = - xi * yi / proji3 | 
| 135 | dspidy = 1.0d0 / proji - yi2 / proji3 | 
| 136 | dspidz = 0.0d0 | 
| 137 | dspidux = -zi * (1.0d0 / proji - yi2 / proji3) | 
| 138 | dspiduy = xi * yi * zi / proji3 | 
| 139 | dspiduz = xi * (1.0d0 / proji - yi2 / proji3) + (xi * yi2 / proji3) | 
| 140 |  | 
| 141 | call Associated_Legendre(cti, ShapeMap(me1)%bigL, & | 
| 142 | ShapeMap(me1)%bigM, lmax, plm_i, dlm_i) | 
| 143 |  | 
| 144 | call Orthogonal_Polynomial(cpi, ShapeMap(me1)%bigM, CHEBYSHEV_TN, & | 
| 145 | tm_i, dtm_i) | 
| 146 | call Orthogonal_Polynomial(cpi, ShapeMap(me1)%bigM, CHEBYSHEV_UN, & | 
| 147 | um_i, dum_i) | 
| 148 |  | 
| 149 | sigma_i = 0.0d0 | 
| 150 | s_i = 0.0d0 | 
| 151 | eps_i = 0.0d0 | 
| 152 | dsigmaidx = 0.0d0 | 
| 153 | dsigmaidy = 0.0d0 | 
| 154 | dsigmaidz = 0.0d0 | 
| 155 | dsigmaidux = 0.0d0 | 
| 156 | dsigmaiduy = 0.0d0 | 
| 157 | dsigmaiduz = 0.0d0 | 
| 158 | dsidx = 0.0d0 | 
| 159 | dsidy = 0.0d0 | 
| 160 | dsidz = 0.0d0 | 
| 161 | dsidux = 0.0d0 | 
| 162 | dsiduy = 0.0d0 | 
| 163 | dsiduz = 0.0d0 | 
| 164 | depsidx = 0.0d0 | 
| 165 | depsidy = 0.0d0 | 
| 166 | depsidz = 0.0d0 | 
| 167 | depsidux = 0.0d0 | 
| 168 | depsiduy = 0.0d0 | 
| 169 | depsiduz = 0.0d0 | 
| 170 |  | 
| 171 | do lm = 1, ShapeMap(me1)%nLMpairs | 
| 172 |  | 
| 173 | l = ShapeMap(me1)%lValue(lm) | 
| 174 | m = ShapeMap(me1)%mValue(lm) | 
| 175 |  | 
| 176 | slm = ShapeMap(me1)%contactFuncSinCoeff(lm) | 
| 177 | clm = ShapeMap(me1)%contactFuncCosCoeff(lm) | 
| 178 |  | 
| 179 | Phunc = (slm * spi * um_i(m-1) + clm  * tm_i(m)) | 
| 180 |  | 
| 181 | dPhuncdX = (slm * (spi * dum_i(m-1) * dcpidx + dspidx * um_i(m-1)) & | 
| 182 | + clm * dtm_i(m) * dcpidx ) | 
| 183 | dPhuncdY = (slm * (spi * dum_i(m-1) * dcpidy + dspidy * um_i(m-1)) & | 
| 184 | + clm * dtm_i(m) * dcpidy ) | 
| 185 | dPhuncdZ = (slm * (spi * dum_i(m-1) * dcpidz + dspidz * um_i(m-1)) & | 
| 186 | + clm * dtm_i(m) * dcpidz ) | 
| 187 |  | 
| 188 | dPhuncdUx = (slm*(spi * dum_i(m-1) * dcpidux + dspidux * um_i(m-1)) & | 
| 189 | + clm * dtm_i(m) * dcpidux | 
| 190 | dPhuncdUy = (slm*(spi * dum_i(m-1) * dcpiduy + dspiduy * um_i(m-1)) & | 
| 191 | + clm * dtm_i(m) * dcpiduy | 
| 192 | dPhuncdUz = (slm*(spi * dum_i(m-1) * dcpiduz + dspiduz * um_i(m-1)) & | 
| 193 | + clm * dtm_i(m) * dcpiduz | 
| 194 |  | 
| 195 | sigma_i = sigma_i + plm_i(l,m)*Phunc | 
| 196 |  | 
| 197 | dsigmaidx = dsigmaidx + plm_i(l,m)*dPhuncdX + & | 
| 198 | Phunc * dlm_i(l,m) * dctidx | 
| 199 | dsigmaidy = dsigmaidy + plm_i(l,m)*dPhuncdY + & | 
| 200 | Phunc * dlm_i(l,m) * dctidy | 
| 201 | dsigmaidz = dsigmaidz + plm_i(l,m)*dPhuncdZ + & | 
| 202 | Phunc * dlm_i(l,m) * dctidz | 
| 203 |  | 
| 204 | dsigmaidux = dsigmaidux + plm_i(l,m)* dPhuncdUx + & | 
| 205 | Phunc * dlm_i(l,m) * dctidux | 
| 206 | dsigmaiduy = dsigmaiduy + plm_i(l,m)* dPhuncdUy + & | 
| 207 | Phunc * dlm_i(l,m) * dctiduy | 
| 208 | dsigmaiduz = dsigmaiduz + plm_i(l,m)* dPhuncdUz + & | 
| 209 | Phunc * dlm_i(l,m) * dctiduz | 
| 210 |  | 
| 211 | slm = ShapeMap(me1)%rangeFuncSinCoeff(lm) | 
| 212 | clm = ShapeMap(me1)%rangeFuncCosCoeff(lm) | 
| 213 |  | 
| 214 | Phunc = (slm * spi * um_i(m-1) + clm  * tm_i(m)) | 
| 215 |  | 
| 216 | dPhuncdX = (slm * (spi * dum_i(m-1) * dcpidx + dspidx * um_i(m-1)) & | 
| 217 | + clm * dtm_i(m) * dcpidx ) | 
| 218 | dPhuncdY = (slm * (spi * dum_i(m-1) * dcpidy + dspidy * um_i(m-1)) & | 
| 219 | + clm * dtm_i(m) * dcpidy ) | 
| 220 | dPhuncdZ = (slm * (spi * dum_i(m-1) * dcpidz + dspidz * um_i(m-1)) & | 
| 221 | + clm * dtm_i(m) * dcpidz ) | 
| 222 |  | 
| 223 | dPhuncdUx = (slm*(spi * dum_i(m-1) * dcpidux + dspidux * um_i(m-1)) & | 
| 224 | + clm * dtm_i(m) * dcpidux | 
| 225 | dPhuncdUy = (slm*(spi * dum_i(m-1) * dcpiduy + dspiduy * um_i(m-1)) & | 
| 226 | + clm * dtm_i(m) * dcpiduy | 
| 227 | dPhuncdUz = (slm*(spi * dum_i(m-1) * dcpiduz + dspiduz * um_i(m-1)) & | 
| 228 | + clm * dtm_i(m) * dcpiduz | 
| 229 |  | 
| 230 | s_i = s_i + plm_i(l,m)*Phunc | 
| 231 |  | 
| 232 | dsidx = dsidx + plm_i(l,m)*dPhuncdX + & | 
| 233 | Phunc * dlm_i(l,m) * dctidx | 
| 234 | dsidy = dsidy + plm_i(l,m)*dPhuncdY + & | 
| 235 | Phunc * dlm_i(l,m) * dctidy | 
| 236 | dsidz = dsidz + plm_i(l,m)*dPhuncdZ + & | 
| 237 | Phunc * dlm_i(l,m) * dctidz | 
| 238 |  | 
| 239 | dsidux = dsidux + plm_i(l,m)* dPhuncdUx + & | 
| 240 | Phunc * dlm_i(l,m) * dctidux | 
| 241 | dsiduy = dsiduy + plm_i(l,m)* dPhuncdUy + & | 
| 242 | Phunc * dlm_i(l,m) * dctiduy | 
| 243 | dsiduz = dsiduz + plm_i(l,m)* dPhuncdUz + & | 
| 244 | Phunc * dlm_i(l,m) * dctiduz | 
| 245 |  | 
| 246 | slm = ShapeMap(me1)%strengthFuncSinCoeff(lm) | 
| 247 | clm = ShapeMap(me1)%strengthFuncCosCoeff(lm) | 
| 248 |  | 
| 249 | Phunc = (slm * spi * um_i(m-1) + clm  * tm_i(m)) | 
| 250 |  | 
| 251 | dPhuncdX = (slm * (spi * dum_i(m-1) * dcpidx + dspidx * um_i(m-1)) & | 
| 252 | + clm * dtm_i(m) * dcpidx ) | 
| 253 | dPhuncdY = (slm * (spi * dum_i(m-1) * dcpidy + dspidy * um_i(m-1)) & | 
| 254 | + clm * dtm_i(m) * dcpidy ) | 
| 255 | dPhuncdZ = (slm * (spi * dum_i(m-1) * dcpidz + dspidz * um_i(m-1)) & | 
| 256 | + clm * dtm_i(m) * dcpidz ) | 
| 257 |  | 
| 258 | dPhuncdUx = (slm*(spi * dum_i(m-1) * dcpidux + dspidux * um_i(m-1)) & | 
| 259 | + clm * dtm_i(m) * dcpidux | 
| 260 | dPhuncdUy = (slm*(spi * dum_i(m-1) * dcpiduy + dspiduy * um_i(m-1)) & | 
| 261 | + clm * dtm_i(m) * dcpiduy | 
| 262 | dPhuncdUz = (slm*(spi * dum_i(m-1) * dcpiduz + dspiduz * um_i(m-1)) & | 
| 263 | + clm * dtm_i(m) * dcpiduz | 
| 264 |  | 
| 265 | eps_i = eps_i + plm_i(l,m)*Phunc | 
| 266 |  | 
| 267 | depsidx = depsidx + plm_i(l,m)*dPhuncdX + & | 
| 268 | Phunc * dlm_i(l,m) * dctidx | 
| 269 | depsidy = depsidy + plm_i(l,m)*dPhuncdY + & | 
| 270 | Phunc * dlm_i(l,m) * dctidy | 
| 271 | depsidz = depsidz + plm_i(l,m)*dPhuncdZ + & | 
| 272 | Phunc * dlm_i(l,m) * dctidz | 
| 273 |  | 
| 274 | depsidux = depsidux + plm_i(l,m)* dPhuncdUx + & | 
| 275 | Phunc * dlm_i(l,m) * dctidux | 
| 276 | depsiduy = depsiduy + plm_i(l,m)* dPhuncdUy + & | 
| 277 | Phunc * dlm_i(l,m) * dctiduy | 
| 278 | depsiduz = depsiduz + plm_i(l,m)* dPhuncdUz + & | 
| 279 | Phunc * dlm_i(l,m) * dctiduz | 
| 280 |  | 
| 281 | enddo | 
| 282 | endif | 
| 283 |  | 
| 284 | ! now do j: | 
| 285 |  | 
| 286 | if (ShapeMap(me2)%isLJ) then | 
| 287 | sigma_j = ShapeMap(me2)%sigma | 
| 288 | s_j = ShapeMap(me2)%sigma | 
| 289 | eps_j = ShapeMap(me2)%epsilon | 
| 290 | dsigmajdx = 0.0d0 | 
| 291 | dsigmajdy = 0.0d0 | 
| 292 | dsigmajdz = 0.0d0 | 
| 293 | dsigmajdux = 0.0d0 | 
| 294 | dsigmajduy = 0.0d0 | 
| 295 | dsigmajduz = 0.0d0 | 
| 296 | dsjdx = 0.0d0 | 
| 297 | dsjdy = 0.0d0 | 
| 298 | dsjdz = 0.0d0 | 
| 299 | dsjdux = 0.0d0 | 
| 300 | dsjduy = 0.0d0 | 
| 301 | dsjduz = 0.0d0 | 
| 302 | depsjdx = 0.0d0 | 
| 303 | depsjdy = 0.0d0 | 
| 304 | depsjdz = 0.0d0 | 
| 305 | depsjdux = 0.0d0 | 
| 306 | depsjduy = 0.0d0 | 
| 307 | depsjduz = 0.0d0 | 
| 308 | else | 
| 309 |  | 
| 310 | #ifdef IS_MPI | 
| 311 | ! rotate the inter-particle separation into the two different | 
| 312 | ! body-fixed coordinate systems: | 
| 313 | ! negative sign because this is the vector from j to i: | 
| 314 |  | 
| 315 | xj = -(A_Col(1,atom2)*d(1) + A_Col(2,atom2)*d(2) + A_Col(3,atom2)*d(3)) | 
| 316 | yj = -(A_Col(4,atom2)*d(1) + A_Col(5,atom2)*d(2) + A_Col(6,atom2)*d(3)) | 
| 317 | zj = -(A_Col(7,atom2)*d(1) + A_Col(8,atom2)*d(2) + A_Col(9,atom2)*d(3)) | 
| 318 | #else | 
| 319 | ! rotate the inter-particle separation into the two different | 
| 320 | ! body-fixed coordinate systems: | 
| 321 | ! negative sign because this is the vector from j to i: | 
| 322 |  | 
| 323 | xj = -(a(1,atom2)*d(1) + a(2,atom2)*d(2) + a(3,atom2)*d(3)) | 
| 324 | yj = -(a(4,atom2)*d(1) + a(5,atom2)*d(2) + a(6,atom2)*d(3)) | 
| 325 | zj = -(a(7,atom2)*d(1) + a(8,atom2)*d(2) + a(9,atom2)*d(3)) | 
| 326 | #endif | 
| 327 |  | 
| 328 | xj2 = xj*xj | 
| 329 | yj2 = yj*yj | 
| 330 | zj2 = zj*zj | 
| 331 |  | 
| 332 | projj = sqrt(xj2 + yj2) | 
| 333 | projj3 = projj*projj*projj | 
| 334 |  | 
| 335 | ctj = zj / rij | 
| 336 | dctjdx = - zj * xj / r3 | 
| 337 | dctjdy = - zj * yj / r3 | 
| 338 | dctjdz = 1.0d0 / rij - zj2 / r3 | 
| 339 | dctjdux =  yj / rij | 
| 340 | dctjduy = -xj / rij | 
| 341 | dctjduz = 0.0d0 | 
| 342 |  | 
| 343 | cpj = xj / projj | 
| 344 | dcpjdx = 1.0d0 / projj - xj2 / projj3 | 
| 345 | dcpjdy = - xj * yj / projj3 | 
| 346 | dcpjdz = 0.0d0 | 
| 347 | dcpjdux = xj * yj * zj / projj3 | 
| 348 | dcpjduy = -zj * (1.0d0 / projj - xj2 / projj3) | 
| 349 | dcpjduz = -yj * (1.0d0 / projj - xj2 / projj3)  - (xj2 * yj / projj3) | 
| 350 |  | 
| 351 | spj = yj / projj | 
| 352 | dspjdx = - xj * yj / projj3 | 
| 353 | dspjdy = 1.0d0 / projj - yj2 / projj3 | 
| 354 | dspjdz = 0.0d0 | 
| 355 | dspjdux = -zj * (1.0d0 / projj - yj2 / projj3) | 
| 356 | dspjduy = xj * yj * zj / projj3 | 
| 357 | dspjduz = xj * (1.0d0 / projj - yi2 / projj3) + (xj * yj2 / projj3) | 
| 358 |  | 
| 359 | call Associated_Legendre(ctj, ShapeMap(me2)%bigL, & | 
| 360 | ShapeMap(me2)%bigM, lmax, plm_j, dlm_j) | 
| 361 |  | 
| 362 | call Orthogonal_Polynomial(cpj, ShapeMap(me2)%bigM, CHEBYSHEV_TN, & | 
| 363 | tm_j, dtm_j) | 
| 364 | call Orthogonal_Polynomial(cpj, ShapeMap(me2)%bigM, CHEBYSHEV_UN, & | 
| 365 | um_j, dum_j) | 
| 366 |  | 
| 367 | sigma_j = 0.0d0 | 
| 368 | s_j = 0.0d0 | 
| 369 | eps_j = 0.0d0 | 
| 370 | dsigmajdx = 0.0d0 | 
| 371 | dsigmajdy = 0.0d0 | 
| 372 | dsigmajdz = 0.0d0 | 
| 373 | dsigmajdux = 0.0d0 | 
| 374 | dsigmajduy = 0.0d0 | 
| 375 | dsigmajduz = 0.0d0 | 
| 376 | dsjdx = 0.0d0 | 
| 377 | dsjdy = 0.0d0 | 
| 378 | dsjdz = 0.0d0 | 
| 379 | dsjdux = 0.0d0 | 
| 380 | dsjduy = 0.0d0 | 
| 381 | dsjduz = 0.0d0 | 
| 382 | depsjdx = 0.0d0 | 
| 383 | depsjdy = 0.0d0 | 
| 384 | depsjdz = 0.0d0 | 
| 385 | depsjdux = 0.0d0 | 
| 386 | depsjduy = 0.0d0 | 
| 387 | depsjduz = 0.0d0 | 
| 388 |  | 
| 389 | do lm = 1, ShapeMap(me2)%nLMpairs | 
| 390 |  | 
| 391 | l = ShapeMap(me2)%lValue(lm) | 
| 392 | m = ShapeMap(me2)%mValue(lm) | 
| 393 |  | 
| 394 | slm = ShapeMap(me2)%contactFuncSinCoeff(lm) | 
| 395 | clm = ShapeMap(me2)%contactFuncCosCoeff(lm) | 
| 396 |  | 
| 397 | Phunc = (slm * spi * um_i(m-1) + clm  * tm_i(m)) | 
| 398 |  | 
| 399 | dPhuncdX = (slm * (spj * dum_j(m-1) * dcpjdx + dspjdx * um_j(m-1)) & | 
| 400 | + clm * dtm_j(m) * dcpjdx ) | 
| 401 | dPhuncdY = (slm * (spj * dum_j(m-1) * dcpjdy + dspjdy * um_j(m-1)) & | 
| 402 | + clm * dtm_j(m) * dcpjdy ) | 
| 403 | dPhuncdZ = (slm * (spj * dum_j(m-1) * dcpjdz + dspjdz * um_j(m-1)) & | 
| 404 | + clm * dtm_j(m) * dcpjdz ) | 
| 405 |  | 
| 406 | dPhuncdUx = (slm*(spj * dum_j(m-1) * dcpjdux + dspjdux * um_j(m-1)) & | 
| 407 | + clm * dtm_j(m) * dcpjdux | 
| 408 | dPhuncdUy = (slm*(spj * dum_j(m-1) * dcpjduy + dspjduy * um_j(m-1)) & | 
| 409 | + clm * dtm_j(m) * dcpjduy | 
| 410 | dPhuncdUz = (slm*(spj * dum_j(m-1) * dcpjduz + dspjduz * um_j(m-1)) & | 
| 411 | + clm * dtm_j(m) * dcpjduz | 
| 412 |  | 
| 413 | sigma_j = sigma_j + plm_j(l,m)*Phunc | 
| 414 |  | 
| 415 | dsigmajdx = dsigmajdx + plm_j(l,m)*dPhuncdX + & | 
| 416 | Phunc * dlm_j(l,m) * dctjdx | 
| 417 | dsigmajdy = dsigmajdy + plm_j(l,m)*dPhuncdY + & | 
| 418 | Phunc * dlm_j(l,m) * dctjdy | 
| 419 | dsigmajdz = dsigmajdz + plm_j(l,m)*dPhuncdZ + & | 
| 420 | Phunc * dlm_j(l,m) * dctjdz | 
| 421 |  | 
| 422 | dsigmajdux = dsigmajdux + plm_j(l,m)* dPhuncdUx + & | 
| 423 | Phunc * dlm_j(l,m) * dctjdux | 
| 424 | dsigmajduy = dsigmajduy + plm_j(l,m)* dPhuncdUy + & | 
| 425 | Phunc * dlm_j(l,m) * dctjduy | 
| 426 | dsigmajduz = dsigmajduz + plm_j(l,m)* dPhuncdUz + & | 
| 427 | Phunc * dlm_j(l,m) * dctjduz | 
| 428 |  | 
| 429 | slm = ShapeMap(me2)%rangeFuncSinCoeff(lm) | 
| 430 | clm = ShapeMap(me2)%rangeFuncCosCoeff(lm) | 
| 431 |  | 
| 432 | Phunc = (slm * spi * um_i(m-1) + clm  * tm_i(m)) | 
| 433 |  | 
| 434 | dPhuncdX = (slm * (spj * dum_j(m-1) * dcpjdx + dspjdx * um_j(m-1)) & | 
| 435 | + clm * dtm_j(m) * dcpjdx ) | 
| 436 | dPhuncdY = (slm * (spj * dum_j(m-1) * dcpjdy + dspjdy * um_j(m-1)) & | 
| 437 | + clm * dtm_j(m) * dcpjdy ) | 
| 438 | dPhuncdZ = (slm * (spj * dum_j(m-1) * dcpjdz + dspjdz * um_j(m-1)) & | 
| 439 | + clm * dtm_j(m) * dcpjdz ) | 
| 440 |  | 
| 441 | dPhuncdUx = (slm*(spj * dum_j(m-1) * dcpjdux + dspjdux * um_j(m-1)) & | 
| 442 | + clm * dtm_j(m) * dcpjdux | 
| 443 | dPhuncdUy = (slm*(spj * dum_j(m-1) * dcpjduy + dspjduy * um_j(m-1)) & | 
| 444 | + clm * dtm_j(m) * dcpjduy | 
| 445 | dPhuncdUz = (slm*(spj * dum_j(m-1) * dcpjduz + dspjduz * um_j(m-1)) & | 
| 446 | + clm * dtm_j(m) * dcpjduz | 
| 447 |  | 
| 448 | s_j = s_j + plm_j(l,m)*Phunc | 
| 449 |  | 
| 450 | dsjdx = dsjdx + plm_j(l,m)*dPhuncdX + & | 
| 451 | Phunc * dlm_j(l,m) * dctjdx | 
| 452 | dsjdy = dsjdy + plm_j(l,m)*dPhuncdY + & | 
| 453 | Phunc * dlm_j(l,m) * dctjdy | 
| 454 | dsjdz = dsjdz + plm_j(l,m)*dPhuncdZ + & | 
| 455 | Phunc * dlm_j(l,m) * dctjdz | 
| 456 |  | 
| 457 | dsjdux = dsjdux + plm_j(l,m)* dPhuncdUx + & | 
| 458 | Phunc * dlm_j(l,m) * dctjdux | 
| 459 | dsjduy = dsjduy + plm_j(l,m)* dPhuncdUy + & | 
| 460 | Phunc * dlm_j(l,m) * dctjduy | 
| 461 | dsjduz = dsjduz + plm_j(l,m)* dPhuncdUz + & | 
| 462 | Phunc * dlm_j(l,m) * dctjduz | 
| 463 |  | 
| 464 | slm = ShapeMap(me2)%strengthFuncSinCoeff(lm) | 
| 465 | clm = ShapeMap(me2)%strengthFuncCosCoeff(lm) | 
| 466 |  | 
| 467 | Phunc = (slm * spi * um_i(m-1) + clm  * tm_i(m)) | 
| 468 |  | 
| 469 | dPhuncdX = (slm * (spj * dum_j(m-1) * dcpjdx + dspjdx * um_j(m-1)) & | 
| 470 | + clm * dtm_j(m) * dcpjdx ) | 
| 471 | dPhuncdY = (slm * (spj * dum_j(m-1) * dcpjdy + dspjdy * um_j(m-1)) & | 
| 472 | + clm * dtm_j(m) * dcpjdy ) | 
| 473 | dPhuncdZ = (slm * (spj * dum_j(m-1) * dcpjdz + dspjdz * um_j(m-1)) & | 
| 474 | + clm * dtm_j(m) * dcpjdz ) | 
| 475 |  | 
| 476 | dPhuncdUx = (slm*(spj * dum_j(m-1) * dcpjdux + dspjdux * um_j(m-1)) & | 
| 477 | + clm * dtm_j(m) * dcpjdux | 
| 478 | dPhuncdUy = (slm*(spj * dum_j(m-1) * dcpjduy + dspjduy * um_j(m-1)) & | 
| 479 | + clm * dtm_j(m) * dcpjduy | 
| 480 | dPhuncdUz = (slm*(spj * dum_j(m-1) * dcpjduz + dspjduz * um_j(m-1)) & | 
| 481 | + clm * dtm_j(m) * dcpjduz | 
| 482 |  | 
| 483 | eps_j = eps_j + plm_j(l,m)*Phunc | 
| 484 |  | 
| 485 | depsjdx = depsjdx + plm_j(l,m)*dPhuncdX + & | 
| 486 | Phunc * dlm_j(l,m) * dctjdx | 
| 487 | depsjdy = depsjdy + plm_j(l,m)*dPhuncdY + & | 
| 488 | Phunc * dlm_j(l,m) * dctjdy | 
| 489 | depsjdz = depsjdz + plm_j(l,m)*dPhuncdZ + & | 
| 490 | Phunc * dlm_j(l,m) * dctjdz | 
| 491 |  | 
| 492 | depsjdux = depsjdux + plm_j(l,m)* dPhuncdUx + & | 
| 493 | Phunc * dlm_j(l,m) * dctjdux | 
| 494 | depsjduy = depsjduy + plm_j(l,m)* dPhuncdUy + & | 
| 495 | Phunc * dlm_j(l,m) * dctjduy | 
| 496 | depsjduz = depsjduz + plm_j(l,m)* dPhuncdUz + & | 
| 497 | Phunc * dlm_j(l,m) * dctjduz | 
| 498 |  | 
| 499 | enddo | 
| 500 | endif | 
| 501 |  | 
| 502 | ! phew, now let's assemble the potential energy: | 
| 503 |  | 
| 504 |  | 
| 505 | sigma = 0.5*(sigma_i + sigma_j) | 
| 506 |  | 
| 507 | dsigmadxi = 0.5*dsigmaidx | 
| 508 | dsigmadyi = 0.5*dsigmaidy | 
| 509 | dsigmadzi = 0.5*dsigmaidz | 
| 510 | dsigmaduxi = 0.5*dsigmaidux | 
| 511 | dsigmaduyi = 0.5*dsigmaiduy | 
| 512 | dsigmaduzi = 0.5*dsigmaiduz | 
| 513 |  | 
| 514 | dsigmadxj = 0.5*dsigmajdx | 
| 515 | dsigmadyj = 0.5*dsigmajdy | 
| 516 | dsigmadzj = 0.5*dsigmajdz | 
| 517 | dsigmaduxj = 0.5*dsigmajdux | 
| 518 | dsigmaduyj = 0.5*dsigmajduy | 
| 519 | dsigmaduzj = 0.5*dsigmajduz | 
| 520 |  | 
| 521 | s = 0.5*(s_i + s_j) | 
| 522 |  | 
| 523 | dsdxi = 0.5*dsidx | 
| 524 | dsdyi = 0.5*dsidy | 
| 525 | dsdzi = 0.5*dsidz | 
| 526 | dsduxi = 0.5*dsidux | 
| 527 | dsduyi = 0.5*dsiduy | 
| 528 | dsduzi = 0.5*dsiduz | 
| 529 |  | 
| 530 | dsdxj = 0.5*dsjdx | 
| 531 | dsdyj = 0.5*dsjdy | 
| 532 | dsdzj = 0.5*dsjdz | 
| 533 | dsduxj = 0.5*dsjdux | 
| 534 | dsduyj = 0.5*dsjduy | 
| 535 | dsduzj = 0.5*dsjduz | 
| 536 |  | 
| 537 | eps = sqrt(eps_i * eps_j) | 
| 538 |  | 
| 539 | depsdxi = eps_j * depsidx / (2.0d0 * eps) | 
| 540 | depsdyi = eps_j * depsidy / (2.0d0 * eps) | 
| 541 | depsdzi = eps_j * depsidz / (2.0d0 * eps) | 
| 542 | depsduxi = eps_j * depsidux / (2.0d0 * eps) | 
| 543 | depsduyi = eps_j * depsiduy / (2.0d0 * eps) | 
| 544 | depsduzi = eps_j * depsiduz / (2.0d0 * eps) | 
| 545 |  | 
| 546 | depsdxj = eps_i * depsjdx / (2.0d0 * eps) | 
| 547 | depsdyj = eps_i * depsjdy / (2.0d0 * eps) | 
| 548 | depsdzj = eps_i * depsjdz / (2.0d0 * eps) | 
| 549 | depsduxj = eps_i * depsjdux / (2.0d0 * eps) | 
| 550 | depsduyj = eps_i * depsjduy / (2.0d0 * eps) | 
| 551 | depsduzj = eps_i * depsjduz / (2.0d0 * eps) | 
| 552 |  | 
| 553 | rtdenom = r-sigma+s | 
| 554 | rt = s / rtdenom | 
| 555 |  | 
| 556 | drtdxi = (dsdxi + rt * (drdxi - dsigmadxi + dsdxi)) / rtdenom | 
| 557 | drtdyi = (dsdyi + rt * (drdyi - dsigmadyi + dsdyi)) / rtdenom | 
| 558 | drtdzi = (dsdzi + rt * (drdzi - dsigmadzi + dsdzi)) / rtdenom | 
| 559 | drtduxi = (dsduxi + rt * (drduxi - dsigmaduxi + dsduxi)) / rtdenom | 
| 560 | drtduyi = (dsduyi + rt * (drduyi - dsigmaduyi + dsduyi)) / rtdenom | 
| 561 | drtduzi = (dsduzi + rt * (drduzi - dsigmaduzi + dsduzi)) / rtdenom | 
| 562 | drtdxj = (dsdxj + rt * (drdxj - dsigmadxj + dsdxj)) / rtdenom | 
| 563 | drtdyj = (dsdyj + rt * (drdyj - dsigmadyj + dsdyj)) / rtdenom | 
| 564 | drtdzj = (dsdzj + rt * (drdzj - dsigmadzj + dsdzj)) / rtdenom | 
| 565 | drtduxj = (dsduxj + rt * (drduxj - dsigmaduxj + dsduxj)) / rtdenom | 
| 566 | drtduyj = (dsduyj + rt * (drduyj - dsigmaduyj + dsduyj)) / rtdenom | 
| 567 | drtduzj = (dsduzj + rt * (drduzj - dsigmaduzj + dsduzj)) / rtdenom | 
| 568 |  | 
| 569 | rt2 = rt*rt | 
| 570 | rt3 = rt2*rt | 
| 571 | rt5 = rt2*rt3 | 
| 572 | rt6 = rt3*rt3 | 
| 573 | rt11 = rt5*rt6 | 
| 574 | rt12 = rt6*rt6 | 
| 575 | rt126 = rt12 - rt6 | 
| 576 |  | 
| 577 | if (do_pot) then | 
| 578 | #ifdef IS_MPI | 
| 579 | pot_row(atom1) = pot_row(atom1) + 2.0d0*eps*rt126*sw | 
| 580 | pot_col(atom2) = pot_col(atom2) + 2.0d0*eps*rt126*sw | 
| 581 | #else | 
| 582 | pot = pot + 4.0d0*eps*rt126*sw | 
| 583 | endif | 
| 584 |  | 
| 585 | dvdxi = 24.0d0*eps(2.0d0*rt11 - rt5)*drtdxi + 4.0d0*depsdxi*rt126 | 
| 586 | dvdyi = 24.0d0*eps(2.0d0*rt11 - rt5)*drtdyi + 4.0d0*depsdyi*rt126 | 
| 587 | dvdzi = 24.0d0*eps(2.0d0*rt11 - rt5)*drtdzi + 4.0d0*depsdzi*rt126 | 
| 588 | dvduxi = 24.0d0*eps(2.0d0*rt11 - rt5)*drtduxi + 4.0d0*depsduxi*rt126 | 
| 589 | dvduyi = 24.0d0*eps(2.0d0*rt11 - rt5)*drtduyi + 4.0d0*depsduyi*rt126 | 
| 590 | dvduzi = 24.0d0*eps(2.0d0*rt11 - rt5)*drtduzi + 4.0d0*depsduzi*rt126 | 
| 591 |  | 
| 592 | dvdxj = 24.0d0*eps(2.0d0*rt11 - rt5)*drtdxj + 4.0d0*depsdxj*rt126 | 
| 593 | dvdyj = 24.0d0*eps(2.0d0*rt11 - rt5)*drtdyj + 4.0d0*depsdyj*rt126 | 
| 594 | dvdzj = 24.0d0*eps(2.0d0*rt11 - rt5)*drtdzj + 4.0d0*depsdzj*rt126 | 
| 595 | dvduxj = 24.0d0*eps(2.0d0*rt11 - rt5)*drtduxj + 4.0d0*depsduxj*rt126 | 
| 596 | dvduyj = 24.0d0*eps(2.0d0*rt11 - rt5)*drtduyj + 4.0d0*depsduyj*rt126 | 
| 597 | dvduzj = 24.0d0*eps(2.0d0*rt11 - rt5)*drtduzj + 4.0d0*depsduzj*rt126 | 
| 598 |  | 
| 599 | ! do the torques first since they are easy: | 
| 600 | ! remember that these are still in the body fixed axes | 
| 601 |  | 
| 602 | txi = dvduxi * sw | 
| 603 | tyi = dvduyi * sw | 
| 604 | tzi = dvduzi * sw | 
| 605 |  | 
| 606 | txj = dvduxj * sw | 
| 607 | tyj = dvduyj * sw | 
| 608 | tzj = dvduzj * sw | 
| 609 |  | 
| 610 | ! go back to lab frame using transpose of rotation matrix: | 
| 611 |  | 
| 612 | #ifdef IS_MPI | 
| 613 | t_Row(1,atom1) = t_Row(1,atom1) + a_Row(1,atom1)*txi + & | 
| 614 | a_Row(4,atom1)*tyi + a_Row(7,atom1)*tzi | 
| 615 | t_Row(2,atom1) = t_Row(2,atom1) + a_Row(2,atom1)*txi + & | 
| 616 | a_Row(5,atom1)*tyi + a_Row(8,atom1)*tzi | 
| 617 | t_Row(3,atom1) = t_Row(3,atom1) + a_Row(3,atom1)*txi + & | 
| 618 | a_Row(6,atom1)*tyi + a_Row(9,atom1)*tzi | 
| 619 |  | 
| 620 | t_Col(1,atom2) = t_Col(1,atom2) + a_Col(1,atom2)*txj + & | 
| 621 | a_Col(4,atom2)*tyj + a_Col(7,atom2)*tzj | 
| 622 | t_Col(2,atom2) = t_Col(2,atom2) + a_Col(2,atom2)*txj + & | 
| 623 | a_Col(5,atom2)*tyj + a_Col(8,atom2)*tzj | 
| 624 | t_Col(3,atom2) = t_Col(3,atom2) + a_Col(3,atom2)*txj + & | 
| 625 | a_Col(6,atom2)*tyj + a_Col(9,atom2)*tzj | 
| 626 | #else | 
| 627 | t(1,atom1) = t(1,atom1) + a(1,atom1)*txi + a(4,atom1)*tyi + a(7,atom1)*tzi | 
| 628 | t(2,atom1) = t(2,atom1) + a(2,atom1)*txi + a(5,atom1)*tyi + a(8,atom1)*tzi | 
| 629 | t(3,atom1) = t(3,atom1) + a(3,atom1)*txi + a(6,atom1)*tyi + a(9,atom1)*tzi | 
| 630 |  | 
| 631 | t(1,atom2) = t(1,atom2) + a(1,atom2)*txj + a(4,atom2)*tyj + a(7,atom2)*tzj | 
| 632 | t(2,atom2) = t(2,atom2) + a(2,atom2)*txj + a(5,atom2)*tyj + a(8,atom2)*tzj | 
| 633 | t(3,atom2) = t(3,atom2) + a(3,atom2)*txj + a(6,atom2)*tyj + a(9,atom2)*tzj | 
| 634 | #endif | 
| 635 | ! Now, on to the forces: | 
| 636 |  | 
| 637 | ! first rotate the i terms back into the lab frame: | 
| 638 |  | 
| 639 | fxi = dvdxi * sw | 
| 640 | fyi = dvdyi * sw | 
| 641 | fzi = dvdzi * sw | 
| 642 |  | 
| 643 | fxj = dvdxj * sw | 
| 644 | fyj = dvdyj * sw | 
| 645 | fzj = dvdzj * sw | 
| 646 |  | 
| 647 | #ifdef IS_MPI | 
| 648 | fxii = a_Row(1,atom1)*fxi + a_Row(4,atom1)*fyi + a_Row(7,atom1)*fzi | 
| 649 | fyii = a_Row(2,atom1)*fxi + a_Row(5,atom1)*fyi + a_Row(8,atom1)*fzi | 
| 650 | fzii = a_Row(3,atom1)*fxi + a_Row(6,atom1)*fyi + a_Row(9,atom1)*fzi | 
| 651 |  | 
| 652 | fxjj = a_Col(1,atom2)*fxj + a_Col(4,atom2)*fyj + a_Col(7,atom2)*fzj | 
| 653 | fyjj = a_Col(2,atom2)*fxj + a_Col(5,atom2)*fyj + a_Col(8,atom2)*fzj | 
| 654 | fzjj = a_Col(3,atom2)*fxj + a_Col(6,atom2)*fyj + a_Col(9,atom2)*fzj | 
| 655 | #else | 
| 656 | fxii = a(1,atom1)*fxi + a(4,atom1)*fyi + a(7,atom1)*fzi | 
| 657 | fyii = a(2,atom1)*fxi + a(5,atom1)*fyi + a(8,atom1)*fzi | 
| 658 | fzii = a(3,atom1)*fxi + a(6,atom1)*fyi + a(9,atom1)*fzi | 
| 659 |  | 
| 660 | fxjj = a(1,atom2)*fxj + a(4,atom2)*fyj + a(7,atom2)*fzj | 
| 661 | fyjj = a(2,atom2)*fxj + a(5,atom2)*fyj + a(8,atom2)*fzj | 
| 662 | fzjj = a(3,atom2)*fxj + a(6,atom2)*fyj + a(9,atom2)*fzj | 
| 663 | #endif | 
| 664 |  | 
| 665 | fxij = -fxii | 
| 666 | fyij = -fyii | 
| 667 | fzij = -fzii | 
| 668 |  | 
| 669 | fxji = -fxjj | 
| 670 | fyji = -fyjj | 
| 671 | fzji = -fzjj | 
| 672 |  | 
| 673 | fxradial = fxii + fxji | 
| 674 | fyradial = fyii + fyji | 
| 675 | fzradial = fzii + fzji | 
| 676 |  | 
| 677 | #ifdef IS_MPI | 
| 678 | f_Row(1,atom1) = f_Row(1,atom1) + fxradial | 
| 679 | f_Row(2,atom1) = f_Row(2,atom1) + fyradial | 
| 680 | f_Row(3,atom1) = f_Row(3,atom1) + fzradial | 
| 681 |  | 
| 682 | f_Col(1,atom2) = f_Col(1,atom2) - fxradial | 
| 683 | f_Col(2,atom2) = f_Col(2,atom2) - fyradial | 
| 684 | f_Col(3,atom2) = f_Col(3,atom2) - fzradial | 
| 685 | #else | 
| 686 | f(1,atom1) = f(1,atom1) + fxradial | 
| 687 | f(2,atom1) = f(2,atom1) + fyradial | 
| 688 | f(3,atom1) = f(3,atom1) + fzradial | 
| 689 |  | 
| 690 | f(1,atom2) = f(1,atom2) - fxradial | 
| 691 | f(2,atom2) = f(2,atom2) - fyradial | 
| 692 | f(3,atom2) = f(3,atom2) - fzradial | 
| 693 | #endif | 
| 694 |  | 
| 695 | #ifdef IS_MPI | 
| 696 | id1 = AtomRowToGlobal(atom1) | 
| 697 | id2 = AtomColToGlobal(atom2) | 
| 698 | #else | 
| 699 | id1 = atom1 | 
| 700 | id2 = atom2 | 
| 701 | #endif | 
| 702 |  | 
| 703 | if (molMembershipList(id1) .ne. molMembershipList(id2)) then | 
| 704 |  | 
| 705 | fpair(1) = fpair(1) + fxradial | 
| 706 | fpair(2) = fpair(2) + fyradial | 
| 707 | fpair(3) = fpair(3) + fzradial | 
| 708 |  | 
| 709 | endif | 
| 710 |  | 
| 711 | end subroutine do_shape_pair | 
| 712 |  | 
| 713 | SUBROUTINE Associated_Legendre(x, l, m, lmax, plm, dlm) | 
| 714 |  | 
| 715 | ! Purpose: Compute the associated Legendre functions | 
| 716 | !          Plm(x) and their derivatives Plm'(x) | 
| 717 | ! Input :  x  --- Argument of Plm(x) | 
| 718 | !          l  --- Order of Plm(x),  l = 0,1,2,...,n | 
| 719 | !          m  --- Degree of Plm(x), m = 0,1,2,...,N | 
| 720 | !          lmax --- Physical dimension of PLM and DLM | 
| 721 | ! Output:  PLM(l,m) --- Plm(x) | 
| 722 | !          DLM(l,m) --- Plm'(x) | 
| 723 | ! | 
| 724 | ! adapted from the routines in | 
| 725 | ! COMPUTATION OF SPECIAL FUNCTIONS by Shanjie Zhang and Jianming Jin | 
| 726 | ! ISBN 0-471-11963-6 | 
| 727 | ! | 
| 728 | ! The original Fortran77 codes can be found here: | 
| 729 | ! http://iris-lee3.ece.uiuc.edu/~jjin/routines/routines.html | 
| 730 |  | 
| 731 | real (kind=8), intent(in) :: x | 
| 732 | integer, intent(in) :: l, m, lmax | 
| 733 | real (kind=8), dimension(0:lmax,0:m), intent(out) :: PLM, DLM | 
| 734 | integer :: i, j, ls | 
| 735 | real (kind=8) :: xq, xs | 
| 736 |  | 
| 737 | ! zero out both arrays: | 
| 738 | DO I = 0, m | 
| 739 | DO J = 0, l | 
| 740 | PLM(J,I) = 0.0D0 | 
| 741 | DLM(J,I) = 0.0D0 | 
| 742 | end DO | 
| 743 | end DO | 
| 744 |  | 
| 745 | ! start with 0,0: | 
| 746 | PLM(0,0) = 1.0D0 | 
| 747 |  | 
| 748 | ! x = +/- 1 functions are easy: | 
| 749 | IF (abs(X).EQ.1.0D0) THEN | 
| 750 | DO I = 1, m | 
| 751 | PLM(0, I) = X**I | 
| 752 | DLM(0, I) = 0.5D0*I*(I+1.0D0)*X**(I+1) | 
| 753 | end DO | 
| 754 | DO J = 1, m | 
| 755 | DO I = 1, l | 
| 756 | IF (I.EQ.1) THEN | 
| 757 | DLM(I, J) = 1.0D+300 | 
| 758 | ELSE IF (I.EQ.2) THEN | 
| 759 | DLM(I, J) = -0.25D0*(J+2)*(J+1)*J*(J-1)*X**(J+1) | 
| 760 | ENDIF | 
| 761 | end DO | 
| 762 | end DO | 
| 763 | RETURN | 
| 764 | ENDIF | 
| 765 |  | 
| 766 | LS = 1 | 
| 767 | IF (abs(X).GT.1.0D0) LS = -1 | 
| 768 | XQ = sqrt(LS*(1.0D0-X*X)) | 
| 769 | XS = LS*(1.0D0-X*X) | 
| 770 |  | 
| 771 | DO I = 1, l | 
| 772 | PLM(I, I) = -LS*(2.0D0*I-1.0D0)*XQ*PLM(I-1, I-1) | 
| 773 | enddo | 
| 774 |  | 
| 775 | DO I = 0, l | 
| 776 | PLM(I, I+1)=(2.0D0*I+1.0D0)*X*PLM(I, I) | 
| 777 | enddo | 
| 778 |  | 
| 779 | DO I = 0, l | 
| 780 | DO J = I+2, m | 
| 781 | PLM(I, J)=((2.0D0*J-1.0D0)*X*PLM(I,J-1) - & | 
| 782 | (I+J-1.0D0)*PLM(I,J-2))/(J-I) | 
| 783 | end DO | 
| 784 | end DO | 
| 785 |  | 
| 786 | DLM(0, 0)=0.0D0 | 
| 787 |  | 
| 788 | DO J = 1, m | 
| 789 | DLM(0, J)=LS*J*(PLM(0,J-1)-X*PLM(0,J))/XS | 
| 790 | end DO | 
| 791 |  | 
| 792 | DO I = 1, l | 
| 793 | DO J = I, m | 
| 794 | DLM(I,J) = LS*I*X*PLM(I, J)/XS + (J+I)*(J-I+1.0D0)/XQ*PLM(I-1, J) | 
| 795 | end DO | 
| 796 | end DO | 
| 797 |  | 
| 798 | RETURN | 
| 799 | END SUBROUTINE Associated_Legendre | 
| 800 |  | 
| 801 |  | 
| 802 | subroutine Orthogonal_Polynomial(x, m, function_type, pl, dpl) | 
| 803 |  | 
| 804 | ! Purpose: Compute orthogonal polynomials: Tn(x) or Un(x), | 
| 805 | !          or Ln(x) or Hn(x), and their derivatives | 
| 806 | ! Input :  function_type --- Function code | 
| 807 | !                 =1 for Chebyshev polynomial Tn(x) | 
| 808 | !                 =2 for Chebyshev polynomial Un(x) | 
| 809 | !                 =3 for Laguerre polynomial Ln(x) | 
| 810 | !                 =4 for Hermite polynomial Hn(x) | 
| 811 | !          n ---  Order of orthogonal polynomials | 
| 812 | !          x ---  Argument of orthogonal polynomials | 
| 813 | ! Output:  PL(n) --- Tn(x) or Un(x) or Ln(x) or Hn(x) | 
| 814 | !          DPL(n)--- Tn'(x) or Un'(x) or Ln'(x) or Hn'(x) | 
| 815 | ! | 
| 816 | ! adapted from the routines in | 
| 817 | ! COMPUTATION OF SPECIAL FUNCTIONS by Shanjie Zhang and Jianming Jin | 
| 818 | ! ISBN 0-471-11963-6 | 
| 819 | ! | 
| 820 | ! The original Fortran77 codes can be found here: | 
| 821 | ! http://iris-lee3.ece.uiuc.edu/~jjin/routines/routines.html | 
| 822 |  | 
| 823 | real(kind=8), intent(in) :: x | 
| 824 | integer, intent(in):: m | 
| 825 | integer, intent(in):: function_type | 
| 826 | real(kind=8), dimension(0:m), intent(inout) :: pl, dpl | 
| 827 |  | 
| 828 | real(kind=8) :: a, b, c, y0, y1, dy0, dy1, yn, dyn | 
| 829 | integer :: k | 
| 830 |  | 
| 831 | A = 2.0D0 | 
| 832 | B = 0.0D0 | 
| 833 | C = 1.0D0 | 
| 834 | Y0 = 1.0D0 | 
| 835 | Y1 = 2.0D0*X | 
| 836 | DY0 = 0.0D0 | 
| 837 | DY1 = 2.0D0 | 
| 838 | PL(0) = 1.0D0 | 
| 839 | PL(1) = 2.0D0*X | 
| 840 | DPL(0) = 0.0D0 | 
| 841 | DPL(1) = 2.0D0 | 
| 842 | IF (function_type.EQ.CHEBYSHEV_TN) THEN | 
| 843 | Y1 = X | 
| 844 | DY1 = 1.0D0 | 
| 845 | PL(1) = X | 
| 846 | DPL(1) = 1.0D0 | 
| 847 | ELSE IF (function_type.EQ.LAGUERRE) THEN | 
| 848 | Y1 = 1.0D0-X | 
| 849 | DY1 = -1.0D0 | 
| 850 | PL(1) = 1.0D0-X | 
| 851 | DPL(1) = -1.0D0 | 
| 852 | ENDIF | 
| 853 | DO K = 2, m | 
| 854 | IF (function_type.EQ.LAGUERRE) THEN | 
| 855 | A = -1.0D0/K | 
| 856 | B = 2.0D0+A | 
| 857 | C = 1.0D0+A | 
| 858 | ELSE IF (function_type.EQ.HERMITE) THEN | 
| 859 | C = 2.0D0*(K-1.0D0) | 
| 860 | ENDIF | 
| 861 | YN = (A*X+B)*Y1-C*Y0 | 
| 862 | DYN = A*Y1+(A*X+B)*DY1-C*DY0 | 
| 863 | PL(K) = YN | 
| 864 | DPL(K) = DYN | 
| 865 | Y0 = Y1 | 
| 866 | Y1 = YN | 
| 867 | DY0 = DY1 | 
| 868 | DY1 = DYN | 
| 869 | end DO | 
| 870 | RETURN | 
| 871 |  | 
| 872 | end subroutine Orthogonal_Polynomial | 
| 873 |  | 
| 874 | end module shapes |